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Abstract	21	

1.	 In	 order	 to	 study	 colour	 signals	 as	 animals	 perceive	 them,	 visual	 ecologists	 usually	22	

rely	on	models	of	colour	vision	that	do	not	consider	patterns–the	spatial	arrangement	of	23	

features	within	a	signal.	24	

2.	 HMAX	 describes	 a	 family	 of	 models	 that	 are	 used	 to	 study	 pattern	 perception	 in	25	

human	vision	research,	and	which	have	inspired	many	artificial	intelligence	algorithms.	26	

In	this	article,	we	highlight	that	the	sensory	and	brain	mechanisms	modelled	 in	HMAX	27	

are	widespread,	occurring	 in	most	 if	not	all	vertebrates,	 thus	offering	HMAX	models	a	28	

wide	range	of	applications	in	visual	ecology.	29	

3.	We	begin	with	a	short	description	of	the	neural	mechanisms	of	pattern	perception	in	30	

vertebrates,	 emphasizing	 similarities	 in	 processes	 across	 species.	 Then,	 we	 provide	 a	31	

detailed	description	of	HMAX,	highlighting	how	the	model	is	linked	to	biological	vision.	32	

We	 further	present	sparse-HMAX,	an	extension	of	HMAX	that	 includes	a	sparse	coding	33	

scheme,	 in	 order	 to	make	 the	model	 even	more	biologically	 realistic	 and	 to	provide	 a	34	

tool	 for	 estimating	 efficiency	 in	 information	 processing.	 In	 an	 illustrative	 analysis,	we	35	

then	 show	 that	 HMAX	 performs	 better	 than	 two	 other	 reference	methods	 (manually-36	

positioned	landmarks	and	the	SURF	algorithm)	for	estimating	similarities	between	faces	37	

in	a	nonhuman	primate	species.		38	

4.	This	manuscript	is	accompanied	with	MATLAB	codes	of	an	efficient	implementation	of	39	

HMAX	and	sparse-HMAX	that	can	be	further	flexibly	parameterized	to	model	non-human	40	

colour	vision,	with	the	goal	to	encourage	visual	ecologists	to	adopt	tools	from	computer	41	

vision	and	computational	neuroscience.	42	

	43	
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communication	signals,	visual	ecology,	artificial	neural	networks,	face	similarity.	 	45	
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Introduction	46	

Understanding	 the	 evolution	 and	 the	 ecological	 significance	 of	 communicative	 traits	47	

requires	 studying	 these	 traits	 in	 the	 eyes	 of	 beholders	 (Endler	 et	 al.	 2005).	 In	 visual	48	

communication,	 colour	 spaces–which	 model	 perceived	 differences	 between	 colours–49	

have	 thus	 become	 very	 popular	 among	 visual	 ecologists	 who	 study	 socio-sexual	50	

communication,	camouflage,	mimicry	and	plant-animal	 interactions	(Renoult,	Kelber	&	51	

Schaefer	 2017).	 In	 colour	 spaces,	 the	 design	 of	 visual	 stimuli	 is	 usually	 studied	 as	 a	52	

collection	 of	 isolated	 plain	 colours,	 without	 considering	 the	 influence	 of	 their	 spatial	53	

arrangement	 on	 perception.	 However,	 the	 effectiveness	 of	 a	 communication	 system	54	

strongly	 depends	 on	 how	 colour	 patches,	 lines	 or	 dots	 are	 arranged	 spatially	 to	 form	55	

colour	patterns.	For	example,	the	diurnal	hawkmoth	Macroglossum	stellatarum	innately	56	

prefers	 radial	 blue	 and	white	patterns	 to	 ring	patterns	with	 the	 same	 colours	 (Kelber	57	

2002).	Modelling	 the	 perception	 of	 colour	 patterns	 is	 thus	 a	 necessary	 step	 toward	 a	58	

better	understanding	of	natural	communication	systems.		59	

In	 this	 article,	 we	 highlight	 the	 benefits	 of	 the	 HMAX	 family	 of	 models	 for	60	

analysing	patterned	colour	stimuli,	as	vertebrates	perceive	them.	HMAX	was	originally	61	

developed	 by	 computational	 neuroscientists	 to	 model	 information	 processing	 in	 the	62	

ventral	stream	of	the	visual	pathway,	that	is,	the	brain	area	involved	in	shape	and	colour	63	

perception	 in	 humans	 (Serre	 &	 Riesenhuber	 2004).	 Yet,	 due	 to	 the	 generality	 of	 the	64	

hierarchical	 mechanisms	 involved	 in	 this	 family	 of	 models,	 the	 sensory	 and	 brain	65	

processes	 modelled	 in	 HMAX	 are	 certainly	 widespread,	 occurring	 in	 most	 if	 not	 all	66	

vertebrate	taxa,	thus	offering	HMAX	a	wide	range	of	applications	in	visual	ecology.	67	

We	 begin	 with	 a	 short	 description	 of	 the	 neural	 mechanisms	 of	 pattern	68	

perception	 in	 vertebrates,	 emphasizing	 similarities	 in	 processes	 across	 species.	 Then,	69	

we	provide	a	detailed	description	of	HMAX,	highlighting	how	it	is	connected	to	biological	70	
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vision.	We	 further	present	 sparse-HMAX,	an	extension	of	HMAX	 that	 includes	a	 sparse	71	

coding	scheme.	Sparse	coding	describes	the	strategy	of	neural	systems	to	minimize	the	72	

number	 of	 neurons	 activated	 simultaneously	 (Olshausen	 &	 Field	 2004).	 By	 adding	73	

sparse	 coding	 to	 HMAX,	 we	 aim	 both	 to	 develop	 an	 even	 more	 biologically	 realistic	74	

model	 of	 perception	 of	 colour	 patterns,	 and	 to	 provide	 a	 framework	 for	 estimating	75	

efficiency	 in	 information	 processing	 (Renoult	 &	 Mendelson	 2019).	 A	 fast	 and	 easily	76	

customizable	 version	 of	 HMAX	 that	 can	 be	 used	 to	 model	 the	 perception	 of	 colour	77	

patterns	 in	 most	 vertebrates	 and	 our	 sparse-HMAX	 algorithm	 are	 available	 at:	78	

https://github.com/EEVCOM-Montpellier/HMAX.	 	 In	 the	 last	 part	 of	 this	 article,	 we	79	

apply	HMAX	to	estimate	similarities	between	faces	in	a	nonhuman	primate	species	as	an	80	

example	application.	81	

	82	

Perception	of	colour	patterns	in	vertebrates	83	

Despite	structural	differences	in	how	vertebrates	perceive	colour	patterns,	a	number	of	84	

general	 principles	 governing	 the	 processing	 of	 visual	 information	 are	 shared	 across	85	

species.	In	this	section,	we	review	four	of	these	principles:	the	hierarchical	processing	of	86	

information,	 the	 tuning	 of	 neurons	 to	 stimulus	 features,	 the	 sparse	 encoding	 of	87	

information,	and	the	opponent	processing	of	colour	information.					88	

	89	

Hierarchical	processing	of	visual	information	90	

The	perception	of	colour	pattern	is	one	step	of	the	whole	vision	process	that	ultimately	91	

leads	 to	 recognition.	 In	 mammals,	 vision	 starts	 with	 the	 stimulation	 of	 retinal	92	

photoreceptors	 that	 convert	 the	 light	 arising	 from	 a	 stimulus	 into	 electro-chemical	93	

signals.	 These	 signals	 are	 then	 conducted	 through	 retinal	 ganglion	 cells	 to	 reach	 the	94	

lateral	geniculate	nucleus	(LGN),	a	relay	centre	that	connects	the	retina	to	the	primary	95	
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visual	 cortex	 (V1).	 Signals	 continue	 to	 flow	 bottom-up	 through	 V2	 and	 V4,	 and	 then	96	

through	the	inferior	temporal	cortex	(IT),	which	feeds	the	prefontal	cortex	that	connects	97	

perception	 to	memory	and	action	 (Felleman	&	Van	Essen	1991).	Areas	V3	and	V5	are	98	

involved	mainly	in	motion	vision	(Zeki	et	al.	1991).	99	

	 As	signals	flow	from	photoreceptors	up	to	IT,	the	information	extracted	becomes	100	

increasingly	 complex	 (Mély	 &	 Serre	 2017).	 At	 the	 receptor	 level,	 light	 contrasts	 are	101	

recorded	 locally	 without	 any	 information	 about	 their	 spatial	 organization.	 In	 V1,	102	

neurons	 become	 sensitive	 to	 short	 and	 oriented	 line	 segments	 (Tootell	 et	 al.	 1988).	103	

Basic	 shapes	 such	 as	 curved	 lines	 (i.e.	 combinations	 of	 oriented	 line	 segments)	 are	104	

mainly	 processed	 in	 V4.	 More	 complex	 shapes	 representing	 entire	 objects	 (i.e.	105	

combinations	of	curved	 lines;	e.g.,	a	 lion,	a	house	or	a	 face)	are	processed	 in	 IT	and	 in	106	

subsequent	 specialised	 areas	 (e.g.,	 the	 fusiform	 face	 area	 for	 faces).	 In	 addition,	107	

throughout	the	visual	pathway	neurons	are	increasingly	invariant	to	orientation,	scale,	108	

position	and	lighting	conditions.	Neurons	in	IT	thus	fire	in	response	to	specific	items	yet	109	

they	are	insensitive	to	how	tilted,	distant,	centred	in	the	field	of	view	and	shaded	these	110	

items	 are	 (Mély	 &	 Serre	 2017).	 How	 the	 visual	 system	 achieves	 the	 dual	 increase	 in	111	

sensitivity	and	invariance	has	been	a	central	question	of	vision	science	and	is	still	one	of	112	

the	most	active	research	topics	in	computer	vision	(e.g.,	Anselmi	et	al.	2016).	113	

In	their	seminal	article,	Hubel	and	Wiesel	(1962)	proposed	a	physiological	model	114	

of	 V1	 that	 copes	 with	 the	 complexity-invariance	 problem.	 The	 model	 assumes	 a	115	

feedforward,	hierarchical	flow	of	information	within	V1	that	involves	two	different	types	116	

of	neurons:	the	simple	cells	and	the	complex	cells.	Simple	cells	pool	afferents	(LGN	cells	117	

with	 circular	 receptive	 fields;	 RFs	 hereafter)	 sampled	 along	 oriented	 line	 segments.	118	

Complex	cells	pool	 inputs	 from	several	 spatially	contiguous	simple	cells	with	different	119	

orientations,	 phases,	 positions	 or	 scales.	 Consequently,	 one	 complex	 cell	 keeps	 the	120	
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complex	 selectivity	 of	 its	 afferent	 simple	 cells	 but	 it	 is	 tolerant	 to	 local	 variation	 in	121	

stimulus	 orientation,	 phase,	 position	 or	 scaling.	 This	 hierarchical	 model	 has	 been	122	

extended	 to	V2,	V4	and	 IT,	were	neurons	equivalent	 to	simple	and	complex	cells	have	123	

been	discovered	(Soto	&	Wasserman	2012).	 Information	thus	 flows	through	the	visual	124	

pathway	 alternating	 between	 simple	 cells,	 with	 increasingly	 complex	 selectivity,	 and	125	

complex	 cells,	 with	 increasingly	 large	 tolerance	 to	 geometrical	 transformations.	126	

Furthermore,	because	both	types	of	cells	pool	 information	from	multiple	afferents,	 the	127	

neurons’	RFs	become	increasingly	larger	as	signals	flow	up	(Smith	et	al.	2001).		128	

The	hierarchical	processing	of	visual	 information	is	a	general	principle	found	in	129	

other,	 non-mammalian	 vertebrates.	 Most	 neurons	 in	 the	 tecto-isthmic	 system–the	130	

functionally	 analogous	 structure	 to	 the	visual	 cortex	 in	non-mammals–are	 selective	 to	131	

orientation	(e.g.,	in	fish	see	Ben-Tov	et	al.	2013).	In	birds,	it	was	found	that	the	elongated	132	

RF	 of	 isthmic	 cells	 is	 generated	 by	 pooling	 afferents	 from	 aligned	 tectal	 cells	 with	133	

circular	 RFs,	 and	 that	 this	 elongated	 RF	 underlies	 the	 orientation	 selectivity	 of	 these	134	

cells	(Li,	Xiao	&	Wang	2006).	In	fishes,	the	laminar	organisation	of	orientation-selective	135	

inputs	 coming	 from	 the	 retina	 suggests	 that	 different	 layers	 in	the	 tectum	 may	 be	136	

dedicated	to	processing	specific	visual	features	(Abbas	&	Meyer	2014).	RF	size	has	been	137	

shown	to	increase	along	the	bird	visual	pathway	too	(Engelage	&	Bischof	1996).	Overall,	138	

the	available	behavioural	and	neurophysiological	data	 indicate	 that,	 although	 they	use	139	

ontogenetically	different	 structures,	 a	 similar	hierarchical	 and	 feedforward	processing	140	

occurs	in	the	tecto-isthmic	system	and	in	the	visual	cortex	(Soto	&	Wasserman	2012).	141	

Besides	 feedforward	 projections,	 the	 visual	 pathway	 of	 vertebrate	 vision	 also	142	

involves	horizontal	 and	 feedback	neural	projections	 (Treue	2003).	Yet,	 because	of	 the	143	

short	 response	 latency	 of	 IT’s	 neurons	 to	 visual	 stimuli	 (~100	ms),	 and	 the	 ability	 of	144	

primates	 to	 recognize	 objects	 in	 a	 very	 short	 time	 (~150	ms;	 Thorpe,	 Fize	 &	Marlot	145	
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1996),	 it	 is	generally	recognized	 that	core	object	representation,	and	a	fortiori	pattern	146	

perception,	are	essentially	 feedforward	mechanisms	(VanRullen	&	Koch	2003;	DiCarlo,	147	

Zoccolan	&	Rust	2012).	This	is	why	the	simple	hierarchical	model	of	Hubel	and	Wiesel	148	

has	 been	 consistently	 efficient	 in	 explaining	 and	 predicting	 empirical	 results	 in	149	

neuroscience	over	the	years	(Ferster	&	Miller	2000;	Reid	&	Usrey	2004).	150	

	151	

The	tuning	of	neuronal	selectivity	152	

For	visual	ecologists,	an	important	question	is	whether	the	selectivity	of	cortical/tecto-153	

isthmic	neurons	adapts	to	the	environment,	and	whether	this	adaptation	is	determined	154	

developmentally	 or	 evolutionarily.	 In	 contrast	 to	 many	 studies	 supporting	 a	 spectral	155	

tuning	 of	 photoreceptors	 to	 lighting	 conditions	 (listed	 in	 Cummings	 &	 Endler	 2018),	156	

analyses	 comparing	 the	 shape	 and	 orientation	 selectivity	 of	 neurons	 between	 species	157	

inhabiting	contrasting	visual	environments	are	still	lacking.	Nevertheless,	a	few	studies	158	

with	model	species	reveal	interesting	relationships	between	orientation	selectivity	and	159	

environmental	stimuli.	One	study	in	kittens	showed	that,	at	eye	opening,	a	proportion	of	160	

cells	in	V1	show	the	orientation	selectivity	typical	of	a	mature	visual	cortex	(Sengpiel	&	161	

Kind	 2002).	 Moreover,	 the	 visual	 cortex	 of	 kittens	 reared	 in	 a	 striped	 environment	162	

responded	to	all	orientations,	even	those	never	seen	by	the	animal,	even	though	twice	as	163	

much	 cortical	 area	was	devoted	 to	 the	 experienced	orientation	 (Sengpiel,	 Stawinski	&	164	

Bonhoeffer	 1999).	 For	more	 complex	 shapes,	 and	 thus	 in	higher	 levels	 of	 information	165	

processing,	there	is	also	evidence	that	some	stimuli	are	innately	categorized	(e.g.,	faces	166	

in	 primates:	 Johnson	 et	 al.	 1991);	 nevertheless	 it	 is	 generally	 accepted	 that	 complex	167	

shape	 selectivity	 is	mostly	 tuned	 by	 learning	 (e.g.,	 	 Freedman	 et	 al.	 2005).	 Overall,	 it	168	

appears	 that	 shape	 selectivity	 is	 innate,	 but	 that	 it	 can	 be	 retuned	 to	 environmental	169	
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stimuli	through	learning	in	some	neurons;	moreover,	the	proportion	of	neurons	that	can	170	

be	retuned	seems	to	increase	in	higher	levels	of	the	visual	pathway.	171	

	172	

Sparse	coding	173	

At	a	given	level	of	information	processing,	signals	from	individual	neurons	are	combined	174	

into	a	neural	code,	i.e.	a	neural	representation	of	a	visual	stimulus	at	this	particular	level.	175	

Yet	 the	 high	 metabolic	 cost	 of	 neuronal	 activation	 (in	 the	 human	 visual	 system,	 it	176	

accounts	 for	 2.5	 to	 3.5	%	 of	 a	 resting	 body’s	 overall	 energy	 requirements;	 Attwell	 &	177	

Laughlin	 2001)	 imposes	 constraints	 onto	 the	 neural	 code	 (Graham	 &	 Field	 2006).	178	

Olshausen	 and	 his	 colleagues	 analysed	 the	 importance	 of	 this	 constraint	 by	 training	179	

artificial	 neurons	 to	 encode	 images	 of	 natural	 scenes	 as	 efficiently	 and	 precisely	 as	180	

possible	(Olshausen	&	Field	1996;	Olshausen	&	Field	1997).	To	match	the	selectivity	of	181	

these	artificial	neurons	to	that	of	real	neurons	measured	in	mammalian	V1,	the	authors	182	

had	to	implement	a	sparseness	criterion	in	the	neural	code.	In	this	context,	sparseness	183	

can	describe	both	 the	 fact	 that	only	a	 small	 fraction	of	neurons	are	active	at	any	 time	184	

(population	 sparseness),	 and	 that	 individual	 neurons	 activate	 shortly	 and	 rarely	185	

(temporal	sparseness).	Sparse	coding	is	metabolically	effective	because	frequently	firing	186	

a	few	generalist	neurons	is	far	more	costly	than	maintaining	a	large	population	of	highly	187	

selective	 yet	 sparsely	 activated	 neurons	 (Lennie	 2003;	 Olshausen	 &	 Field	 2004).	188	

Experimentally,	 following	 its	discovery	 in	V1,	sparse	coding	has	been	demonstrated	at	189	

all	 levels	 of	 perception,	 from	 the	 retina	 (Pitkow	&	Meister	2012)	 to	V4	 (Carlson	et	al.	190	

2011)	and	IT	(Brincat	&	Connor	2004).	Sparse	coding	is	also	ubiquitous	in	other	sensory	191	

modalities	 and	 has	 been	 found	 in	 all	 organisms	 investigated	 so	 far,	 including	192	

invertebrates	(e.g.;	Hromádka,	DeWeese	&	Zador	2008).	193	

	194	
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Opponent	colour	coding	195	

The	 studies	 described	 previously	 have	 investigated	 the	 selectivity	 of	 neurons	 to	196	

luminance	(i.e.	along	a	greyscale)	contrasts;	yet	most	vertebrates	additionally	use	colour	197	

as	 a	 source	 of	 information.	 It	 is	 well	 established	 that	 opponent	 coding	 is	 crucial	 for	198	

modelling	 colour	 perception:	 compared	 to	 analysing	 raw	 excitation	 values,	 analysing	199	

differences	in	photoreceptor	excitations	dramatically	improves	the	fit	between	predicted	200	

and	actual	perceived	differences	between	colours	(Renoult,	Kelber	&	Schaefer	2017).	In	201	

Old	World	primates,	colour	opponency	is	achieved	by	combining	outputs	of	the	three	S,	202	

M	and	L	photoreceptors	(standing	for	short,	medium	and	long	wavelength,	respectively)	203	

into	two	opponent	channels:	the	red-green	and	the	blue-yellow	channels	computed	as	L-204	

M	 and	 S-(M+L),	 respectively.	 However,	 the	 predictive	 power	 of	 these	 two	 opponent	205	

channels	strongly	depends	on	the	size	and	shape	of	the	stimulus	(Derrington,	Krauskopf	206	

&	Lennie	1984).	Although	it	has	been	traditionally	assumed	that	luminance	and	colour	207	

are	processed	separately	in	the	visual	system	of	vertebrates,	and	that	shape	perception	208	

is	mediated	by	the	luminance	channel,	evidence	has	accumulated	that	colour	and	shape	209	

are	inextricably	linked	(for	a	review,	see	Shapley	&	Hawken	2011).	210	

The	neurons	that	compute	the	L-M	and	S-(M+L)	signals	represent	only	one	of	two	211	

categories	 of	 opponent	 cells	 found	 in	 the	 vertebrate	 visual	 system,	 which	 have	 been	212	

named	 single-opponent	 (SO)	 cells	 (Shapley	 &	 Hawken	 2011).	 SO	 cells	 compute	 an	213	

averaged	 difference	 in	 photoreceptor	 excitation	 locally,	 and	 thus	 they	 are	 mostly	214	

activated	by	full-field	stimuli.	SO	cells	are	useful	for	processing	surface	information	and	215	

are	 almost	 not	 selective	 to	 orientation.	 Another	 category	 of	 colour-selective	 cells	216	

receives	 inputs	 from	SO	cells.	These	so-called	double-opponent	 (DO)	cells	 compute	an	217	

averaged	difference	in	colour	(L-M	or	S-(M+L))	signals	between	different	regions	of	the	218	

visual	 field	 (Shapley	&	Hawken	 2011).	 DO	 cells	 located	 in	 the	 retina	 and	 LGN	 have	 a	219	
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circular	RF	and	are	thus	unselective	to	orientation.	In	V1,	however,	many	DO	cells	have	220	

an	 oriented	 RF	 (Johnson,	 Hawken	 &	 Shapley	 2001).	 Oriented	 DO	 cells	 are	 useful	 for	221	

processing	 coloured	 line	 segments	 and	 thus	 are	 very	 important	 for	 the	 perception	 of	222	

colour	 patterns.	 Furthermore,	 DO	 cells	 are	 selective	 to	 both	 colour	 and	 luminance	223	

contrasts,	which	argues	against	the	idea	of	a	strong	segregation	of	colour	and	luminance	224	

processing	 beyond	 the	 LGN	 (Gegenfurtner	 2003).	 Besides	 primates,	 SO	 and	 DO	 cells	225	

have	 been	 found	 in	 other	 vertebrates	 including	 fishes	 (Daw	 1968)	 and	 birds	 (Frost,	226	

Scilley	&	Wong	1981).	227	

In	 summary,	 the	 perception	 of	 colour	 patterns	 in	 vertebrates	 relies	 on	 general	228	

principles	 that	 are	 likely	 shared	 among	 most	 species:	 a	 hierarchical	 processing	 of	229	

signals,	 alternating	 shape-selective	 and	 spatial-pooling	 neurons,	 the	 adaptation	 of	230	

shape-selective	 neurons,	 sparse	 coding	 and	 a	 simple/double	 opponent	 colour	 coding	231	

scheme.	232	

	233	

HMAX	and	sparse-HMAX	234	

For	more	 than	 five	decades,	 researchers	 from	cognitive	 sciences,	 computer	vision	and	235	

artificial	 intelligence	have	proposed	mathematical	models	of	colour	pattern	perception	236	

that	account	for	the	aforementioned	principles	(reviewed	in	Poggio	&	Serre	2013;	Serre	237	

2013).	HMAX	(Riesenhuber	&	Poggio	1999;	Serre	et	al.	2005)	is	one	of	the	most	popular	238	

families	 of	 models	 of	 visual	 processing	 in	 humans.	 The	 original	 HMAX	 has	 been	239	

improved	 in	multiple	ways;	 the	version	presented	here	 is	generalizable	 to	non-human	240	

vertebrates	and	can	further	account	for	sparse	coding.		241	

	 	242	

	243	

	244	
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HMAX	245	

HMAX	is	a	hierarchical	neural	network	starting	with	a	scale	image	I	as	an	input	layer	and	246	

alternating	 S	 layers	 that	 perform	 feature	 mapping	 and	 C	 layers	 that	 perform	 feature	247	

pooling.	 S	 and	 C	 stand	 for	 “Simple”	 and	 “Complex”,	 in	 reference	 to	 the	 simple	 and	248	

complex	 cells	 described	 previously.	 Feature	 mapping	 is	 achieved	 by	 convoluting	249	

different	 shape-selective	 filters	 (or	 artificial	 neurons)	with	 I	 in	 the	 first	 layer,	 or	with	250	

maps	 produced	 by	 the	 preceding	 layer.	 Feature	 pooling	 increases	 the	 invariance	 of	251	

feature	maps	 to	 geometrical	 transformations.	 Classical	 versions	 of	HMAX	 include	 four	252	

layers	in	addition	to	the	input	layer:	S1,	C1,	S2	and	C2	(Figure	1a).	The	output	of	C2	is	a	253	

compact	code	describing	the	input	image,	typically	a	vector	of	a	thousand	values.	254	

	255	

Figure	1	[See	next	page].	Overview	of	HMAX	models.	(a)	Classical	HMAX	for	scale	images	256	

with	filter	learning	(upper	row)	and	stimulus	encoding	(lower	row).	(b)	sparse-HMAX	257	

for		scale	images	with	filter	learning	(upper	row)	and	stimulus	encoding	(lower	row).	(c)	258	

Simple	opponent	(SO)	and	double-opponent	(DO)	processes	in	HMAX	for	colour	images	259	

(here,	describing	photoreceptor	excitation	maps	of	a	trichromat	species).		260	

	261	

Layer	S1.–	In	S1,	 feature-selective	neurons	are	represented	by	a	set	FS1	of	Gabor	filters		262	

!!,!!! ∈ ℝ!×!  defined	 by	 orientation	! ∈  ℝ!	(t	 different	 values),	 scale	! ∈ ℝ!" 	and	 filter	263	

size	! ∈  ℤ! .	 Gabor	 filters	 have	 been	 previously	 shown	 to	 accurately	 model	 the	264	

selectivity	both	of	simple	cells	of	V1	in	mammals	(Jones	&	Palmer	1987),	and	also	(most	265	

likely)	 of	 tecto-isthmic	 neurons	 with	 an	 elongated	 RF	 in	 other	 vertebrates.	 Defining	266	

xg=1,…,q	and	yg=1,…,q,	a	Gabor	filter	!!,!!! 	is	described	as		267	

!!,!!! (!", !") = exp − !!cos! + !!sin!
! + ! !!cos! − !!sin!

!

2!! ×cos 2! 1! !!cos! + !!sin! .	
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with	γ	the	aspect	ratio	of	the	filter	and	λ	the	wavelength	parameter.	Serre	and	268	

Riesenhuber	(2004)	found	that	λ	had	limited	effect	on	tuning	filter	selectivity	and	thus	269	

kept	it	constant.	These	authors	further	proposed	to	approximate	σ	and	λ	from	q	such	270	

that		271	

! = 0.0036 ∗ !! + 0.35 ∗ ! + 0.18
! = !

0.8
.	

The	number	of	different	scales	(sc)	is	thus	taken	as	identical	to	the	number	of	different	272	

filter	 sizes	 (u).	 FS1	 is	 determined	 by	 the	 set	 of	 SC/u	 and	 t	 values	 for	!/! 	and	!	273	

respectively.	Those	should	vary	between	species	and,	as	discussed	previously	with	the	274	

example	 of	 kittens	 reared	 in	 a	 striped	 environment,	 with	 experience	 (for	 parameter	275	

values	 that	 best	 fit	 to	 neurophysiological	 data	 in	mammals,	 see	 Serre	 &	 Riesenhuber	276	

2004).	Having	 built	 the	 filter	 set	FS1,	 following	 Theriault,	 Thome	&	 Cord	 (2013),	 each	277	

filter	is	then	convolved	with	I	to	generate	!×!"	feature	maps	!!,!
!! 	such	that	278	

!!,!
!! = !!,!!! ∗ ! .	279	

Layer	C1.–	C1	pools	values	of	!!,!
!!  to	produce	!!,!

!!  maps	with	a	decreased	resolution	but	280	

an	increased	tolerance	of	features	to	shift	and	size	(but	not	to	orientation).	Among	the	281	

different	pooling	functions,	max	pooling	(keeping	the	maximum	value	only)	works	best	282	

in	 generating	 invariant	 features	 (Scherer,	 Müller	 &	 Behnke	 2010).	 For	 each	 of	 the	 t	283	

values	of	the	orientation	!,	a	max	filter	!!! ∈ ℝ!×! 	(with	! ∝ !,	see	Theriault,	Thome	&	284	

Cord	 2013)	 is	 applied	 simultaneously	 to	 neighbourhood	 values	 within	 a	 given	285	

!!,!
!!  feature	 map	 (thus	 gaining	 position	 invariance),	 and	 to	 pairs	 of	 maps	 with	 two	286	

consecutive	scales	(thus	gaining	scale	invariance).		The	max	filter	is	moved	in	steps	of	1	287	

between	scales,	and	around	a	given	feature	map	in	steps	of	magnitude	r.	Note	that	due	to	288	

the	pairwise	pooling	in	scale,	in	C1	there	is	only	SC-1	remaining	values	for	!.	289	

	290	
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Layer	S2.–	V4/IT/isthmic	neurons	are	modelled	 in	S2	by	a	 set	FS2	of	 filters,	which	are	291	

selective	 to	 more	 complex	 features	 (curved	 lines,	 shapes)	 compared	 to	!!,!!! 	(segment	292	

lines;	 Figure	 2).	 Motivated	 by	 the	 biological	 evidence	 that	 shape-selectivity	 is	 largely	293	

tuned	by	adaptation	or	experience	to	environmental	stimulation	in	higher	levels	of	the	294	

visual	pathway,	FS2	is	generated	in	an	initial	feature	learning	stage	using	a	set	of	training	295	

images.	This	stage	 includes	 four	steps.	First,	!!,!
!! 	and	then	!!,!

!! 	are	generated	 for	each	296	

learning	 image.	 Second,	 the	 coordinates	 (x,y)	of	 a	 filter	 centre	 are	 randomly	drawn	 in	297	

!!,!
!! .	 Third,	 one	 filter	 size	!′	is	 randomly	drawn,	with	 the	 constraint	 that	 the	 different	298	

possible	 values	 of	q′	are	 all	 equally	 represented	 in	 FS2.	!!!!	is	 then	 extracted	 from	!!,!
!! 	299	

around	(x,y)	at	the	first	scale	σ	=1	and	for	all	orientations.	Steps	two	to	four	are	repeated	300	

to	generate	N	filters	!!!!;	typically	N	=	103.	Note	that	each	!!!!	is	thus	constructed	as	a	3D	301	

filter:	ℝ!!×!!×! .	In	contrast	to	S1,	the	learning	stage	of	S2	allows	shape-selective	filters	to	302	

adapt	to	dominant	shapes	within	training	 images,	which	can	be	the	same	as	the	target	303	

stimulus	or	other	images	depicting,	e.g.,	environmental	scenes.	304	

	305	

	306	

	307	

Figure	2.	Filters	 in	S2	(FS2)	 learned	on	the	human	face	category	of	Calthech101	image	308	

dataset	with	classical	HMAX	(left)	and	sparse-HMAX	(right).	Filters	in	S2	model	neurons	309	

selective	to	complex	features	and	with	large	receptive	fields	(here,	regions	of	faces).	310	
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	311	

		 The	output	of	S2,	i.e.,	feature	maps	!!,!!! ,	,	are	eventually	built	by	convoluting	!!!!	312	

with	3D	stacks	of	!!,!
!! ,		313	

!!,!!! = !!!! ∗!!,!
!! ,	

using	 the	 radial	 basis	 function	 described	 in	 (Mutch	 &	 Lowe	 2008)	 that	 calculates,	 at	314	

every	position	(x,y)	of	the	map,	the	response	Re	to	the	filter	of	a	patch	P	from	!!,!
!! 	as	315	

!"(!,!!!!) = exp − !!!!!!
!

!!!! .	316	

Mutch	&	Lowe	(2008)	proposed	to	set	s	to	unit	value	and	the	normalization	factor	α	to	317	

(q/4)2,	with	q	 set	 to	 the	smallest	possible	value.	The	convolution	operation	eventually	318	

generates	!× !" − 1 	different	maps.	319	

	320	

Layer	C2.–	C2	pools	values	of	!!,!!!  feature	maps	to	gain	global	invariance	to	position	and	321	

scale.	 For	 each	 n	 max	 pooling	 is	 applied	 across	 all	 positions	 and	 scales	 to	 produce	 a	322	

vector	!!! ∈ ℝ! ,	the	output	of	HMAX.	323	

	324	

sparse-HMAX	325	

Sparse	coding	can	be	added	to	HMAX	at	two	different	stages:	during	filter	learning	(e.g.,	326	

Hu	et	al.	2014)	or	during	stimulus	encoding.	In	computer	vision	these	stages	are	clearly	327	

distinct:	 it	 is	possible	 to	 sparsely	encode	a	 stimulus	with	Gabor	 filters,	 or	 to	encode	a	328	

stimulus	with	a	simple	linear	convolution	with	filters	learned	by	applying	a	sparseness	329	

constraint.	 In	 sparse-HMAX,	 the	 user	 can	 choose	 to	 impose	 sparseness	 during	 filter	330	

learning,	 during	 stimulus	 encoding	 in	 layer	 S2	 (Figure	 1b),	 or	 at	 both	 steps.	 In	 filter	331	

learning,	m	square	patches	are	first	extracted	from	!!,!
!! 	of	training	images.	Each	patch	is	332	

then	 transformed	 into	 a	 vector	! ∈ ℝ! ,	 and	 all	! 	are	 h-concatenated	 into	 a	 matrix	333	
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! ∈ ℝ!×!.	X	 is	 then	 unity-based	 normalized	 and	 zero-centred.	 Learning	 sparse	 filters	334	

requires	solving	the	following	optimisation	problem:	335	

argmin
!!!,!

1
2!! !− !!!! ! + ! ! !  	

s. t.  !!!!
! ≤ 1,∀! = 1,… ,! 	

where	!!! ∈ ℝ!×!	is	a	matrix	of	N	vectorised	filters	!!!! ∈ ℝ! 	(the	set	of	 	filters	that	are	336	

learned)	and	! ∈ ℝ!×!	a	matrix	of	filter	weights.	The	left	part	of	the	problem,	called	the	337	

reconstruction	error,	is	a	least	square	minimisation	of	the	difference	between	observed	338	

patches	and	patches	predicted	by	a	 linear	 combination	of	 filters.	The	 right	part	of	 the	339	

problem,	called	penalty	function,	imposes	sparseness	to	S.	Here	the	penalty	function	is	a	340	

ℓ!-norm	 regularisation,	which	 is	 notoriously	 good	 at	 generating	 sparse	weights	while	341	

being	 robust	 to	 irrelevant	 features	 (Ng	 2004).	 The	 regularisation	 parameter	 β	342	

determines	 the	 relative	 importance	 given	 to	 maximising	 either	 the	 reconstruction	343	

accuracy	 or	 the	 sparseness.	 To	 prevent	 FS2	 from	 having	 arbitrarily	 large	 values	 that	344	

would	lead	to	arbitrarily	small	values	in	S,	its	columns	!!!!	are	constrained	to	have	their	345	

ℓ!-norm	less	than	or	equal	to	one.	Since	the	problem	in	convex	in	FS2	(while	holding	S	346	

fixed)	 and	 convex	 in	 S	 (while	 holding	 FS2	 fixed)	 but	 not	 convex	 in	 the	 two	347	

simultaneously,	it	is	necessary	to	iteratively	and	alternatively	minimize	with	respect	to	348	

FS2	or	S	while	holding	the	other	element	fixed.	Theoretically,	this	iterative	optimisation	349	

could	be	achieved	using	a	metaheuristic	evolutionary	algorithm	using	operators	such	as	350	

reproduction,	 mutation	 and	 recombination,	 in	 order	 to	 simulate	 an	 evolutionary	351	

adaptation	of	 the	neuronal	 selectivity	 to	environmental	 features.	 In	practice,	however,	352	

the	 time	needed	 to	 solve	 the	problem	would	be	unrealistically	 long,	 and	 several	more	353	

efficient	 algorithms	 have	 been	 developed.	 In	 our	 implementation	 of	 sparse-HMAX,	we	354	

used	 the	Fast	Sparse	Coding	 algorithm	 (Lee	et	al.	 2007),	which	derives	 and	 solves	 the	355	
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Lagrange	dual	to	learn	the	filters	and	applies	a	feature-sign	search	to	learn	the	weights	356	

(for	details,	see	Lee	et	al.	2007).	357	

	 To	 sparsely	 encode	 a	 target	 stimulus,	 as	 in	 training,	 a	 matrix	 X	 of	m	 square	358	

patches	 is	 extracted	 in	 a	 similar	 way	 from	!!,!
!! 	maps	 of	 the	 target	 image	 I,	 then	359	

normalised	 and	 centred,	 and	 eventually	 the	 feature-sign	 search	 algorithm	 is	 used	 to	360	

learn	S	using	FS2,	the	set	of	filters	learned	previously.	In	sparse-HMAX,	the	output	of	S2	is	361	

thus	S,	which	is	equivalent	to	a	single	feature	map	indicating	the	activation	of	each	filter	362	

for	all	patches	(and	thus	for	all	scales	and	orientations	in	C1).	The	output	!!!	of	sparse-363	

HMAX	is	eventually	given	by		364	

!!! = max
!

!!,!  , ! = 1,… ,! ,  	

that	is,	by	extracting	the	maximal	activation	of	each	filter	over	all	patches.	365	

			366	

Modelling	colour	opponency	367	

Classical	 models	 of	 HMAX	 have	 been	 developed	 to	 process	 visual	 stimuli	 in	 the	368	

luminance	channel	only.	However,	Zhang,	Barhomi	&	Serre	 (2012)	 recently	developed	369	

coloured	feature	maps	that	model	single-	and	double-opponent	cells	in	primate	V1,	and	370	

proposed	an	implementation	of	these	maps	into	HMAX	(see	also	Mély	&	Serre	2017).	In	371	

the	 following,	we	 present	 the	 SO-DO	 feature	maps	 of	 Zhang,	 Barhomi	&	 Serre	 (2012)	372	

generalized	 to	any	opponent	 function	and	any	number	of	photoreceptor	 types	used	 in	373	

colour	vision	(e.g.,	 to	dichromatic	mammals	or	 to	 tetrachromatic	birds;	Figure	1c).	Let	374	

set	 ! ∈ ℝ!×!×!"# 	the	 input	 matrix	 of	 photoreceptor	 excitation	 maps	 !! ∈ ℝ!×! ,	375	

with  ! ∈ ℤ!"# .	 In	 Old	 World	 primates,	 npe	 =	 3	 with	! ∈ !,!, ! ,	 which	 is	 often	376	

approximated	by	{R,	G,	B},	the	blue,	green	and	red	channels	of	a	colour	image.	Moreover,	377	

in	 some	 species	 like	 primates	 and	 fishes,	 the	 luminance	 channel	 is	 given	by	 summing	378	
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two	 or	 more	 Ib	 (see	 Layer	 SO).	 In	 other	 species,	 e.g.,	 in	 birds,	 a	 specific	 set	 of	379	

photoreceptors	 (the	 double	 cones)	 feeds	 the	 luminance	 channel.	 In	 this	 case,	 the	380	

photoreceptor	excitation	map	of	the	luminance	channel	should	be	included	as	a	specific	381	

Ib	within	I.		382	

	383	

Layer	SO.–	The	spatio-chromatic	selectivity	of	SO	cells	is	modelled	using	Gabor	filters	as	384	

in	the	non-colour	HMAX.	However,	here	one	Gabor	filter	is	decomposed	into	two	filters:	385	

one	keeping	the	positive	part	of	the	filter	values	only,	to	model	an	excitatory	cell	(other	386	

values	are	set	to	zero),	the	other	one	keeping	the	negative	values	to	model	an	inhibitory	387	

cell.	 SO	 filters	 are	 thus	 defined	 by	!!!",!,∗!" ∈ ℝ!×! ,	 with	 !!" ∈  ℝ!!" ,	 ! ∈ ℝ!" and	388	

∗ ∈ ℝ!,ℝ! 	indicating	the	filter	polarity	(excitatory	or	inhibitory).	Because	SO	cells	are	389	

only	 weakly	 selective	 to	 orientation,	 Zhang,	 Barhomi	 &	 Serre	 (2012)	 set	 tSO	 =	 2	 for	390	

humans,	which	 likely	 also	 applies	 to	 other	 vertebrates.	 Having	 built	 the	 filter	 set	FSO,	391	

each	filter	 is	 then	convolved	with	each	photoreceptor	excitation	map	to	generate	a	set	392	

MSO	of	!!"×!"×2×!"#	feature	maps	!!!",!,∗,!
!" 	such	that	393	

!!!",!,∗,!
!" = !!!",!,∗!" ∗  !! .	394	

The	 set	 of	 single	 opponent	 and	 luminance	maps	MSO’	 containing	!!"×!"×2×!"ℎ	maps	395	

!!!",!,!!
!"’ 	with	!ℎ ∈ ℤ!"!	are	then	obtained	by	linearly	combining	!!!",!,∗,!

!"’ 	such	that		396	

!!"’ = !!!"	

with	! ∈ ℝ!"#×!"!	is	a	matrix	of	weights	 in	which	columns	define	 the	single	opponent	397	

and	luminance	functions.	For	example,	in	Old	World	primates,	398	

		399	

! =
±1 ∓1 ±1
∓1 ∓1 ±1
0 ±2 ±1
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thereby	producing,	for	each	orientation	θSO	and	scale	σ,	four	opponent	colour	channels:	400	

L+/M-	 (red	 excitatory	 and	 green	 inhibitory),	M+/L-,	 S+/(M+L)-,	 (M+L)+/S-;	 and	 two	401	

luminance	channels:	L+M+S,-L-M-S.	402	

	 Each	!!!",!,∗,!!
!"! 	map	is	then	rectified	by	half-squaring	to	maintain	positive	firing	403	

rate	(Heeger	1992;	Zhang,	Barhomi	&	Serre	2012):		404	

!!!",!,∗,!
!"! =

0 ,∀ !!!",!,∗,!
!"! < 0 

!!!",!,∗,!
!"! !

 ,∀ !!!",!,∗,!
!"! > 0 .

	

The	last	step	of	layer	SO	is	a	divisive	normalisation	that	provides	tolerance	to	small	light	405	

intensity	scaling:			406	

!!!",!,∗,!!
!"" =

!′×!!!",!,∗,!!
!"!

!′! + !!!",!,∗,!!
!"!

∗,!!
.	

Note	 that	 in	 this	 layer	 normalisation	 is	 performed	 over	 maps	 of	 all	 (excitatory	 and	407	

inhibitory)	 channels	 at	 a	 given	 θSO	 and	 σ.	 Based	 on	 neurophysiological	 data	 from	408	

macaque,	 Zhang,	 Barhomi	 &	 Serre	 (2012)	 fixed	 the	 scale	 k’	 and	 semi-saturation	 σ’	409	

parameters	to	1	and	0.225,	respectively.	410	

	411	

Layer	DO.–Each	map	of	SO	is	first	convolved	with	the	classical	Gabor	filters	!!,!!! 	(thus	not	412	

dissociating	 excitatory	 and	 inhibitory	 subunits),	 which	 produces	!!"×!"×2×!"ℎ×!	413	

maps	!!,!,∗,!!
!" 	of	MDO:	414	

!!,!,∗,!!
!" = !!,!!! ∗  !!,!,∗,!!

!"" .	415	

Each	!!,!,∗,!!
!" 	map	 is	 then	 rectified	 by	 half-squaring	 as	 in	 SO,	 to	 produce	!!,!,∗,!!

!"! .	 A	416	

normalisation	is	further	applied,	but	over	orientations	(instead	of	channels	in	SO):		417	

!!,!,∗,!!
!"" = !!×!!,!,∗,!!!"!

!!!! !!,!,∗,!!!"!!
.	418	
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Last,	feature	maps	!!,!,∗,!!
!"" 	with	complementary	channels	(excitatory	and	inhibitory)	are	419	

summed	in	order	to	make	DO	cells	insensitive	to	figure-ground	reversal:	420	

!!,!,!!
!"!!! =  !!,!,∗,!!

!""

∗
 .	

From	there,	all	of	the	!×!"×!"ℎ	maps	of	MDO’’’	are	processed	individually	by	C1,	S2	and	421	

C2,	and	all	!!!
!!	are	concatenated	to	produce	!!! ∈ ℝ!×!"! ,	the	final	output	of	the	HMAX	422	

and	sparse-HMAX.	423	

	424	

Example:	estimating	facial	(dis)similarity	in	mandrills	425	

HMAX	can	be	used	to	estimate	the	perceived	resemblance	between	entire	phenotypes.	426	

To	 illustrate	 this,	 we	 computed	 the	 distance	 between	 vectors	 C2	 encoding	 faces	 of	427	

mandrills	 (Mandrillus	 sphinx)	 and	 compared	 the	 results	 with	 a	 method	 based	 on	428	

manually-positioned	 landmarks	 that	 is	 widely	 used	 in	 primatology	 (Dal	 Martello	 &	429	

Maloney	 2006;	 Bower,	 Suomi	 &	 Paukner	 2012).	 In	 addition,	 we	 compared	 HMAX	 to	430	

another	 computer	 vision	 approach	 based	 on	 the	 number	 of	 shared,	 automatically	431	

detected	 features,	which	 has	 been	previously	 used	 in	 evolutionary	 ecology	 (Stoddard,	432	

Kilner	 &	 Town	 2014;	 SURF	method	 hereafter).	We	 analysed	 100	 pictures	 of	mandrill	433	

faces	 depicting	 75	 different	 individuals.	 Twenty-six	 individuals	 were	 represented	 by	434	

more	than	one	portrait,	taken	between	6	and	36	months	intervals.	For	each	of	the	four	435	

methods	(landmark,	SURF,	classic	HMAX	and	sparse-HMAX),	we	estimated	the	similarity	436	

between	all	pairs	of	portraits	(for	details,	see	Supporting	Information),	we	ordered	pairs	437	

by	 ascending	 value	 of	 similarity	 and	 summed	 the	 rank	 of	 pairs	 corresponding	 to	438	

different	pictures	of	the	same	individuals.	The	higher	the	rank	sum,	the	best	the	method	439	

to	assign	high	similarity	to	same-individual	portrait	pictures.	For	all	three	methods,	the	440	

rank	 sum	 was	 higher	 than	 expected	 by	 chance	 (95%	 limit	 of	 a	 null	 distribution),	441	
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indicating	that	all	methods	recognized	that	same-individual	pictures	were	more	similar	442	

than	different-individual	pictures	(Table	2).	The	 landmark	and	SURF	methods	reached	443	

similar	 performance,	 but	 both	 methods	 were	 surpassed	 by	 HMAX.	 Performance	 of	444	

sparse-HMAX	was	lower	than	that	of	HMAX	but	higher	than	that	of	landmark	and	SURF	445	

methods.	446	

	447	

Table	 2.	 Results	 of	 the	 facial	 similarity	 analysis.	 The	 standardized	 (Sd)	 rank	 sum	448	

corresponds	 to	 the	rank	sum	divided	by	 that	of	an	 ideal	observer	who	would	give	 the	449	

highest	rank	to	all	same-individual	pairs.	450	

Method	 Rank	Sum	(×1e3)	 Sd	rank	sum	 p-value	

95%	limit	 84.4	 0.59	 0.05	

Landmark	 99.5	 0.70	 1e-4	

SURF	 100.2	 0.70	 4e-5	

HMAX	 111.3	 0.78	 <1e-6	

sparse-HMAX	 104.9	 0.73	 <1e-6	

Ideal	observer	 143.1	 1	 <1e-6	

		451	

	452	

Discussion	453	

With	 the	 increasing	 need	 to	 study	 colour	 patterns	 as	 animals	 perceive	 them,	 HMAX	454	

offers	a	useful	framework	applicable	to	a	wide	array	of	vertebrate	species.	We	provide	a	455	

flexible	and	 fast	 (See	performance	 tests	 in	Supporting	 Information)	 implementation	of	456	

HMAX	that	can	apply	to	RGB	images,	but	also	to	the	photoreceptor	excitation	spaces	of	457	

other	 vertebrates.	 Furthermore,	 photoreceptor	 excitations	 can	 be	 combined	 into	 any	458	

opponent	coding	scheme.	Knowing	the	visual	acuity	of	a	studied	species	(for	a	review,	459	
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see	 Caves,	 Brandley	 &	 Johnsen	 2018),	 it	 should	 be	 possible	 to	 further	 set	 the	 scale	460	

parameter	of	Gabor	filters	to	realistically	map	the	visual	resolution	of	details	 in	colour	461	

patterns.	Even	without	specific	knowledge	about	 the	visual	system	of	a	species,	HMAX	462	

would	 still	 be	 a	 valuable	 tool	 to	 analyse	 the	 robustness	 of	 results	 (e.g.,	 measures	 of	463	

phenotypic	 similarity)	 to	 deviations	 from	 hypotheses	 about	 the	 visual	 processes;	 e.g.,	464	

the	uniform	distribution	of	orientation-selective	neurons,	or	the	adaptation	of	neurons	465	

in	early	cortical/tecto-isthmic	areas	to	features	of	the	environment.	466	

	 HMAX	 also	 allows	 analysing	 communication	 signals	 independently	 of	 their	467	

rotation,	distance	and	 illumination.	For	visual	ecology,	 this	 is	a	critical	advantage	over	468	

the	classical	landmark-based	methods	because	it	allows	working	with	non-standardized	469	

images,	 e.g.,	 pictures	 collected	 on	 the	 World	 Wide	 Web,	 thereby	 opening	 up	 the	470	

possibility	to	analyse	very	large	number	of	images	or	rare	species	represented	by	low-471	

quality	 photographs	 only.	 Furthermore,	 automatic	 analysis	 of	 features	 will	 save	472	

considerable	amount	of	time	compared	to	positioning	landmarks	manually.	473	

	 Over	 the	 last	 few	 years,	 computer	 scientists	 have	 gradually	 shifted	 away	 from	474	

HMAX	models	 to	 favour	artificial	neural	networks	with	deeper	architectures	 (i.e.	deep	475	

convolutional	 neural	 networks;	 ConvNets),	 reaching	 performances	 in	 object	 and	476	

individual	recognition	that	match	and	even	surpass	those	of	humans	(LeCun,	Bengio	&	477	

Hinton	2015).	ConvNets	have	also	recently	gained	the	 interest	of	visual	scientists	with	478	

their	 ability	 to	 predict	 the	 selectivity	 of	 biological	 neurons	 in	 different	 brain	 areas	479	

(Kriegeskorte	2015).	However,	HMAX	models	have	two	main	advantages	over	ConvNets	480	

that	make	 them	highly	valuable	 for	ecologists	and	evolutionary	biologists.	Contrary	 to	481	

ConvNets,	 which	 require	 a	 huge	 amount	 of	 data	 for	 training	 (i.e.	 to	 learn	 filter	482	

selectivities),	S2	filters	in	HMAX	can	be	learned	from	a	few	images,	and	possibly	a	single	483	

image.	Moreover,	contrary	to	ConvNets,	with	HMAX	it	is	straightforward	to	visualize	the	484	
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selectivity	of	neurons	(i.e.	filters)	and	to	analyse	which	neurons	are	activated	and	which	485	

are	 not.	 This	 is	 convenient,	 e.g.,	 for	 revealing	 those	 features	 that	 most	 influence	 the	486	

similarity	between	 two	phenotypes.	HMAX	models	 thus	have	high	explanatory	power,	487	

which	ConvNets	still	critically	lack.	488	

Compared	to	the	classic	HMAX,	sparse-HMAX	showed	reduced	performance	both	489	

for	estimating	facial	similarity	in	mandrills	and	in	performance	tests	(see	SI).	However,	490	

our	 goal	 in	 proposing	 a	 sparse	 implementation	 of	 HMAX	 was	 not	 to	 maximize	491	

performance	 but	 to	 make	 the	 model	 biologically	 more	 realistic.	 Furthermore,	 sparse-492	

HMAX	 provides	 a	 tool	 for	 estimating	 neuronal	 sparseness	 and	 thus	 efficiency	 in	493	

information	processing	(Renoult	&	Mendelson	2019).	A	growing	body	of	psychological	494	

studies	 suggests	 that,	 when	 given	 a	 choice,	 humans	 tend	 to	 prefer	 stimuli	 that	 are	495	

efficiently	 processed	 by	 the	 brain	 (Winkielman	 et	 al.	 2003;	 Reber,	 Schwarz	 &	496	

Winkielman	2004;	Redies	2007).	This	 finding	 is	appealing	 for	 the	 field	of	evolutionary	497	

biology	as	 it	 could	 shed	 light	on	 the	mechanisms	underlying	 the	evolution	of	 complex	498	

and	 extravagant	 communication	 signals	 in	 animals	 (Renoult	 &	 Mendelson	 2019).	499	

Studying	 the	 efficiency	 of	 information	 processing	 outside	 laboratories	 of	500	

neurophysiology	and	in	non-model	animal	species,	however,	will	require	models	such	as	501	

sparse-HMAX	 that	 quantify	 processing	 efficiency	 in	 animal	 brains.	 Visual	 ecology	 and	502	

evolutionary	biology	are	only	beginning	to	embrace	the	benefits	of	methods	developed	503	

in	computer	vision	and	computational	neuroscience.	One	aim	of	this	article	was	to	make	504	

one	step	forward	toward	a	better	connection	between	these	fields	of	research.	505	
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