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Abstract

Unenlagiinae is mostly recognized as a subclade of dromaeosaurids. They have the modified 

pedal digit II that characterize all dromeosaurids, which is typically related to predation. 

However, derived Laurasian dromaeosaurids (eudromaeosaurs) differ from unenlagiines in 

having a shorter metatarsus and pedal phalanx II-1, and more ginglymoid articular surfaces in 

metatarsals and pedal phalanges. Further, unenlagiines have a subarctometatarsal condition, 

which could have increased the mechanical efficiency during locomotion. All these 

discrepancies possibly reflect different locomotor and predatory habits. To evaluate this we 

conducted morphometric analyses and comparisons of qualitative morphological aspects. The 

former consisted in two phylogenetic principal component analyses, one of them based on 

lengths of femur, tibia and metatarsus, and width of metatarsus, and the other based on 

lengths of pedal phalanges. The data sampling covered several coelurosaurian and non-

coelurosaurian taxa. The first analysis showed the unenlagiines close to taxa with long tibiae 

and long and slender metatarsi, which are features considered to provide high cursorial 

capacities. Instead, eudromaeosaurs are close to taxa with shorter tibiae and shorter and wider 

metatarsi, which can be considered with low cursorial capacities. The second analysis showed

that eudromaeosaurs and unenlagiines have similar phalangeal proportions. Moreover, they 

share the elongation of distal phalanges, which is a feature related to the capacity of grasping. 

The shorter and wider metatarsus, more ginglymoid articular surfaces and a shorter pedal 

phalanx II-2 of eudromaeosaurs possibly allowed them to exert a greater gripping strength. 

Thus, they had the potential of hunting large prey. Instead, the longer and slender 

subarctometatarsus, lesser ginglymoid articular surfaces and a longer pedal phalanx II-2 of 

unenlagiines possibly gave to them greater cursorial capacities and the ability to hunt smaller 
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and elusive prey on the ground. Thus, the different morphological evolutionary paths of 

dromaeosaurids lineages seem to indicate different locomotor and predatory specializations. 

Introduction

Unenlagiinae is a clade of Gondwanan paravians first recognized by Bonaparte [1] and which 

have been generally considered as a subfamily of dromaeosaurids from the phylogenetic 

analysis made by Makovicky et al. [2]. However, more recently other studies have challenged 

the dromaeosaurian affinities of unenlagiines and instead have proposed an alternative 

phylogenetic hypothesis in which these theropods are located within the stem of Avialae [3–

4]. Despite this and beyond the discussion about the relationships of unenlagiines, there are 

many shared morphologic features between unenlagiines and dromaeosaurids. One of these 

shared traits is the presence of a modified pedal digit II, with a hyperextensible phalanx II-2 

and a hypertrophied sickle-shaped claw. The peculiar form of this digit has led many 

researchers to make multiple interpretations about its possible function (e.g., [5–9]), although 

they all agree that it was involved in food obtaining, mainly through the submission and/or 

causing the death of the prey. Nevertheless, these functional interpretations are based mainly 

on the anatomy of derived Laurasian taxa (i.e., Dromaeosaurinae + Velociraptorinae or 

Eudromaeosauria following some authors, e.g., [10–11]), such as Deinonychus, Velociraptor, 

Saurornitholestes, Achillobator and Dromaeosaurus, in which the phalanges are markedly 

modified with respect to the plesiomorphic theropod morphology. Regarding the digit II of 

unenlagiines, it is similarly modified, although there are some anatomic differences with the 

digit II of eudromaeosaurs.

Moreover, the anatomical differences between unenlagiines and eudromaeosaurs are 

not limited to those in this pedal digit, but also in other parts of the hindlimb. Mainly, the 
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metatarsus differs between the two groups, since in unenlagiines is generally observed a 

subarctometatarsal condition, as in microraptorine dromaeosaurids and some basal 

troodontids, whereas in eudromaeosaurs the metatarsus is more robust and it has a structure 

more similar to the plesiomorphic condition in theropods. In the subarctometatarsal condition 

the metapodium has a similar morphology to the arctometatarsus, a type of metatarsal 

morphology observed in some theropod groups, such as tyrannosaurids, ornithomimids, and 

alvarezsaurids. White [12] pointed out the way in which both morphologies differ, indicating 

that in the subarctometatarsus the proximal end of the metatarsal III, although constrained, is 

equally visible in anterior and plantar views (completely constrained proximally in the 

arctometatarsus and not visible); and in plantar view the third metatarsal is visible through the

entire length of the metatarsus excluding metatarsals II and IV from buttressing. Several 

functional hypotheses have been raised regarding the arctometatarsus, most of them linked 

with an increasing of the mechanical efficiency during locomotion [12–17]. The 

subarctometatarsal condition could have related also to enhance the locomotor efficiency, and 

some authors consider it as transitional between the plesiomorphic morphology and the 

arctometatarsal condition [12].

In unenlagiines and eudromaeosaurs the hindlimb, especially the autopodium, is 

implied both in locomotor and feeding functions, so beyond the phylogenetic relationships 

between both groups, the morphological differences possibly reflect different locomotor and 

predatory habits. Based on the previous ideas about the functional implications of the 

subarctometatarsal and the arctometatarsal condition, likely unenlagiines had locomotor 

capacities not present in eudromaeosaurs. These hypotheses have already been mentioned by 

previous authors (e.g., [9]), although not evaluated in a quantitative form, at least not for 

unenlagiines. The goal of the present contribution is to perform an analysis including taxa of 

unenlagiines and eudromaeosaurs and to assess, in a quantitative mode, the morphological 
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differences between both groups. Additionally, exhaustive morphological comparisons are 

performed in order to arrive to a conclusion about the possibly dissimilar functions. 

Materials and methods

In order to evaluate quantitatively how the unenlagiines and eudromaeosaurs differ 

morphologically was performed a morphometric analysis, employing a set of lineal 

measurements of the hindlimb bones of several theropod taxa. A diverse sample of theropod 

clades was considered, including extant birds, with the aim of covering a wide spectrum of 

morphologies, proportions and sizes of the elements of the hindlimb. So, the sample includes 

measurements of Herrerasaurus, non Tetanurae neotheropods, basal tetanurans, and 

representatives of most coelurosaur clades including Mesozoic avialans. It was considered 

also data from more recent although extinct groups of birds, i.e., Dinornithiformes, and from 

extant taxa, of which the locomotor habit, mode of feeding and capacities of the foot like 

‘grasping’ are known. Extant taxa of birds considered include mainly those ground-dwellers 

with cursorial locomotor habits, raptorial birds with different hunting modes and ‘grasping’ 

capacities, and perching birds with more arboreal habits, such as passeriforms, also with 

‘grasping’ capacities (S1 Appendix). The measurements considered included proximodistal 

lengths of the femur (FL), tibiotarsus (TL), metatarsus (MtL), and non-ungual pedal 

phalanges, and the lateromedial width of the metatarsus at midshaft (ML). Regarding to MtL, 

the measures were taken for the longest element, typically the metatarsal III. For modern birds

was considered the length of the tarsometatarsus, due to the complete fusion of the distal 

tarsals and metatarsals. The dimension ML refers to the lateromedial diameter of the 

articulated MT II, III and IV at midshaft of these bones. 
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Most of values of these measurements were obtained from previously published 

datasets, especially from [15] and also from other authors (see supplementary information), 

whereas others were obtained directly from materials deposited in different collections. For 

many taxa with published measurements the dimension ML was not considered by the 

authors, so in these cases ML was calculated from the published photographs of the 

specimens. For each taxon is specified the specimen from which the measurements were 

taken, except some not indicated by the author who published the data. In the case of taxa for 

which there are published measurements of several specimens, it has been decided to consider

the data of only one of them, specifically the larger one, in order to avoid data of juvenile 

forms. Jointly, those specimens that were as complete as possible were taken into account, 

i.e., those with all the bones of the hindlimb preserved completely, in order to obtain the data 

of all the measurements. In some cases, estimated measurements have been taken of bones 

that have a small part not preserved, so even if it is estimated it is quite approximate to the 

real one. Additionally, measurements were obtained directly from materials housed in 

repositories of Argentina, including one specimen of the alvarezsauroid Alnashetri 

cerropoliciensis (MPCA), 17 specimens of many taxa of extant birds (MACN), and one 

specimen of Struthio camelus (CFA-OR). These are specified in the S1 Appendix.

Regarding lengths of pedal phalanges they were not taking into account the lengths of 

unguals, because there is no a consensus on how to measure this length, since some authors 

measure it in a straight line from the proximal end to the distal end of the phalanx, while 

others measure only the external curvature. So, published lengths of pedal unguals of 

theropods are not taken with the same criteria. Neither was considered the lengths of the 

phalanges of digit I, because in taxa of some clades included in the analysis, i.e., 

ornithomimids, this digit is reduced and completely absent.
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From this measurements phylogenetic principal component analyses (Phylogenetic 

PCA; see [18–19]) instead traditional PCA were performed. The phylogenetic principal 

component analyses allow the reduction of original variables to principal components 

correcting the non-independence among the former due the phylogenetic relationships 

between species. In this way, in a phylogenetic PCA the samples are not considered as 

independent datapoints, an assumption of the traditional PCA and frequently violated due the 

phylogenetic relationships between samples [18].

Given that the purpose of these analyses was the study of shape changes between 

species that cover a wide diversity of sizes, the phylogenetic PCA were constructed from, 

size-standardized, Mosimann variables [20], instead original ones. Each Mosimann variables 

were obtained as the ratio between the original variable and the geometric mean of all 

variables considered for the corresponding phylogenetic PCA.  

From the complete dataset two phylogenetic principal component analyses were 

performed. One of them includes the long bones of the hindlimb measurements, i.e., FL, TL, 

MtL and ML, and the other one includes the lengths of the non-ungual pedal phalanges. In 

relation to the available data (S1 Appendix), the first PCA included 74 taxa, whereas the 

second one 32 taxa.  This analysis design implying different taxonomic representatives in 

each principal component analysis (in relation to the available data and inability to perform 

these analyses with missing data), but allowed the maximization of the number of 

morphologies and taxa considered in each analysis.

After computed to Phylogenetic PCA, the phylogenetic relationships between species 

were projected into bivariate plots of morphospaces, constructing phylomorphospaces [19]. 

To evaluate the phylogenetic signal on each phylogenetic principal component, the K statistic 

proposed by Blomberg et al. [21] where calculated for each axis. The K statistic provides a 

measure of the strength of phylogenetic signal data. The values smaller than one indicate a 
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lack of phylogenetic signal or strong adaptative processes, values near 1 are expected if the 

character evolved following the phylogenetic relationships, under a Brownian motion model, 

and values greater than one show that phylogenetically closer taxa are more similar than 

expected, and eventually stasis processes [21–22].

Additionally, the size-effect on each axis of the morphospaces were calculated using 

phylogenetic generalized least squares (PGLS) regressions [23], considered the geometric 

mean as the independent variables. A PGLS regression allows the incorporation of the 

phylogenetic structure of samples as the error term of the regression equations, and then 

considering the biases caused by phylogeny in the calculation of the relationship between the 

analyzed variables. 

All these analyses were carried out using the software R 3.5.0 [24] and using the 

PHYTOOLS [19], APE [25], and PICANTE [26] libraries.

For the Phylogenetic PCA and the PGLS, both for the analysis based on long bones 

measurements and that based on lengths of the phalanges, were used composited phylogenies 

which synthetized the relationships between taxa included in the study. These were based on 

previously published phylogenies of different theropod clades [27–42].

The morphological differences between unenlagiines and other dromaeosaurids also 

were evaluated through qualitative comparisons of the hindlimb bones, especially of the 

matatarsals and pedal phalanges. The morphology of dromaeosaurid taxa was observed 

directly from the holotypes of Deinonychus (YPM 5205), Bambiraptor (AMNH FR 30556), 

and Dromaeosaurus (AMNH FR 5356), and from the literature (e.g., [5–6, 10, 35, 40, 43–

52]). The observations of the unenlagiines were made on the holotypes and referred materials 

of Buitreraptor (MPCA 245, MPCA 238, MPCA 478, and MPCN-PV-598), Neuquenraptor 

(MCF PVPH 77), Austroraptor (MML 195 and MML 220), and a cast of the holotype of 
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Rahonavis (FMNH PR 2830). Additional comparisons with other theropod taxa were made 

using the literature and in the case of extant birds also using the materials above mentioned.    

Curvature angles of unguals of unenlagiines and Laurasian dromaeosaurids were 

measured using the methodology applied by Fowler et al. [53], which in turn is based on that 

of Pike and Maitland [54]. Both the external and inner curvature angles of the unguals are 

measured with this methodology, i.e., from the dorsal and ventral borders respectively, 

obtaining the angle between the base and the tip of the claw. However, as this methodology 

was used to measure ungual curvatures of extant taxa of birds with soft tissue on digits some 

modifications were made. For extant birds the base of the claw is considered the point where 

the keratinous sheath emerges from the skin of the digit, although in fossil unguals lacking the

sheath and soft tissue cannot be considered the same base of the claw to the measurement of 

the curvature angles. So, we take the proximodorsal tip of the ungual bone as the dorsal base 

to measure the external curvature angle, and the tip of the flexor tubercle as the ventral base 

(S2 Fig). However, the flexor tubercle shows two ventral tips in unguals of the analyzed 

theropods, both separated by an extension of the side groove of the claw, so the anterior end 

was taken as the base to measure the angle of the inner curvature. The angles were taken from

photographs of the ungual phalanges using the measure tool in Adobe Photoshop. For 

incomplete materials which have not preserved the distal or the proximoventral ends these 

were reconstructed, although in these cases was indicated that the angle values are estimated.

Institutional abbreviations

AMNH FR, American Museum of Natural History, New York, NY, USA. CFA-OR, 

Fundación de Historia Natural “Félix de Azara”, Ciudad Autónoma de Buenos Aires, 

Argentina. FMNH PR, Field Museum of Natural History, Chicago, IL, USA. MACN, Museo 

Argentino de Ciencias Naturales “Bernardino Rivadavia”, Ciudad Autónoma de Buenos 

Aires, Argentina. MCF PVPH, Museo “Carmen Funes”, Plaza Huincul, Neuquén, Argentina. 
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MML, Museo Municipal de Lamarque, Lamarque, Río Negro, Argentina. MPCA, Museo 

Provincial “Carlos Ameghino”, Cipolletti, Río Negro, Argentina. MPCN-PV, Museo 

Patagónico de Ciencias Naturales, General Roca, Río Negro, Argentina. MUCPv, Museo de 

Geología y Paleontología de la Universidad Nacional del Comahue, Neuquén, Argentina. 

YPM, Yale Peabody Museum, New Haven, CT, USA.

Results

Description of the PPCA based on hindlimb long bones 

measurements

In the PPC analysis based on hindlimb long bones (femur, tibia, and metatarsals) 

measurements, including Mesozoic theropods (MzTer), extant birds, and Dinornithiformes the

contributions of the osteological variables to the first principal component (PPC1) represent 

57.2% and to the second principal component (PPC2) represent 30.1% of the total variation 

(Fig 1). The PPC1 summarizes a major contribution of tibia and metatarsus lengths 

(negatively correlated with the PPC1) and the mediolateral width of metatarsus at midshaft 

(ML; positively correlated). High negative PPC1 scores depicted taxa with elongated and 

slender metatarsi and elongated tibiae, whereas less negative and positive PPC1 scores 

depicted taxa with shorter and wider metatarsi and shorter tibiae. The PPC2 summarizes a 

major contribution of femur length (positively correlated) and minor contributions of 

metatarsus length and ML (both variables negatively correlated). High positive PPC2 scores 

depicted taxa mainly with elongated femora and slightly short and slightly slender metatarsi, 
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whereas negative scores depicted taxa mainly with shorter femora and slightly longer and 

slightly wider metatarsi.

Fig 1. Morphospace obtained from the phylogenetic PCA based on the measurements of 

the hindlimb long bones.

Extant birds and Dinornithiformes are partially segregated from the MzTer, toward 

negative scores of PPC1 and PPC2 (Fig 1). This is mainly because these groups of birds have 

comparatively longer and more slender metatarsi, longer tibiae, and shorter femora in 

comparison with the MzTer. More specifically, those taxa showing the longest and more 

slender metatarsi include terrestrial flightless or sparingly flying birds, i.e., the Cariamiformes

(Cariama and Chunga) and the Struthioniformes, as well as some Passeriformes such as 

Furnarius. In fact, the Cariamiformes stand out by having extremely elongated metatarsi and 

tibiae, with a metatarsus longer than 1.5 times the femur length or even more than twice 

longer than the femur (as in Cariama) and a tibia longer than twice the femur length. The 

remaining terrestrial birds, i.e., the Tinamiformes and Dinornithiformes, show comparatively 

shorter metatarsi and tibiae. The Tinamiformes are located on negative PPC1 and positive 

PPC2 scores, closely to the arcto and subarctometatarsalian MzTer with elongated metatarsi 

and tibiae. With respect to the Dinornithiformes, they have comparatively wider metatarsi 

than the Tinamiformes.  

Some extant raptor birds, such as the accipitrids (Elanus and Geranoaetus), some 

Strigiformes (Asio and Bubo), and some Dinornithiformes (Megalapteryx) are on low 

negative and positive PPC2 scores, closer to the MzTer with the longest and more slender 

metatarsi and the longest tibiae. These taxa show short and wide metatarsi, when are 

compared with the remaining extant birds (except the Tinamiformes).
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Regarding to the MzTer, on high negative PPC1 scores are located the 

alvarezsauroids, derived ornithomimids, some oviraptorosaurs, basal avialans, troodontids, 

microraptorines, and unenlagiines, all of them with markedly elongated hindlimbs (more 

elongated and slender metatarsi and longer tibiae in comparison with the remaining MzTer). 

Moreover, many of these taxa are characterized by an arctometatarsal or subarctometatarsal 

condition.

The MzTer with the longest and the more slender metatarsi and longest tibiae are 

located on the highest negative PPC1 scores and among the lowest positive and some negative

PPC2 scores. These taxa include the derived alvarezsaurids Parvicursor and Linhenykus, both

with a very slender and markedly elongated arctometatarsalian metatarsus, which significantly

surpass the femur length. Also is included in this part of the morphospace the basal avialan 

Hongshanornis, which although does not have an arctometatarsalian condition present a 

notably elongated and slender metatarsus which equals the femur length, locating on negative 

PPC2 scores (differing from other basal avialans).

Regarding unenlagiines, Buitreraptor is closer to Mahakala, Zhongjianornis, 

Zhenyuanlong, Struthiomimus, Mei, Alnashetri, and Sinovenator (Fig 1). These taxa show a 

long metatarsus, although slightly shorter and wider than in the MzTer above mentioned, so 

they are located on less negative PPC1 scores and more positive PPC2 scores. Rahonavis is 

closer to the oviraptorosaur Wulatelong than to Buitreraptor and presents less negative PPC1 

scores and slightly lower positive PPC2 scores than Buitreraptor. This separation is because 

Rahonavis has a slightly shorter and wider metatarsus than Buitreraptor and the other taxa 

closer to it.

Deinonychus and Velociraptor segregate and locate on less negative PPC1 scores than 

other dromaeosaurids, including Buitreraptor, since they have markedly shorter and wider 

metatarsi and shorter tibiae. In fact, Deinonychus is closer to tyrannosaurids than to other 
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dromaeosaurids. Velociraptor is located on much more positive PPC2 scores, because it has 

an even shorter metatarsus and tibia comparatively with the femur. Khaan is an oviraptorid 

with hindlimb bones proportions similar to Deinonychus.

The large-sized tyrannosaurids have short and wide metatarsi and short tibiae, 

although an arctometatarsalian condition. Many non-arctometatarsalian taxa characterized by 

relatively elongated although moderately wide metatarsi and moderately elongated tibiae, are 

located on low negative PPC1 scores and on low positive and negative PPC2 scores. Among 

these taxa are included basal ornithomimosaurs, the oviraptorosaur Chirostenotes, the 

ceratosaur Elaphrosaurus, and the dromaeosaurid Bambiraptor. It is noteworthy that 

Bambiraptor is separated from the other derived Laurasian dromaeosaurids, mainly due it 

shows a comparatively longer metatarsus. 

The basal tetanurans, ceratosaurs, coelophysoids, and Herrerasaurus are located on 

the lowest negative and positive PPC1 scores. These taxa have a foot with plesiomorphic 

morphology showing the shortest and widest metatarsi and shortest tibiae among the 

theropods included in the analysis. The tyrannosauroid Dilong has a longer metatarsus with a 

more derived morphology, although it remains closer and is grouped with the mentioned taxa 

due its relatively wide metatarsus.

Influence of phylogeny in the distribution of taxa along the morphospace

The K of Blomberg values indicate that the taxa distribution along the PPC1 is strongly 

influenced by the phylogenetic relationships of major clades (K=2.714) whereas PPC2 is less 

influenced by deep phylogenetic relationship, and related to the influence of the phylogenetic 

structure of terminals and more inclusive clade (K= 0.262) (S3 Table). Thus, the segregation 

and relatively scarcely overlapped distribution of these major clades along the PPC1 can be 
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related to the high K value of this axis, while the low K value of PPC2 indicates that there 

exist many convergences to extreme values in different terminal and less inclusive clades. 

Observing the phylogenetic relationships plotted on the morphospace (i.e., 

phylomorphospace; Fig 2) there exist a main separation trend of birds (including extant taxa 

and Dinornithiformes) toward negative values of the PPC1 and MzTer in less negative and 

positive values of PPC1. This separation is because birds have generally a longer and slender 

metatarsus and a longer tibia than MzTer. In addition, more derived taxa of some MzTer 

clades generally trend to locate on more negative values of PPC1 (as can be observed in 

tyrannosauroids, ornithomimosaurs, and alvarezsaurs), while most primitive taxa considered 

locate on the extreme positive values of PPC1, in relation with their plesiomorphic metatarsal 

morphology (Fig 2).

Fig 2. Phylomorphospace obtained from the phylogenetic PCA based on the 

measurements of the hindlimb long bones.

As was stated above, PPC2 summarizes morphological similarities between minor 

clades or terminals. Although PPC2 is less influenced by the structure of phylogenetic 

relationships of major clades, the positive correlation of this component with the femoral 

length can partially explain the division between MzTer and extant birds and 

Dinornithiformes, because in the latter there is a general trend to a significant shortening of 

the femur in comparison with MzTer, reason why they are mostly on negative values of the 

PPC2. The exception is the Tinamiformes, which are on positive values of PPC2, significantly

separated from the remaining modern birds.

Regarding the distribution of MzTer along the PPC2 some trends are observed. Thus, 

in tyrannosauroids and ornithomimosaurs there is a marked separation between basal and 
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derived taxa, because basal taxa are located on negative values  (with short femora) and 

derived taxa tend to more positive values (with longer femora). Derived ornithomimosaurs 

and alvarezsauroids are characterized by an elongated tibia and metatarsus, although in the 

former the trend was a comparatively more marked elongation of the femur whereas in 

alvarezsauroids the trend was to shorten the femur in derived forms. In oviraptorosaurs the 

direction of the morphological changes was not as clear as in the coelurosaur groups 

mentioned, possibly because the small taxon sample is not adequate to show a clearer trend. 

Troodontids show a distribution of taxa along PPC2 similar to tyrannosauroids and 

ornithomimosaurs, since basal taxa are on low positive values of the axis whereas more 

derived taxa are on more positive values and hence they present a longer femur.

About the distribution of dromaeosaurids along the phylomorphospace (Fig 2) is 

observed an opposite tendency in comparison with other groups mentioned, since more basal 

taxa, such as Mahakala and the unenlagiines Buitreraptor and Rahonavis, are located on more

negative values of PPC1, whereas more derived taxa, i.e., Deinonychus, Velociraptor, and 

Bambiraptor, are on less negative values of PPC1. In this way, the basal taxa present a longer 

metatarsus and tibia than derived forms. Regarding the location of taxa along PPC2, 

dromaeosaurids not show a clear trend, in contrast to the clades already explained. Basal taxa 

are located on similar values of PPC2, whereas microraptorines (at least those considered in 

this analysis) are more widely distributed. Thus, some microraptorines (i.e. Microraptor and 

Zhongjianosaurus) are on high positive values of PPC2, whereas others (i.e. Zhenyuanlong) 

are on similar PPC2 values than basal dromaeosaurids, with a shorter femur. Moreover, 

Microraptor and Zhongjianosaurus converge in the morphospace with derived ornithomimids

with long femora. The derived dromaeosaurids are also widely distributed, being Velociraptor

on high positive values of PPC2, close to some basal avialans, Bambiraptor on negative 

values, close to taxa with a shorter femur and longer metatarsus, and Deinonychus on an 
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intermediate location near derived tyrannosaurids. The location of Velociraptor can be 

explained possibly by its comparatively longer femur with respect to the other derived 

dromaeosaurids here analyzed.

Influence of size in the distribution of taxa along the morphospace

The PGLS regressions indicates that the PPC1 in the analysis based on long bones dimensions

is significantly influenced by size (F = 7.318; p-value = 0.009). The MzTer taxa with the 

largest body sizes are located to the right side of the morphospace, on less negative and some 

positive values of the PPC1. Furthermore, Dinornithiformes, the larger modern birds 

considered in the analysis, are located to the right of the morphospace occupied by birds. 

These large-sized taxa are characterized by a comparatively short and wide metatarsus, as was

explained above. By other side, smaller taxa with slender and longer hindlimbs are situated at 

the left of the morphospace, whether in the case of MzTer or modern birds. Conversely, PPC2

(F = 2.162; p-value = 0.146) and PPC3 (F = 3.260; p-value = 0.075) in not significantly 

influenced by size, and it result agrees with the distribution of taxa along the axis.

Description of the PPCA based on phalanges lengths

In the PPC analysis made from phalanges lengths, the contributions of the variables to the 

first principal component (PPC1) represent 39.0% and to the second principal component 

(PPC2) represent 29.1% of the total variation (Fig 3). Because these two axes explain a small 

percentage of the variation, we also analyzed the third component (10.8% of the total 

variation).
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Fig 3. Morphospace obtained from the phylogenetic PCA based on the lengths of the 

pedal phalanges (PPC1 vs PPC2).

In the graphic of PPC1 vs PPC2 (Fig 3), the PPC1 summarizes a major contribution of

the lengths of the proximal phalanges, i.e., Ph. II-1, III-1, IV-1, and III-2 (positively 

correlated with this component), and the lengths of the distal pre-ungual phalanges, i.e., II-2, 

III-3, and IV-4 (negatively correlated with this component). In this way high positive PPC1 

scores depict taxa with elongated proximal phalanges and high negative PPC1 scores depict 

taxa with elongated distal phalanges. The PPC2 summarizes major contributions of the 

lengths of the proximal and middle phalanges of digit IV, i.e., IV-2 and IV-3 (positively 

correlated with this component), and the lengths of the proximal and distal pre-ungual 

phalanges of digits II and III (negatively correlated). Thus, high positive PPC2 scores depict 

taxa with long phalanges IV-2 and IV-3 whereas high negative PPC2 scores depict taxa with 

long proximal or distal pre-ungual phalanges. Considering both principal components and 

summarizing the distribution along the morphospace, taxa on high positive PPC1 and high 

negative PPC2 scores are between those showing more elongated proximal phalanges, 

whereas those taxa located on negative PPC1 scores have relatively more elongated distal 

phalanges.

For the graphic of PPC2 vs PPC3 (Fig 4), in addition to those already commented for 

PPC2, the PPC3 (10.8% of the total variation) summarizes major contributions of the lengths 

of all the phalanges of digit II (positively correlated with this component), and to a lesser 

extent it summarizes contributions of the lengths of phalanges of digit III, mainly Ph. III-2 

and III-3 (negatively correlated). Thus, high positive PPC3 scores depict taxa with a long digit

II whereas high negative PPC2 scores depict taxa with long phalanges III-2 and III-3.
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Fig 4. Morphospace obtained from the phylogenetic PCA based on the lengths of the 

pedal phalanges (PPC2 vs PPC3).

In the morphospace, dromaeosaurids occupy central values of PPC1, high positive of 

values of PPC2, and high negative PPC3 scores (Figs 3 and 4). All representatives are mainly 

on negative PPC1 scores, except Bambiraptor which is on low positive PPC1 values. 

Deinonychus, Buitreraptor, and Bambiraptor are located on higher positive PPC2 scores and 

Microraptor and Sinornithosaurus on less positive scores of this component. The high 

positive values of PPC2 of dromaeosaurids are linked to a remarkably elongated digit IV, a 

feature mainly product of elongation of phalanges IV-2 and IV-3, while the high negative 

values on PPC3 are also mainly related to the length of phalanges of digit IV, but also 

influenced by the length of Ph. III-2 and III-3. Deinonychus and Buitreraptor show a 

relatively long digit IV in comparison with other dromaeosaurids, although Deinonychus is 

slightly located on more negative PPC1 scores so the position of this taxon is also specifically

influenced by the length of phalanx IV-4. Sinornithosaurus is the taxon with higher PPC3 

values, a position influenced by the elongated phalanges III-3 and II-2. The location of 

Microraptor is due a relatively shorter digit IV in comparison with Deinonychus, 

Buitreraptor, and Bambiraptor, whereas the length of phalanx IV-4 influenced in its position 

on more negative PPC1 scores. 

Troodontids show a distribution on the morphospace mainly similar to that of 

dromaeosaurids (Figs 3 and 4), except by Troodon which is located on negative PPC2 scores, 

with relatively shorter digit IV than the others troodontids in the analysis. Anchiornis is much 

close to Deinonychus and Buitreraptor, a position mainly influenced by a long digit IV. The 

location of Sinornithoides and Talos, in less negative values of PPC2, is related to their less 
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elongated digit IV in comparison with Anchiornis. In turn, Talos is close to Microraptor and 

thus its position is also influenced by the length of phalanx IV-4. 

Non-coelurosaurian theropods are dispersed in the morphospace (Figs 3 and 4). 

Dilophosaurus locates on very low negative PPC1, PPC2, and PPC3 scores, showing subtle 

elongated distal phalanges and a slightly longer digit III. The two basal tetanurans included in 

the analysis, i.e. Allosaurus and Gualicho, have similar PPC1 and PPC3 values, although they

segregate along PPC2, thus indicating that the difference in length between digit IV and digits

II and III is the main factor influencing the separation of these tetanurans. The position of 

Gorgosaurus, which is the only tyrannosaurid included in the analysis, is mainly influenced 

by relatively long proximal phalanges and especially by those of digit IV.

Oviraptorosaurs show a wide distribution on the morphospace (Figs 3 and 4), since 

Corythoraptor and Khaan have a more elongated digit IV whereas Avimimus has more 

elongated proximal phalanges of digits II and III and a comparatively longer digit III. 

Ornithomimosaurs are on positive PPC1 and PPC3 scores and on negative PPC2 

scores, a location mainly influenced by longer proximal phalanges and a relatively longer 

digit II. The position of Struthiomimus is related to a longer digit II and Ph. III-1 than those of

Gallimimus and Aepyornithomimus.

Mesozoic avialans are on negative PPC1 and PPC3 scores and on positive and 

negative PPC2 scores (Figs 3 and 4). Basal taxa, i.e., Archaeopteryx and Zhongjianornis, are 

on positive PPC2 values, although Zhongjianornis highlights due it is located on high 

negative PPC3 values. The position of Archaeopteryx indicates that it has a long digit IV, 

mainly due elongation of Ph. IV-3 and IV-4. The location of Zhongjianornis, Confuciusornis, 

Yanornis, and Yixianornis is mainly influenced by a greater elongation of distal phalanges of 

digits II, III, and IV and by a digit III comparatively longer. Specifically, the position of 

Zhongjianornis is biased by the length of digits III-2 and III-3, and secondarily influenced by 
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a long digit IV, whereas the location of Yanornis and Yixianornis is more influenced by a 

longer Ph. III-1 and the position of Confuciusornis is secondarily influenced by a longer digit 

IV. 

Extant birds are mainly distributed along negative PPC2 and PPC3 scores, although 

there is observed a dichotomy along the PPC1, because some taxa are on positive scores and 

others on negative ones (Figs 3 and 4). The position of taxa on positive PPC1, such as Rhea, 

Nothoprocta, Cariama, and Chunga is mainly influenced by long proximal phalanges of 

digits II, III, and IV. The most notorious bias is observed on Rhea, whilst the position of 

Cariama and Chunga is also influenced by the length of Ph. III-3. Those taxa on negative 

PPC1 scores, i.e., Turdus and Bubo are markedly influenced by the length of distal phalanges 

of digits II, III, and IV, being the position of Bubo the more affected by this trait. 

Additionally, the position of these two taxa is biased by a comparatively longer digit III. 

Moreover, this digit is longer in Bubo and Turdus in comparison with digit III of the other 

extant birds analyzed. 

Influence of phylogeny in the distribution of taxa along the morphospace

The K of Blomberg values indicate that the taxa distribution along the PPC1, PPC2, and 

PPC3 is strongly influenced by relationships between terminals and less inclusive clades in 

the case of PPC1 (K=0.303) and PPC2 (K=0.376), and linked to the many morphological 

convergences between distant taxa described above (S4 Table). The PPC3 also show a K 

value lesser than 1 but more closer to 1 (K=0.811), fitting more closely with a stochastic 

model (i.e., the distribution of taxa follows the phylogenetic relationships but is not 

particularly strong influenced by deep nodes neither terminal relationships).
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For instance, basal taxa included in the analysis, such as basal tetanurans and the basal

coelurosaur Gorgosaurus are almost indifferently located on similar values of PPC1, although

they are separated along PPC2 and PPC3 (Figs 5 and 6). The ornithomimids also are 

significantly separated mainly along PPC2, although the scarce sample of this group of 

theropods and recent phylogenetic analyses [55], which show them in a polytomy on the 

cladogram, difficult to shed light to how phylogeny and the distribution along the 

mosphospace are related.

Fig 5. Phylomorphospace obtained from the phylogenetic PCA based on the lengths of 

the pedal phalanges (PPC1 vs PPC2).

Fig 6. Phylomorphospace obtained from the phylogenetic PCA based on the lengths of 

the pedal phalanges (PPC2 vs PPC3).

Among oviraptorosaurs it can be observed a wide distribution of taxa along PPC3 (Fig

6), whereas in the remaining clades the distribution of taxa is more limited along this 

component according phylogenetic relationships. Thus, the basal taxon Avimimus is 

remarkably separated from the more derived Corythoraptor and Khaan mostly throughout the

PPC3 and also the PPC2. So, the basal and derived taxa are mainly divided by length 

differences between the digit IV (larger in derived taxa) and the digits II and III (larger in 

basal taxa), as can be observed in the PPC2 vs PPC3 axes.

Regarding dromaeosaurids, they show a convergence between basal and derived taxa, 

since Buitreraptor is located near the derived eudromaeosaurids Deinonychus and 

Bambiraptor (Figs 5 and 6). These three taxa have a comparatively elongated digit IV than 
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Microraptor and Sinornithosaurus, which are more derived than Buitreraptor although more 

basal with respect to the eudromaeosaurids.

Among troodontids there is observed an evolutionary trend to shorten the digit IV and 

to increase the length of digit III and to a slight elongation of proximal phalanges, as shows 

the PPC1vsPPC2 graphic (Fig 5). Thus the basal taxon Anchiornis is convergently located 

near to Deinonychus and Buitreraptor, with a proportionally more elongated digit IV, whereas

Troodon has the shortest digit IV and a comparatively longer digit III as can be observed in 

the PPC2 vs PPC3 graphic (Fig 6). 

Mesozoic avialans show a similar evolutionary trend than troodontids, since the basal 

taxon Archaeopteryx has an elongated digit IV whereas in more derived taxa this digit 

decreases in length whereas the other digits lengthen, specifically the digit III (Figs 5 and 6). 

In turn there is a trend to an elongation of the distal non-ungual phalanges of digits II, III, and 

IV in more derived forms, as can be observed in the PPC1vs PPC2 axes.

The sample of extant birds included in this analysis is small, although a certain 

evolutionary trend can be observed. In general lines, there is an increase in length of the distal

non-ungual phalanges and of the digit III as a whole. Thus, the more basal Rhea has long 

proximal phalanges and a digit III comparatively shorter, whereas the more derived Turdus 

and Bubo have markedly longer distal non-ungual phalanges and a particularly elongated digit

III.

Influence of size in the distribution of taxa along the morphospace

Following the result of the PGLS regressions, the axes that compose the morphospace 

analyzed for the phalange measures (i.e., PPC1, PPC2, and PPC3) are not significantly 

influenced by size (PPC1: F = 1.253, p-value = 0.2722; PPC2: F = 2.513, p-value = 0.1238; 
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PPC3: F = 0.6881, p-value = 0.6881). Accordingly, the distribution of taxa along the axes 

does not follow a pattern controlled by size.

Discussion

Previous authors enumerated the morphological features of animals traditionally considered 

as ‘cursorials’: relatively long limbs; hinge-like joints; distal limb segments proportionally 

elongated; the reduction, compression or loss of the ulna and fibula and of the lateral 

metapodials and phalanges; reduction or loss of distal muscular groups or proximal location 

of their scars; a limb motion restricted to the sagittal plane;acquisition of digitigrade or 

unguligrade stance; and metapodials interlocked, fused or reduced to a single element [13, 

56–61]. From the perspective of the locomotor performance, animals known as cursorials 

have the capacity to move at greater velocities or for extensive distances with a low energetic 

cost [60–63]. However, Carrano [61] considered that a discrete categorization of the 

locomotor habits could not be appropriate and instead these habits would be evaluated along a

multivariate continuum between two locomotor extremes, i.e., strictly graviportal and 

cursorial. Theropods can be generally considered as cursorial animals (or ‘subcursorial’, 

according to Coombs [13]), due they were bipeds, digitigrades and with long and 

parasagittally oriented hindlimbs [64], although different taxa would be dispersed along a 

continuum that includes different grades of cursoriality. The distribution in the morphospace 

obtained in the multivariate analyses performed, could reflect such ecomorphological 

diversity. Thus, those taxa with more elongated distal segments of the hindlimbs (i.e., tibia 

and metatarsus), a more slender and compressed metapodium, and reduced lateral pedal digits

likely had a greater cursorial capacity [59, 61]. These taxa would locate closer to the 
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‘cursorial extreme’ of the multivariate continuum than taxa with shorter segments of the 

hindlimb, with a more robust metapodium, and lateral digits less reduced.

The elongation of the distal elements of the hindlimb (i.e., tibia and metatarsus) allows

increasing of the stride length and speed of movements, which are related to a greater 

cursorial capacity [9, 61]. Garland and Janis [60] explained than the ratio between the lengths 

of metatarsus and femur (MT/F) was repeatedly considered by some authors as a predictor of 

locomotor performance in fossil forms. However, Garland and Janis [60] and other authors 

[65–67] warned that ratios between hindlimb bones are not good predictors of the type of 

locomotion, so limb proportions must be considered with caution. Thus, it is important take to

account also qualitative aspects, such as the morphology of the metapodium, to make 

inferences about locomotor capacities.

The arctometatarsal and subarctometatarsal conditions could confer significant 

cursorial capabilities. Some authors [12, 15] have verified that theropod taxa with these 

conditions have distal elements of the hindlimb significantly more elongated than taxa with a 

plesiomorphic metapodium. Moreover, many authors have postulated biomechanic 

hypotheses about the performance of the arctometatarsal and subarctometatarsal foot, and 

how the interaction motions between metatarsals and transfer of forces along the metatarsus 

provide advantages during locomotion, which could represent benefits for the cursorial habit 

[12–17, 68].

Regarding morphology of pedal phalanges, in extant terrestrial birds with a cursorial 

locomotor mode and walking capacity (e.g., ratites such as ostriches, emus, Pterocnemia, and 

Rhea) the pre-ungual phalanges tend to shorten distally [9, 69–71]. Further, in these birds the 

foot is symmetrical since digit III is the more developed and the main weight bearer, with 

non-ginglymoid interphalangeal articular surfaces, whereas digits II and IV have a similar 

length to each other, are shorten than digit III and have more ginglymoid interphalangeal 
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articular facets, indicating that they were under higher torsional efforts [9, 72–73]. Similar 

features are observed especially in Mesozoic theropod taxa considered with greater cursorial 

capabilities, much of them possessing long tibiae and metatarsi and an arctometatarsalian 

condition, such as ornithomimids, alvarezsaurids, caenagnathids, and Avimimus (e.g., [9, 13, 

33, 38, 55, 74–83].

By contrast, extant birds with a foot with grasping capacities are characterized by an 

elongation of the distal pre-ungual phalanges of the digits, especially the penultimate phalanx 

[69–71, 84–85]. This can be observed either in perching and raptorial extant birds. Even, the 

elongation of distal phalanges is convergently observed in arboreal mammals which have 

grasping autopodia, such as the sloths ([85], and references herein).

Interpretation of the PPCA analyses related with the locomotor 

habits of theropods

Taking into account the diverse factors and how they affect differentially the hindlimb 

elements, it is important to consider both analyses together (i.e., long bones and phalanges 

proportions) to make adequate inferences about the locomotor habits of theropods. For 

instance, Avimimus and Sinornithoides are very close to each other in the PPCA morphospace

constructed from the long bones measures, and there no evident differences (Fig 1), while the 

PPCA based on phalanges lengths reveals clear dissimilarities between these taxa (Figs 3 and 

4). The later analysis indicates that the cursorial capacities of Avimimus are greater than those 

of Sinornithoides, whose phalanges proportions are possibly more related to a grasping 

function.

Based on the results of the PPCA made from phalanges length, taxa such as Avimimus,

Cariama, and Rhea are considered with greater cursorial capacities [86–88], which are 
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associated with more elongated proximal phalanges and a long digit III (Figs 3, 4 and 7). 

Other taxa, such as ornithomimids (especially Struthiomimus) also have traits related to more 

cursorial capabilities, i.e., more elongated proximal phalanges, although their digit III is not as

long as in the taxa above mentioned. Instead, Bubo, Turdus, and some Mesozoic avialans 

close to them had a foot with elongated distal phalanges which possibly had more grasping 

capacities. Concerning taxa such as Gualicho, Allosaurus, Gorgosaurus, Corythoraptor, and 

Khaan they have slightly more elongated proximal phalanges, so could have had certain 

cursorial capacities, also taking into account they have a digit IV almost as long as digit III.

Fig 7. Comparison of the autopodium between several theropod taxa, including 

unenlagiines and some extant birds, in anterior view. (A) Buitreraptor gonzalezorum 

(based on MPCN-PV-598). (B) Neuquenraptor argentinus (based on the holotype, MCF-

PVPH-77; phalanges III-4 and IV-4 lack in the original material). (C) Rahonavis ostromi 

(based on a cast of the holotype, FMNH PR 2830; phalanges III-4, IV-4 and IV-5 lack in the 

original material). (D) Deinonychus antirrhopus. (E) Talos sampsoni. (F) Allosaurus gracilis. 

(G) Gallimimus bullatus. (H) Avimimus portentosus. (I) Bubo virginianus (based on MACN 

2056a). (J) Cariama cristata (based on MACN 23873). (A) is inverted from the original 

material to compare better to remain taxa. In (I) and (J) the first digit is showed disarticulated 

from its natural position (totally turned backwards) for better visualization. (D), (F) and (G) 

modified from Fowler et al. [9]; (E) based on Zanno et al. [151]; (H) based on Vickers Rich et

al. [80].

The position of dromaeosaurids in the morphospace, including Buitreraptor, and other

taxa, such as Anchiornis, is related to their long digit IV and elongated distal phalanges (Figs 

3, 4 and 7). This feature could be related with their particular morphology where the digit II is
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markedly short and thus digits III and IV are the main structures of the foot support [6, 8, 89–

94].

In the analysis based on long bones measurements (Fig 1) the PPC2 is less influenced 

by phylogeny and the distribution of taxa along this axis could show a clearer separation 

related with habits. TheMzTer on more positive values of PPC2 (Allosaurus, Ceratosaurus, 

Beishanlong, Garudimimus), which show short and robust metatarsi, can be considered with a

minor cursorial capacity than those taxa tending to locate at less positive and negative values 

of PPC2 (Dilong, Archaeornithomimus, Elaphrosaurus, and Herrerasaurus), which show 

longer and slender metatarsi. In the case of modern birds also is observed the same general 

trend. Coincidentally, the taxa on negative values generally have comparatively smaller body 

sizes, except for Megalosaurus.

Along the PPC1 those taxa tending to positive or low negative scores can be 

considered with less cursorial capacities than those located at more negative scores. Thus, 

taxa such as Linhenykus and Parvicursorare interpreted with high cursorial abilities, in 

addition to having a markedly elongated and slender highly derived arctometatarsus [33, 78, 

95] (Fig 8). Unfortunately, these two taxa have not preserved all the pedal phalanges and so 

they cannot be included in the analysis based on phalanges lengths. However, other 

alvarezsaurid considered in the analysis, i.e., Kol ghuva [96], shows pedal phalanges 

proportions that indicate cursorial capacities.

Fig 8. Comparison of hindlimb bones of different theropod taxa, including unenlagiines 

and extant birds, showing the proportional lengths of the femur, tibia and metatarsus. 

(A) Buitreraptor gonzalezorum (based on MPCN-PV-598). (B) Rahonavis ostromi (based on 

a cast of the holotype: FMNH PR 2830). (C) Deinonychus antirrhopus. (D) Sinornithoides 

youngi. (E) Tyrannosaurus rex. (F) Allosaurus fragilis. (G) Struthiomimus altus. (H) 
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Parvicursor remotus. (I) Archaeopteryx litographica. (J) Struthio camelus (based on CFA-

OR-1560). (K) Cariama cristata (based on MACN 23873). (L) Geranoaetus melanoleucus 

(based on MACN 2129). (M) Bubo virginianus (based on MACN 2056a). (N) Furnarius 

rufus (based on MACN 68647). Hindlimbs are not to scale. (C), (E) and (G) modified from 

Ostrom [43]; (D) based on Russell and Dong [152]; (F) modified from Gatesy and Middleton 

[65]; (H) based on Karhu and Rautian [78]; (I) based on Mayr et al. [153].

Our quantitative analyses, in addition to other features already described 

(subarctometatarsal configuration; [42, 97]) indicate that Buitreraptor can be considered with 

probable high cursorial capabilities. Other MzTer with probable similar locomotor capacities 

are the dromaeosaurids Zhenyuanlong and the troodontids Sinovenator and Mei, which were 

already described as possessing an arctometatarsal or subarctometatarsal condition [2, 42, 52, 

97–100]. Further, these taxa present hindlimb and pes proportions similar to non-

dromeosaurid theropods such as Struthiomimus, an ornithomimid probably markedly 

cursorial, as also indicate the PPCA based on phalanges lengths. Notwithstanding, 

Buitreraptor has phalanges proportions indicating grasping adaptations and related with a 

lesser cursorial performance. Unfortunately, phalanges lengths of Sinovenator, Mei, and 

Zhenyuanlong were difficult to obtain, because fragmentary preservation and incomplete 

information of the descriptions of the taxa, although in Sinovenator phalanges of digit III 

appear to shorten distally and the phalanx IV-4 is slightly longer than IV-3 [48].

Functional implications of the dromaeosaurid hindlimb 

morphology and differences between unenlagiines and 

eudromaeosaurs
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Long bones proportions, morphology of the metatarsus and motion range 

of digits

The main differences between the hindlimbs of unenlagiines and eudromaeosaurs are related 

with the relative length and form of the metatarsus, and the morphology of the phalanges of 

the digit II [4, 42, 101–102]. In unenlagiines the metatarsus is significantly elongated when is 

compared with the femur and tibia (except in Rahonavis), and it is slender because its 

lateromedial width (ML) is significantly lower than its total length (MtL) (except in 

Rahonavis) (Figs 7 and 8), whereas in eudromaeosaurs the metatarsus is remarkably shorter 

and the ratio ML/MtL is larger. Moreover, unenlagiines show a subarctometatarsal condition, 

whereas eudromaeosaurs have a metatarsus more similar to the plesiomorphic condition [6, 

35, 44, 103–104]. These characters indicate that the metatarsus of eudromaeosaurs is overall 

more robust than that of unenlagiines. 

The metatarsi of Neuquenraptor (MCF PVPH 77) and Austroraptor (MML 195) are 

incomplete, although their approximate length can be estimated, indicatingthey were very 

elongated with respect to the tibia and femur. Thus, these taxa possibly had length proportions

of the hindlimb bones much similar to those of Buitreraptor. Moreover, Neuquenraptor and 

possibly Austroraptor (based on the specimen MML 220), also have a subarctometatarsal 

condition.

The long bone proportions of Buitreraptor are remarkably different with respect to 

those of eudromaeosaurs here analyzed, i.e., Velociraptor, Deinonychus, and Bambiraptor 

(Fig 8). Instead, Buitreraptor is more similar to other taxa with a relatively elongated 

metatarsus, either with an arctometatarsal, a subarctometatarsal, or non-subarctometatarsal 

condition, such as Mahakala, Alnashetri, Zhongjianornis, Zhenyuanlong, Sinovenator, and 
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Mei. These taxa are similar in size or smaller than Buitreraptor [50, 52, 98–100, 105–108]. 

According to previous authors a similar size and hindlimb proportions would presumably 

indicate a similar locomotor mode [12, 15, 65]. Moreover, this resemblance in the locomotor 

mode can be also supported by the similar metatarsus morphology between some of these 

taxa.

Rahonavis departs from the general morphology of other unenlagiines, by its shorter 

tibia and a shorter and wider non-subarctometatarsal metatarsus (Figs 7 and 8) [109]. On the 

other hand, Rahonavis has hindlimb proportions more similar to those of unenlagiines than 

those of eudromaeosaurs, especially because it has a comparatively short femur and long tibia.

Thus, Rahonavis can be considered as the less cursorial unenlagiine analyzed, although 

clearly more cursorial than eudromaeosaurs. 

Additionally, differences in the distal articular surfaces of metatarsals between 

unenlagiines and eudromaeosaurs were also denoted by previous authors (e.g., [3, 9, 42]). In 

eudromaeosaurs the MT I, II and III have a well-developed ginglymoid distal articular surface

[5, 6, 9, 44–45]. This could indicate that the first phalanges flexed and extended 

predominantly in a single plane [9]. Instead, in unenlagiines the ginglymoid distal facet of the 

MT II and III is less developed, so Ph. II-1 and III-1moved in a predominant vertical plane 

although probably with some degree of sideways movement. The distal surface of MT I of 

unenlagiines is ball-shaped, as in Buitreraptor (MPCA 238, [42, 97]) and Rahonavis (FMNH 

PR 2830) or it is slightly ginglymoid, as in Neuquenraptor [110–111].Thus, in 

Neuquenraptor the range of movement was probably more similar to that of digit I of 

eudromaeosaurs, whereas in Buitreraptor and Rahonavis digit I could have had a greater 

motion range. The more restricted motion of digits in eudromaeosaurs (which is emphasized 

by the more ginglymoid interphalangeal articulations in comparison with unenlagiines) could 

be more resistant to torsional stress and thus preventing disarticulation of the joints during 
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manipulation of the prey with a greater grasping force [9]. In the case of the distal facet of MT

IV it is generally more rounded in dromaeosaurids, which matches with the concave proximal

articular facet of Ph.IV-1. This trait possibly indicates more freedom of movement for digit 

IV [9]. Thus, unenlagiines had the capacity to oppose pedal digits between them in a similar 

way to Deinonychus [9]. Digits I and IV probably had a wide range of motion, which would 

have allowed these digits converge during flexion, thus achieving a grip position.

Morphology of pedal phalanges

The only unenlagiine with all the pedal phalanges preserved to date is Buitreraptor. Our 

results indicated that it is similar in phalanges proportions with respect to eudromaeosaurs 

analyzed, i.e., Deinonychus and Bambiraptor. The three taxa highlight by their markedly 

elongated digit IV, with a total length greater than that of digit III (Fig 7). In Neuquenraptor 

and Rahonavis it can be estimated that digit IV is shorter than digit III, as in Sinornithosaurus 

and Microraptor, because the sum of lengths of the other pre-ungual phalanges of digit IV is 

significantly lower than the total length of digit III and although Ph. IV-4 has been equal in 

length or slightly longer than Ph. IV-3 the complete digit IV would have been slightly shorter 

than digit III. By contrast in other MzTer included in the analysis such as derived troodontids,

non-paravian coelurosaurs and basal tetanurans the digit III is the longest and the digit IV is 

significantly shorter, which are proportions related with probable more cursorial capacities [9,

72–73]. So, the length proportions of dromaeosaurids digits, including unenlagiines and 

especially Buitreraptor, seem to indicate a restriction to their cursorial habit.

Also, dromaeosaurids show a significant elongation of the distal pre-ungual phalanges,

a feature related with grasping capacities (see cited literature above). Generally, in 

unenlagiines the length proportions of the distal phalanges of digit III are similar to those of 
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eudromaeosaurs, although in the digit II the second phalanx is shorter than the first one (S1 

Appendix), indicating slightly lower grasping capacities in unenlagiines. In others 

dromaeosaurids, such as Microraptor, Ph. III-3 is significantly shorter than III-2, a feature 

that also could indicate a decreasing of grasping capacities. Unfortunately, the lack of 

preserved elements prevents a more accurate analysis of the phalangeal proportions of 

Neuquenraptor and Rahonavis, although the available data and the apparently long distal 

phalanges of digit IV in Neuquenraptor indicate for this taxon more accentuated grasping 

capacities than other unenlagiines and resembling those of eudromaeosaurs (S1 Appendix).

In other groups of MzTer distal phalanges of digit IV generally maintain a similar 

length (S1 Appendix and S5 Text). By contrast, the length proportion of distal phalanges of 

digits II and III is more variable, due in some taxa these phalanges are shorter than the 

proximal ones (taxa considered as more cursorials) whereas in others taxa the distal phalanges

are longer although they not surpass the length of the proximal ones (taxa with possible 

grasping abilities of the feet). In extant birds with a grasping foot, such as Turdus and Bubo, 

the distal phalanges are significantly long (S1 Appendix and Fig 7).

Many current birds with grasping capacities of the feet are ‘perchers’ and have 

arboreal habits, i.e., they are predominantly arboreal foragers [112]. An arboreal habit for 

some unenlagiines is difficult to envisage or impossible in taxa such as Neuquenraptor, 

Unenlagia, and Austroraptor because of their large sizes. Further, this habit is correlated in 

paravians with aerial locomotor capacities, although previous authors considered that 

aerodynamical features in large-sized dromaeosaurids were lost, as suggested by the scarce 

development or lack of papillae for feather attachment on the ulna [105]. In smaller taxa such 

as Buitreraptor and Rahonavis this lifestyle would have been more probable not only because 

of their smaller size but also because they have evidence of feathered forelimbs by preserved 

quill knobs (in Rahonavis [109]) and many osteological traits which suggest the capacity of 
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flapping flight [4]. Also, it is possible that Buitreraptor and Rahonavis have been able to 

climb trees, especially considering the claw of pedal digit II as a potential tool for this 

purpose [7]. However, it is important to take into account the paleoenvironment in which they

lived, since for example Buitreraptor was found in sedimentites that indicate a mainly aeolian

environment and the existence of a large desert [113–116], where the trees were probably 

very scarce or nonexistent. So, the hindlimb morphology of Buitreraptor, mainly that of the 

metatarsus, is probably more related to a terrestrial habit than to an arboreal one.

Concerning qualitative aspects of the digit II of unenlagiines, it is modified as in 

eudromaeosaurs, although important differences are observed. First, in unenlagiines such as 

Buitreraptor, Neuquenraptor, and Unenlagia paynemili (MUCPv 1066), the distal articular 

surface of phalanx II-2 is less proximally extended. This feature restricts the extension of the 

ungual phalanx, as can be observed in an isolated articulated digit II of Buitreraptor (MPCA 

478 [42]), in which the ungual seems to be totally extended (Fig 9). In Deinonychus and 

Bambiraptor this articular surface is more proximally extended (FAG personal observation of 

YPM 5205 and AMNH FR 30556), and thus the claw had the possibility of a greater 

extension (see [8]). Additionally, the phalanges of digit II of eudromaeosaurs are 

comparatively more robust than those of unenlagiines. This digit is the main implied in the 

predatory function, so a robust digit II in eudromaeosaurs could be advantageous to capture 

and subdue large prey. Moreover, eudromaeosaurs have a short Ph. II-1. Taking into account 

that the Ph. II-1 represent part of the out-lever of the flexor muscle of the digit (possibly the 

M. flexor perforatus digiti II, which probably was inserted onto the proximoventral zone of 

the phalanx as in extant birds [117–118]), the shortness of this phalanx could maximize 

mechanical advantage of the flexor and the grasping strength of digit II. Another difference is 

the more proximally extended proximoventral heel of phalanx II-2 of eudromaeosaurs, which 

possibly was an insertion point of flexor muscles [6]. 
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Fig 9. Comparison between pedal phalanges II-2 of unenlagiines and eudromaeosaurs, 

in dorsal view. The red dotted line indicates the posterior limit of the collateral ligament pit 

and the yellow dotted line indicates the posterior limit of the distal articular facet. (A) 

Buitreraptor gonzalezorum (MPCA 238). (B) Neuquenraptor argentinus (MCF PVPH 77). 

(C) Unenlagia paynemili (MUCPv 1066). (D) Articulated phalanges II-1, II-2 and II-3 of 

Buitreraptor gonzalezorum (the ungual phalanx is totally extended, so it is clear the proximal 

extent of the articular surface). (E) Bambiraptor feinbergorum (AMNH FR 30556). (F) 

Deinonychus antirrhopus (YPM 5205). Scale bars=1cm. (F) is courtesy of the Division of 

Vertebrate Paleontology; YPM VP.005205, Peabody Museum of Natural History, Yale 

University, New Haven, Connecticut, USA; peabody.yale.edu; photography by Federico A. 

Gianechini.

So, although in general traits the unenlagiines and eudromaeosaurs have phalanges of 

digit II with similar morphological characteristics, it is observed that these characters are 

more accentuated in the eudromaeosaurs, including a shorter phalanx II-1, a phalanx II-2 with

a more proximally extended proximoventral heel, a shorter and more dorsoventrally 

constrained shaft, and a distal articular surface more extended proximally. This seems to 

indicate the presence of a digit II with the capacity of exert stronger predatory efforts in 

eudromaeosaurs, which could be an advantageous feature for subdue large preys. Conversely, 

the mentioned differences in the phalangeal morphology of unenlagiines could indicate weak 

predatory efforts, but the longer Ph. II-1 also suggests faster movements of digit II, what 

could be eventually useful for hunting small preys.

Regarding the degree of development and curvature of the claw of digit II it is difficult

to evaluate differences between eudromaeosaurs and unenlagiines, mainly because most 
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unenlagiines have not preserved a complete ungual. With the available data (S6 Table) we do 

not observe clear evidences indicating than eudromaeosaurs have a more developed and more 

curved ungual than unenlagiines.

Another possible difference between unenlagiines and eudromaeosaurs is respect to 

the location of digit I, which might have some implications in the grasping function. For 

instance, in Deinonychus the digit I is articulated to the middle zone of the diaphysis of the 

MT II [6, 9], suggesting it would have closed over the posterior face of the metatarsus during 

flexion. Moreover, previous authors proposed that in this taxon the metatarsus would have 

been positioned semi-horizontally while the animal was subject to its prey and thus helping to

restrain it [9]. Among unenlagiines only one specimen of Buitreraptor (MPCN-PV-598) 

preserved a complete and articulated foot, in which the digit I seems to be located in the 

original position, articulated to the medial and distal surface of MT II [97]. This location 

could indicate that the metatarsus have been in a more vertical position during the submission 

of the prey, which would have been more effective for the digit I to participate in the gripping

function.

Morphological and functional correlates in extant raptorial birds and 

possible resemblances with dromaeosaurids

An interesting convergence is observed between extant raptorial birds and some 

eudromaeosaurs, in the morphospace of the long bone measurements. Both groups tend to 

positive PPC2 values (Fig 1), due they have longer femora and consequently shorter 

metatarsi. Moreover, raptorial birds converge specifically with Deinonychus and Velociraptor

in the presence of wider metatarsi, as is reflected by their less negative values for PPC1 in 

both groups. Generally, in current raptorial birds a shorter and robust metatarsus is related 
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with the ability of the foot to exert a greater grip force, whereas a longer metatarsus is related 

with a minor grip force although it has the capacity for rapid movement [9, 53, 66–67, 119–

120]. In a general way, owls (Strigiformes) have the shortest and more robust metatarsus 

whereas falconids and especially accipitrids have a longer and slender metatarsus [53, 119–

120]. Thus, owls have a greater grip capacity and strength, although these features also are 

related to other characters of the foot such as the presence of sesamoids, a specialized tendon 

locking mechanism and a facultative zygodactyl condition [53, 119–120]. Between the 

raptorial birds included in our analyses, Milvago and Polyborus (falconids of the subfamily 

Polyborinae) are characterized by relatively longer and slender tarsometatarsus when are 

compared with accipitrids (i.e., Geranoaetus and Elanus). This could indicate greater 

cursorial capacities, in agreement to what was expressed by previous authors [121].

Analogously, the short and robust metatarsus of eudromaeosaurs, such as Velociraptor

and Deinonychus, could have allowed a great generation of grip force [6, 9]. By contrast, the 

elongated subarctometatarsus of unenlagiines could have had a greater capacity of rapid 

movement, like falconids and accipitrids, although it could have reduced grip strength [9].

Despite morphological and even functional features can be compared between these 

theropods and extant raptorial birds, it must be considered that these birds are predominantly 

aerial with a generally limited terrestrial locomotion (but see [121]). Many common features 

in the autopodium of raptorial birds can be interpreted as the result of a predominant influence

of hunting and grasping specializations (e.g., elongation of distal non-ungual phalanges 

independently of the specific type of prey and the hunting method employed by them; [69–71,

85, 122], instead terrestrial locomotion. Conversely, dromaeosaurids, like most Cretaceous 

theropods, had a terrestrial locomotion, and it is expectable that both factor of selective 

pressures, i.e., predation and terrestrial locomotion, have a great influence in the hindlimb and

autopodium. This is a main reason to explain the segregation in the morphospace between 
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extant birds and dromaeosaurids, and also it might explain the presence of elongated distal 

phalanges in dromaeosaurids although not as strikingly long as those of extant raptorial birds 

(see also the study about the modular fashion of evolution of pedal phalanges proportions 

[85]). Thus, differences in hindlimb between eudromaeosaurs and unenlagiines can be 

considered mainly focusing in these, partially antagonist, specializations. The morphological 

design of the eudromaeosaurs autopodia indicates a more marked specialization to the 

predatory habit, whereas in unenlagiines a more marked cursorial specialization would have 

been occurred.

Locomotor and predatory habits of Buitreraptor and other 

unenlagiines

Unenlagiines possibly had a better cursorial locomotor performance and the capacity to reach 

greater running velocities than eudromaeosaurs with shorter and more robust metatarsi. Of 

course, this does not mean that eudromaeosaurs did not have an effective locomotion and the 

ability to run fast, but that the morphological characters of the hindlimb of the unenlagiines 

would have given these animals greater and more efficient cursorial capacities. Possibly, 

eudromaeosaurs may have made sudden runs at high speeds, but for shorter periods of time or

for short distances, while unenlagiines could maintain an accelerated pace for more time and/

or distance. Regarding the metatarsus of eudromaeosaurs it has a structure with functional 

capacities possibly more useful to predation than to cursorial locomotion. About the 

morphology of pedal phalanges the discrepancies observed between both groups, especially 

those of digit II, could be more directly related with different predatory habits.

Despite the mentioned dissimilarities between unenlagiines and eudromaeosaurs, it is 

remarkable that is the general structure of the metatarsus which shows a more drastic 
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difference. The metapodium had a greater morphological plasticity along evolution of 

dromaeosaurids, since its structure differs significantly in unenlagiines and eudromaeosaurs 

(and in microraptorines, which also have a subarctometatarsal condition), in relation to the 

relative and different importance of the mechanical benefits associated both with predatory 

and locomotor functions in both clades. On the other hand, as was explained above, the length

proportions of phalanges are not meaningfully dissimilar between these groups. This factor 

could be related to the phalanges are the main elements implied in predator functions, which 

exerted a greater selective pressure on their morphology, independently of the feeding 

strategy and locomotor habit. Nevertheless, some specific differences, such as the longer and 

slender phalanx II-1 and the greater freedom of movement of the remaining digits of 

unenlagiines, could allow them a fast and secure grip of small and agile/elusive prey that do 

not demand great efforts to be subdue. 

Unenlagiines have similar modifications of the metapodium than microraptorines and 

probably they had a similar mode of moving on the ground, beyond the capacity of gliding 

postulated for some microraptorines [123–125]. It can be that these two groups of 

dromaeosaurids used digit II for predation, although the predatory habits, i.e., the hunting way

and the type of prey, were not necessarily the same, also taking into account that 

microraptorines (at least Microraptor and Sinornithosaurus) have a phalanx II-1 shorter than 

II-2 (S1 Appendix), as in eudromaeosaurs. Moreover, some specimens of Microraptor gui 

indicate it fed mammals, enantiornithine birds, and fishes, which is evidence of diverse 

feeding habits and possibility of exploit different substrates such as ground, trees, and water, 

in that taxon [126–128]. 

Likely, unenlagiines preyed on rapid and elusive animals, although it is difficult to 

know more specifically the type of prey that they hunted, even without having direct 

evidences such as the gut content of Microraptor specimens. Nevertheless, it is possible to 
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achieve an approximation of the feeding habits of unenlagiines, especially for the better 

represented taxa such as Buitreraptor. Regarding other unenlagiines the information is 

scarcer, so it is more difficult to infer if among them there were noticeable differences in the 

feeding modes and on the types of animals that preyed.

Considering the small size, slender proportions (especially those of metapodium), and 

the inferred cursorial capacities, Buitreraptor probably foraged on the ground searching small 

preys, such as invertebrates, reptiles or mammals, throughout large distances and probably 

employing high-speed pursuits in some cases. The fauna recorded from the fossiliferous area 

of La Buitrera, where Buitreraptor was discovered, also includes remains of small tetrapods 

such as snakes, sphenodonts, crocodyliforms, and mammals [129–133], which could have 

been potential dams. Buitreraptor would have employed its pes to subjugate and keep the 

prey immobile once it was reached. The fast movements and curved enlarged claw of digit II 

would have helped this function, and eventually causing serious injuries or even death of the 

prey. 

Another reliable indicator of the type of diet and feeding strategy is the dental 

morphology. The teeth of Buitreraptor are numerous, tiny, lateromedially compressed, and 

devoid of denticles [134]. Instead, eudromaeosaurs are generally characterized by larger 

serrated teeth, such as Dromaeosaurus, Deinonychus, Velociraptor, Saurornitholestes, and 

Tsaagan [5–6, 35, 135–137], although many taxa have denticles only on the distal carina. 

These features would have allowed ingesting larger preys or tearing and cutting the flesh from

them into smaller pieces. Feeding models were proposed for some taxa, such as Deinonychus 

[9], although they are difficult to apply to Buitreraptorbecause the size of their teeth and the 

lack of denticles. Due the latter feature and the absence of other flesh-tearing structures (e.g., 

the tomial tooth of extant raptorial birds) it is very likely that Buitreraptor has consumed 

whole small animals and that the teeth were mainly employed as a tool to hold the dams. Also
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is possible these teeth have been used to fragment small preys, to consume them in more than 

one swallow. In previous works it has been postulated that the dentition of Buitreraptor 

would indicate a piscivorous feeding mode [134]. Certainly, Microraptor also has small non-

serrated teeth and there is evidence that it fed on fishes. However, this unique feature is not a 

reliable indicator of piscivory, since other morphological evidences must be taken into 

account. Moreover, Microraptor included in its diet other animals in addition to fish, as 

mentioned above. Buitreraptor also is characterized by having long forelimbs and hands [4, 

97], so it could also have used them to handle the prey once it was captured and subjugated 

with its feet.

Among extant long-legged predominantly terrestrial birds that forage on the ground 

and hunt small preys are included the seriemas (Cariamiformes) and the secretary bird 

(Falconiformes). The secretary bird kicks and stamp on the prey until it is wounded or 

incapacitated and then takes it with its beak [138–140]. On the other hand, the red-legged 

seriema (Cariama cristata) takes the prey with the beak and hits it on the ground with sudden 

movements of the head until it is injured [141]. An interesting trait of this seriema is it has a 

markedly curved ungual phalanx in the second digit ([142–143]; FAG personal observation of

MACN 23873). Some authors proposed this bird use this claw to hold the prey against the 

ground, although others do not agree ([86], and references therein). The extinct phorusrhacids 

were terrestrial generally flightless carnivorous birds which also are characterized by having a

markedly developed and curved ungual of the second digit [143–145]. Some authors have 

proposed that this claw could be used as a means of apprehension of the prey on the substrate,

then using the beak to tear it apart [143]. Buitreraptor could be used its pedal claw in a 

similar way than that proposed for seriemas and phorusrhacids, although there are no direct 

evidences.
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Regarding other unenlagiines such as Austroraptor it could be proposed a similar 

strategy of hunting and subjection of the dam than that of Buitreraptor. Although 

Austroraptor is significantly larger (estimated total length: 5 m) it has numerous and small 

teeth in comparison with the size of the skull, and also they lack denticles [134, 146–148]. 

However, the teeth of Austroraptor are conical, so they probably were more resistant and 

could have employed to retain and dismember large prey. Due to Austroraptor probably had 

similar length proportions of the hindlimb bones than Buitreraptor and a subarctometatarsal 

condition it could have had good cursorial capacities. By other side, Austroraptor has 

strikingly shorter arms than other unenlagiines, so it would not have used them to manipulate 

the prey, or at least not in the same way that Buitreraptor.   

Rahonavis probably had less cursorial capacities due its hindlimb morphology, 

although it has a relatively long tibia, so fast chases of preys cannot be ruled out as a hunting 

strategy used by this taxon. Moreover, Rahonavis has a digit II similar to that of other 

unenlagiines, so it probably had similar functional capacities. However, the distal phalanges 

are shorter than in other unenlagiines, so it probably had slightly lesser gripping abilities. 

Unfortunately cranial remains and teeth of Rahonavis are unknown, so it is more difficult to 

speculate about the type and size of animals that it could have been preyed upon. Surely it fed 

on small preys, although is not possible to know if it was able to tear flesh from larger preys. 

Cranial remains neither were preserved in Neuquenraptor, although the features of its 

hindlimb indicate that velocity probably was important to obtain its preys. Regarding others 

unenlagiines, such as Unenlagia comahuensis and Unenlagia paynemili, they have not 

preserved cranial bones although have preserved scarce hindlimb remains, especially 

phalanges of digit II, which are much similar to those of the other unenlagiines [101–102, 

149–150]. So, mainly due to the lack of skull and metatarsus remains and most of pedal 

phalanges it is more difficult to infer locomotor and predatory habits of these two species.
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Conclusions

Morphological differences in the hindlimb between unenlagiines and eudromaeosaurs reflect 

differences both in locomotor and predatory habits. In unenlagiines the presence of a long 

tibia and a long, slender and subarctometatarsal metatarsus suggest greater cursorial capacities

with respect to eudromaeosaurs, which have a shorter, wider and non-subarctometatarsal 

metatarsus. Regarding pedal digits the two groups of dromaeosaurids have similar length 

proportions and based on the elongation of the distal phalanges they probably have the 

capacity of grasping. However, morphological features of eudromaeosaurs, i.e., a more robust

metatarsus; distal articular surfaces of metatarsal I, II, and III, and interphalangeal articular 

surfaces markedly ginglymoid; and a shorter phalanx II-1, indicate that these dromaeosaurids 

possibly exerted more grip strength than unenlagiines. By contrast, proportions and 

slenderness of unenlagiines would not have allowed them to perform high grasping forces but 

instead they may have been able to make faster movements with both the metatarsal and the 

digit II. Moreover, this morphofunctional difference is analogously observed in extant 

raptorial birds, since in the latter those taxa with the shortest metatarsus, such as owls, have 

the ability to produce the greatest grip force, whereas those taxa with longer metatarsi, such as

polyborine falconiforms, generate a lesser grip force although can effect faster movements 

with the pes.

Despite the presence of morphological differences of pedal phalanges between 

unenlagiines and eudromaeosaurs, these discrepancies are not as drastic as those observed 

between the metatarsus of both dromaeosaurids groups. This, together with the similar length 

proportions of pedal phalanges seem to indicate that the morphology of these pedal elements 
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varied scarcely along dromaeosaurid evolution, a factor probably related with a greater 

selective pressure exerted by the predatory function.

Among unenlagiines, Buitreraptor gonzalezorum, with its small size, high cursorial 

capacities, a long metatarsus and phalanx II-1, more mobile phalanges, and tiny teeth, 

probably was a terrestrial predator that preyed on small elusive animals, such as arthropods, 

lizards, mammals, etc., trough rapid movements of its pes. Rahonavis ostromi also was a 

small-sized unenlagiine, although its morphology seems to indicate it had lesser cursorial 

abilities. Probably, its small body size and potential capacity of climbing could capacitate it to

an arboreal habit. Other unenlagiines, such as the large-sized Austroraptor cabazai and the 

medium-sized Neuquenraptor argentinus probably preyed on larger animals, also making use 

of its high cursorial faculties. Regarding other taxa, such as Unenlagia comahuensis and 

Unenlagia paynemili, are more fragmentary and so is much difficult to infer a locomotor and 

predatory habit.

Along dromaeosaurid evolution the different lineages seem to have diverged in varied 

lifestyles, as is documented by unenlagiines, microraptorines, eudromaeosaurs, and recently 

by halszkaraptorines [11]. Future studies, such as reconstructions of the muscular system, will

be necessary to analyze the hindlimb as an osteo-muscular integrated complex and how it 

would have been involved both in locomotion and depredation in dromaeosaurids. These 

paleobiological aspects will help us to have a better comprehension of the dromaeosaurid 

evolutionary story and about the role of these theropods within the ecosystems in which they 

lived.
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Supporting information

S1 Appendix. Database including measurements of taxa used for the phylogenetic 

principal component analyses. Measurements include those of long bones of the 

hindlimb and pedal phalanges lengths.
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S2 Fig. Example figure showing the methodology for measuring curvature angles of 

ungual pedal phalanges.

S3Table. Results of the phylogenetic principal component analysis based on long bones 
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