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Abstract 
The Oxford MinION, the first commercial nanopore sequencer, is also the first to implement molecule-by-
molecule real-time selective sequencing or “Read Until”.  As DNA transits a MinION nanopore, real-time pore 
current data can be accessed and analyzed to provide active feedback to that pore.  Fragments of interest are 
sequenced by default, while DNA deemed non-informative is rejected by reversing the pore bias to eject the 
strand, providing a novel means of background depletion and/or target enrichment.  In contrast to the previously 
published pattern-matching Read Until approach, our RUBRIC method is the first example of real-time selective 
sequencing where on-line basecalling enables alignment against conventional nucleic acid references to provide 
the basis for sequence/reject decisions.  We evaluate RUBRIC performance across a range of optimizable 
parameters, apply it to mixed human/bacteria and CRISPR/Cas9-cut samples, and present a generalized model for 
estimating real-time selection performance as a function of sample composition and computing configuration.   

Introduction  
The Oxford Nanopore Technologies (ONT) MinION sequencer represents a significant paradigm shift in the reach, 
applicability, and capability of nucleic acid sequencing technology1.  Combining a portable form factor, simple 
library prep, long-read capability (kb to Mb)2, direct RNA sequencing3, and real-time data output, the MinION has 
been variously applied to forensic genotyping4, bacterial typing5, plant biology6,  food safety7, environmental 
metagenomics8,9, cancer research10,11, antibiotic resistance studies12,13, and de novo genome assembly14-16.  The 
small operational and logistical footprint of the MinION, combined with its real-time capabilities17, make it 
uniquely suited to diagnostics and surveillance in clinical and field-forward settings, where the MinION has already 
been applied to assay Ebola18,19, Zika20, tuberculosis21, and other pathogens22-25. 

Despite these successes, nanopore sequencing-based diagnostics still face the “needle in a haystack” problem of 
obtaining sufficient coverage of low-abundance target from a high-abundance background (e.g., pathogen/host, 
cancer/nontumor) sample26.  While bacterial culture provides enriched quantities of genetic material in some 
applications27, culture-independent molecular biology-based target enrichment and background depletion 
methods28 including amplification29 and hybridization capture approaches30 are increasingly being adapted for use 
in library preparation to yield “targeted” or “selective” sequencing31,32.  Nearly all such methods require a priori 
knowledge to guide the design of the target-sequence-specific primers, baits, or probes required for selection.   

Unique to the Oxford MinION, real-time selective sequencing was first introduced by Loose and colleagues in 
201633, offering a promising alternative to these molecular biology-based enrichment approaches.  Dubbed “Read 
Until”, the method capitalizes on the real-time data output and discretely addressable nanopore architecture of 
the MinION to enable selection of individual DNA molecules.  Read Until makes it possible to preview the real-
time data associated with DNA traversing a given nanopore, and if it fails to meet some user-defined selection 
criteria, reject that read by reversing the pore bias and physically ejecting the DNA (i.e., “unblocking” the pore).  
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DNA meeting the criteria sequences to completion as usual, with selection producing a net enrichment of target 
versus non-target reads in the final sequence pool.  Read Until sequence-based selection has no clear precedent 
in the literature, the closest analogs being size-based34 and methylation-based35 DNA sorting in nanochannels, 
while most “single-molecule sorting” methods principally consist of surface immobilization coupled with 
molecular-resolution fluorescence imaging36. 

 

Figure 1:  Schematic of the RUBRIC workflow illustrating the division of computational effort between two garden-variety PCs: a laptop that 
runs the MinION sequencer and its MinKNOW software interfaced through the Read Until API (via ethernet) to a desktop system that 
performs the key RUBRIC operations of pre-screening reads for admission to the decision process, basecalling and aligning reads to nucleic 
acid target reference(s) in real-time, and communicating any resulting skip/reject decisions back to MinKNOW.  

In the original Read Until implementation, Loose applied a dynamic time warping (DTW) algorithm to pattern-
match the live current trace “squiggle” output by the MinKNOW sequencing software against a reference squiggle 
synthesized from the (ACGT) target sequence of interest33.  The method was successfully executed at a time when 
the MinION sequencing rate was 70 bases/s (it is now 450 bases/s) using a 22-core server to select for 5 kb portions 
of lambda DNA and to normalize coverage among 2 kb amplicons.  Subsequent work developed a statistical model 
for optimizing DTW selection37.  Here we introduce a new implementation of real-time selective sequencing based 
on Loose’s original framework: Read-Until with Basecall and Reference-Informed Criteria (RUBRIC).  Rather than 
pattern-matching event traces, RUBRIC relies on real-time basecalling and alignment to conventional ACGT-type 
reference sequences, providing significant benefits to speed, scalability, and operational flexibility.  Moreover, 
RUBRIC is specifically designed to function with the more modest computing resources typical of portable or point-
of-need MinION-based activities rather than high-end multiprocessor workstations or cluster computing 
platforms.  In addition to characterizing the operation of the RUBRIC architecture for a series of proof-of-concept 
experiments, we also propose a predictive model evaluating the likely limits of real-time selection performance 
generally across a range of potential sample types and use cases. 

Methods 
RUBRIC Implementation & Operation 
Figure 1 shows the RUBRIC real-time selection architecture, implemented with off-the-shelf, ethernet-linked 
laptop and desktop PCs, while Table 1 summarizes all RUBRIC experiments discussed here.  Built upon the original 
Read Until sample code provided by Loose33, RUBRIC integrates ONT’s Nanonet basecaller (v2.0.0, included with 
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the RUBRIC code as noted below) and replaces DTW-based target pattern-matching with sequence-based 
alignment using LAST (rev 759)38.  For each sequencing experiment, initial MinKNOW calibration and multiplex 
scans were performed, MinKNOW sequencing was initiated, and RUBRIC scripts were then started on the desktop 
PC.  Depicted in Figure 1, the general RUBRIC control flow consisted of receiving batches of read events from the 
Read Until Event Sampler, formatting those events for basecalling by Nanonet, aligning the results against a 
desired target reference sequence with LAST, and parsing its output to make skip/sequence determinations which 
were then communicated to MinKNOW via the Read Until API.  LAST arguments used in the RUBRIC selection 
process are shown in Table 1.  For all experiments, the Event Sampler was set to ignore the first 100 (typically 
lower fidelity39) events of each processed read and then transmit an “evaluation window” comprising the next 
300 events (600 for run G, see Table 1) as the input to the RUBRIC selection process.  During all experiments, the 
RUBRIC scripts logged relevant Event Sampler read information for method improvement and downstream 
reconciliation with offline Albacore basecall and BWA alignment results. 

Table 1: Summary of RUBRIC experiments and parametric variations for preliminary lambda DNA experiments A1-B1, mainline EagI-digested 
Lambda DNA experiments B2-E2, and example use case experiments F and G in which Cas9-cut rDNA was selected from E. coli gDNA and E. 
coli gDNA was selected from human gDNA, respectively.   

 

1 Lower and upper threshold filter bounds based on mean (M) and standard deviation (S) of the pore current trace. 
2 Fresh digests and library preparations were performed on the day of the sequencing run, while storage time (days) for previously 

prepared digests and frozen libraries (see Supplementary Section S-5) are indicated. 
3 Unless otherwise noted, adjustments in the Change Summary column apply to all subsequent runs. 

*   Dataset time-filtered to eliminate reads from periods of failed skipping, see Supplemental Section S-3.   

Despite processing only a short initial portion of each read (~150 bases from 300 events), successfully 
implementing RUBRIC with garden-variety PCs necessitated careful conservation of limited computing resources.  
In addition to running RUBRIC on a dedicated desktop machine, Figure 1 illustrates the additional steps that were 
taken to control the volume and optimize the relevance of reads admitted to the RUBRIC decision process.  First, 
in all experiments detailed here, RUBRIC selection was applied only to even-numbered pores, while odd pores 
were allowed to sequence normally, providing an internal control.  Second, a threshold filter was implemented by 
quickly computing the mean or standard deviation (Supplementary Section S-2) of pore current for the evaluation 
window, and on that basis, excluding from selection reads that were empirically determined to be unlikely to yield 
mappable fast5 sequence files.  Lastly, a queue was implemented to: 1) constrain the number of event traces 
passed to RUBRIC at a given time to avoid overwhelming available computing resources and 2) screen reads that 
spent too long in the queue from entering the decision process.  Queue size varied between 12 and 24 reads 
(Table 1), but in all experiments, reads spending more than 2 seconds in the queue were deemed too old for a 
timely decision to be rendered, and therefore bypassed selection.  As Figure 1 indicates, during the RUBRIC 
development and characterization process, the default for any reads not admitted to the selection process (i.e., 
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odd, out-of-threshold, timeout, and otherwise “undecided” reads) and for reads receiving an affirmative 
“sequence” decision was to sequence as usual.  Only reads receiving a “skip” decision resulting in ejection by pore 
polarity reversal (unblocking) were not sequenced by default.  

Software & Computing Architecture 
After a preliminary experimental iteration using two laptop PCs (Table 1, runs A1-A2), the final and preferred 
RUBRIC sequencing setup (Figure 1) consisted of an off-the-shelf HP Elitebook 820 G3 laptop with 4 cores (Intel® 
Core™ i7-6500U CPU @ 2.5 GHz, 16 GB RAM, Samsung MZNLN512HCJH-000H1 477GB SCSI SSD) connected by 
USB to a MinION Mk1B sequencer and by 2-foot Cat-5e Ethernet cable to a Dell Optiplex 9020 desktop with 8 
cores (Intel® Core™ i7-4790 CPU @ 3.6 GHz, 16 GB RAM, Samsung 850 2TB SCSI SSD).  Oxford MinKNOW version 
1.6.11 sequencing software was run on the laptop for all experiments other than run G (v1.11.5), while the desktop 
system provided the additional computing power needed to implement RUBRIC real-time basecalling, alignment, 
and selection functions concurrently with sequencing.  No other computing resources were used within the 
RUBRIC control loop.  RUBRIC software communicated with MinKNOW’s Event Sampler via the Read Until API (v1) 
to acquire event data and provide rejection instructions in real time.  Both computers operated in Windows 10, 
and the desktop was placed into Safe Mode during runs to prevent CPU usage by background processes and 
services.  After sequencing, all data were basecalled offline using Albacore v1.2.6 (v2.2.4 for run G) and post-run 
alignment was performed using BWA v0.7.12-r1039 (with ‘mem -x pacbio’ arguments) on Sandia’s Biota 
computing cluster.  While BWA was used for offline alignment and classification of output MinION reads, LAST 
was selected for use inside the RUBRIC control loop due to its speed and the comparative ease of integrating it 
into the real-time workflow.  Downstream data analysis and visualization were performed using custom Python 
scripts (pandas, numpy, matplotlib, seaborn), custom R scripts, and Microsoft Excel. 

Sample Preparation & Experimental Variations 
Lambda DNA Experiments.  To provide a test case for RUBRIC selection, lambda-phage DNA (cat # N3011S, New 
England Biolabs (NEB), Ipswich, MA) was digested using the EagI enzyme (NEB, cat # R3505S) to produce three 
large DNA fragments of roughly similar size (20 kb, 17 kb, and 12 kb).  Digestion was performed per NEB protocol 
in a 50 µL reaction, and the product was purified using phenol:chlororform.  The 17 kb fragment was chosen as 
the target for RUBRIC selection, while reads not matching its sequence were skipped.  For all lambda DNA 
experiments (A1-E2 in Table 1), digested samples were prepared using ONT’s 1D ligation kit (SQK-LSK108) and 
loaded into SpotON flow cells (FLO-MIN107, used for all experiments in this article) using methods described in 
the kit’s accompanying protocol.  DNA concentrations were measured using a Qubit Fluorimeter (Thermo Fisher, 
Waltham, MA).  

Table 1 summarizes the progression of experimental parameter variations through sequential RUBRIC 
experiments, with letters differentiating experiments performed on different days and numbers indicating 
successive RUBRIC runs with the same loaded sample (but different RUBRIC settings) on a given day.  Datasets 
indicated with an asterisk (*) have been time-filtered as explained in Supplementary Section S-3 to eliminate data 
from periods during which skip decisions failed to properly reject DNA.  Experiments A1, A2, and B1 are included 
primarily for comparison, reflecting the earliest parametric iterations and system configurations, and are 
therefore not representative of typical RUBRIC performance.  Accordingly, aggregate results distinguish between 
“mainline” results associated with the preferred RUBRIC system configuration (N=5, runs B2-E2), and the set of all 
lambda experiments (N=8, A1-E2).  Non-lambda DNA runs F and G, described below, are preliminary proof-of-
concept examples applying RUBRIC in use cases potentially relevant to pathogen diagnostics. 

To summarize the variations tested for lambda DNA, runs A1 and A2, performed using two equivalent, Ethernet-
coupled laptops, tested the effect of changing the settings of the LAST aligner used in the RUBRIC control loop.  
Experiment B1 used the same settings but implemented RUBRIC on ethernet-linked laptop and desktop machines, 
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while B2 revealed the benefit of operating the RUBRIC-running desktop in Safe Mode.  Experiment C used a 
previously prepared frozen library and reduced the queue size from 24 to 12.  Experiment D increased the queue 
to 16 and adjusted the mean current-based threshold with a fresh digest and library prep.  Experiment E1 
implemented a standard deviation-based threshold for a frozen library, and experiment E2 further adjusted that 
threshold.   

E. coli Ribosomal DNA Experiment.  While long-fragment lambda DNA proof of concept experiments facilitated 
early RUBRIC optimization and troubleshooting efforts, we also performed preliminary experiments to assess the 
potential of RUBRIC selection in more realistic applications, specifically with an eye toward bacterial pathogen 
diagnostics.  In experiment F, inspired by conventional bacterial ribotyping, guide RNAs were designed to target 
the 5’ end of the 16S and the 3’ end of the 23S ribosomal DNA (rDNA) loci of E. coli (Accession number: NC_000913) 
to excise the ~5kb 16S-23S region of the rDNA locus.  Single-molecule guide RNA (sgRNA) templates were 
generated by polymerase chain reaction (PCR) (16S primer 5’-M-TGGCTCAGATTGAACGCTGG-N-3’ and 23S primer 
5’-M-CGCCCAAGAGTTCATATCGA-N-3’, where M=5’-GGATCCTAATACGACTCACTATAG-3’ and N=5’-
GTTTTAGAGCTAGAA-3’) to yield a single chimeric template containing the crRNA, tracrRNA, and a T7 promoter 
sequence as described by Anders40.  sgRNAs were transcribed in vitro using the TranscriptAid T7 High Yield 
Transcription Kit (Thermo Fisher, cat # K0441) according to manufacturer’s protocol.  Guide RNAs were purified 
using MEGAclear Transcription Clean-Up Kit (Thermo Fisher/Ambion, cat # AM1908) according to manufacturer’s 
protocol and diluted to 300nM.   

For the CRISPR/Cas9 digest, a 90 µL reaction was prepared by mixing 9 µL of 10X Cas9 Nuclease Reaction Buffer 
(NEB), 30 nM gRNA1 (targeting 16S region), 30 nM gRNA2 (targeting 23S region) and 30 nM SpyCas9 Nuclease 
(NEB, cat#M0386S).  After a 15 min incubation to form the ribonucleoprotein complex, 10 µg of bacterial genomic 
DNA was added and the reaction incubated at 37 °C for 4 hours.  1 µL of proteinase K (Thermo Fisher, AM2548) 
was added and the reaction incubated at 65 °C for 15 minutes. DNA was purified using Agencourt AMPure XP 
beads (cat #A63881, Beckman-Coulter, Brea, CA) according to manufacturer’s protocol.  Library preparation was 
performed per ONT protocol using the 1D2 ligation kit (SQK-LSK308), and RUBRIC targets were set to select for the 
16S-23S rDNA sequences (NCBI).     

Mixed Human/E. coli Experiment.  The second example use case, experiment G, sought to select for 1% E. coli 
genomic DNA against a background of 99% human DNA (HeLa, NEB, cat# N4006S) in a sample mixed prior to 
library preparation.   Escherichia coli K12 MG1655 (ATCC, Manassas, VA) culture was grown overnight in LB media 
at 37 °C with shaking at 250 rpm.  1 mL aliquots were spun down to make the bacterial pellet, and cells were lysed 
using Qiagen lysis buffer (Qiagen, Redwood City, CA) with added Proteinase K and RNase A (Thermo Fisher).  The 
lysate mixture was incubated for 15-30 min at 50 °C.  Pure genomic DNA was extracted using the 
phenol:chloroform extraction method.  Briefly, one volume of phenol:chloroform:isoamyl alcohol (25:24:1) 
(Sigma-Aldrich, St. Louis, MO) was added to the lysate mixture and the samples were centrifuged at room 
temperature for 10 minutes at 16,000 × g.  The upper aqueous phase was transferred to a fresh tube and the DNA 
was precipitated by the addition of 0.1 volumes 3 M sodium acetate (pH 5.0) and 2.5 volumes of 100% ethanol.  
The samples were stored at -20°C overnight to precipitate the DNA.  The DNA was pelleted at 4 °C for 15-30 
minutes at 16,000 × g and the DNA pellets were washed twice with 500 µL of 70% ethanol.  The DNA pellets were 
dried at room temperature for 5-10 minutes and resuspended in nuclease free water, and library preparation was 
accomplished using a RAD004 rapid kit per ONT protocol.  During RUBRIC operation, reads were LAST-aligned in 
real-time against the entire 4.6 Mb E. coli K12 genome (NCBI) as the selection target.  As noted in Table 1, for 
experiment G the evaluation window was increased from 300 to 600 events to enable greater discrimination 
between bacterial and human sequence, and LAST stringency was reduced to capture as many rare target reads 
as possible. 
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Figure 2: Sankey chart depicting read and fast5 sequence file data flow analysis for Experiment B2.  Because the target lambda DNA 
fragment was a subset of the overall lambda (background) sequence, no reads mapped exclusively to the target, and therefore all correctly 
mapped target reads appear in the “both” category at the 3-pronged terminal ends of each chart branch.  Undecided read counts shown 
here include both reads that timed-out of the decision process (> 2 seconds in the queue) and those that did not otherwise receive a decision.   

Results 
Data Flow Analysis & Lambda DNA Results 
Figure 2 illustrates the detailed data flow analysis approach used to evaluate even pore RUBRIC selective 
sequencing performance in comparison to the internal control provided by non-selecting odd channels for 
representative lambda DNA experiment B2.  Equivalent Sankey diagrams for all other experiments (and filtered 
datasets) are provided in Supplementary Figure S9 with results summarized in Supplementary Figure S1.  Table 2 
compares performance metrics for the runs.   

Figure 2 underscores the importance of such detailed analysis, as simply comparing target- and background-
mapping fast5 ratios for odd (10,881:20,761) and even pores (14,312:23,865) can be misleading.  Despite an 
apparent 32% increase in RUBRIC target reads, only 68% of those reads—less than the count of odd target reads—
resulted from sequence decisions, while 17% were actively skipped or diverted from the decision process by the 
threshold filter.  The remaining 15% never received a decision, most because they were not reported to RUBRIC 
by the Event Sampler.  We now discuss the read fractions represented in Figure 2, referencing individual results 
of experiment B2 (Figures 2-3 and Figure 4 (a)) and aggregate results of the other lambda DNA experiments (Table 
2, Supplementary Figures  S1-S3, S7, and S9-S10). 

Sampled Reads.  The character of reads communicated to RUBRIC by the Read Until Event Sampler is best 
represented by odd pore (control) reads, which exhibited average fragment lengths of 8007 ± 5882 nucleotides 
(nt) and Albacore quality scores (sequencing_summary.txt-derived “mean_qscore_template”) of 9.52 ± 2.00 for 
n=214,445 fast5s from N=8 lambda experiments (Supplementary Figure S2).  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/460014doi: bioRxiv preprint 

https://doi.org/10.1101/460014
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

Unsampled Reads.  A small percentage (0.62% ± 0.42%, N=8 runs) of reads had fast5 files but lacked Event 
Sampler entries in the RUBRIC log and were therefore unavailable for selection.  These “unsampled” reads typically 
had quality scores (9.13 ± 2.26, n=34,455 fast5s, N=8 runs) and proportions of target, non-target, and unmappable 
reads comparable to the sampled control population (Figure 2, Supplementary Figures S2 and S9).  The short 
length (583 ± 206 nt, n=34,455 fast5s, N=8 runs) of most unsampled reads (Supplementary Figure S10), suggests 
that they may result from DNA transiting the pore within the sampling period of the Event Sampler. 

Table 2:  Performance metrics for RUBRIC selective sequencing experiments with shading indicating low (dark) and high (light) values within 
each row.  

 

1 Normalized with respect to even and odd total active pore times indicated in Supplementary Table S1. 
2 Cumulative sequence decision target read length / cumulative odd target read length. 
3 Sequence decision target read count / odd target read count. 
4 Sequence decision target / non-target read count divided by odd target / non-target read count. 
5 Even sampled read count / odd sampled read count. 
6 % of in-threshold reads receiving a skip or sequence decision. 
7 % of undecided reads not receiving a decision due to the RUBRIC 2-second queue timeout period. 
8 Binary classifier-based performance metrics are detailed in Supplementary Section S-1. 

*   Dataset time-filtered to eliminate reads from periods of failed skipping, see Supplemental Section S-3.   

Non-Sequence Reads.  As in Figure 2, a consistently large proportion of control (odd) sampled reads (89.5% ± 
1.89%, N=8 lambda runs) never yielded fast5 sequence files.  Pore activity timelines (data not shown) reveal that 
these “non-sequence” reads typically appear as serial, discretely reported events occurring between identifiable 
sequence-producing reads.  The hypothesis that these non-sequence reads primarily indicate sub-sampling of 
open pore time (versus degraded DNA, pore fouling, etc.) is reinforced by our observation (data not shown) that 
setting RUBRIC to unblock all out-of-threshold (predominantly non-sequence) reads produced no apparent 
change in even pore throughput.  A related internal sampling artifact may cause the observed subdivision of long 
DNA reads2. 

Uncalled Reads.  The total number of fast5s that could not be basecalled offline by Albacore was essentially 
negligible, ranging from 0.0384% (A2) to 0.621% (D) with an average of 0.280% ± 0.246% (N=8 lambda runs) and 
zero (0) sequence decision fast5s failing to basecall. 
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Mapped & Unmapped Reads.  Supplementary Figure S2 shows that odd unmapped reads exhibited significantly 
lower average quality scores (6.07 ± 1.26, n=35,083 fast5s, N=8 lambda runs) than reads mapping to target or 
background references (10.21 ± 1.23, n=179,057 fast5s, N=8 lambda runs) and were shorter on average (4082 ± 
5556 nt vs. 8789 ± 5625 nt) than corresponding mappable reads. 

Out-of-Threshold (OOT) Reads.  Threshold filter settings (Table 1) were determined empirically from prior run 
data, requiring updates after any significant sample composition, flowcell batch, library prep, or ONT software 
changes.  Generally, out-of-threshold fast5 quality score averages were about 15% lower than corresponding odd 
scores (Supplementary Figure S2) and OOT reads about 30% shorter on average.  While retrospectively-set 
thresholds for most mainline experiments successfully excluded 90-97% of ultimately unmappable (especially 
non-sequence) reads from the decision process, typically diverting >80% of even sampled reads, experiment C 
showed a lower out-of-threshold proportion (53.7%), rejecting only 56.6% of unmappable reads (Supplementary 
Figure S9 (f)).  This poor threshold selectivity likely accounted for the unusually high in-threshold read/min rate of 
experiment C (43% higher than B2, Table 2), which in combination with its small queue, may explain its high 
proportion of undecided reads.  Based on C, threshold adjustments in experiment D (Supplementary Figure S9 (g)) 
produced much improved threshold specificity, precision, and accuracy at the expense of reduced sensitivity 
(Table 2).  Though not optimized when introduced in experiments E1 and E2 (Table 2, Supplementary Figure S9 
(h-j)), thresholds based on pore current standard deviation proved superior to those based on mean current 
because the former helped to mitigate errors associated with current drift and other offsets (Supplementary 
Section S-2). 

Undecided & Timeout Reads.  The presence of in-threshold reads not receiving skip/sequence decisions typically 
reflected a computational resource limitation affecting the MinKNOW or RUBRIC PCs.  Table 2 indicates the 
fraction of undecided reads exceeding the 2 second RUBRIC queue timeout period.  Excepting outlier experiment 
C, about 99% of in-threshold reads for mainline lambda experiments received decisions (Table 2).  The high in-
threshold read rate and poor decision efficiency of experiment C may indicate that as configured the RUBRIC 
system could effectively process 400-500 decisions/min, beyond which computing resource limitations became 
significant.  Threshold filtering caused undecided reads to differ from control reads mainly in their lower, but 
variable proportion of non-sequence reads.  Because undecided and timeout reads often appeared in localized 
clusters on the read timeline (see especially Supplementary Figure S5 (d)), this variability may reflect periods of 
unusually high read throughput that also affected whether fast5s were created by the MinKNOW PC. 

 

Figure 3:  Lambda DNA sequence coverage plot for experiment B2 showing the effect of RUBRIC selection applied to even pore reads in 
contrast to unselected odd pore reads.  Even and odd coverage numbers are normalized by total even and odd active pore times, respectively.       
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Sequence Decision Reads.  Table 2 details the performance of the RUBRIC decision process in rendering 
sequence decisions for target mapping reads and skip decisions for non-target reads.  For experiment B2, Figure 
3 indicates the coverage of lambda (target and non-target) sequence with and without selection, while Figure 4 
(a) illustrates selection as a function of DNA fragment length.  On average for mainline lambda experiments, the 
decision process correctly excluded 97.7% ± 1.9% (N=5) of non-target reads while capturing 91.4% ± 5.1% (N=5 
runs) of available targets, proportions that reflect both basecalling accuracy and the stringency of LAST aligner 
settings used within the RUBRIC control loop.  On average, 98.5% ± 0.6% (N=5) of sequence decision fast5s 
mapped to target, and even including the typically small proportion of unmapped fast5s (1.5% ± 0.6%), sequence 
decision quality scores (Supplementary Figures S2-S3) were better on average (10.46 ± 1.36, n=42,191 fast5s) than 
the control sampled read population (9.51 ± 2.17, n=1,690,891 fast5s).  These results suggest that for diagnostic 
applications, data analysis should focus on sequence decision fast5s and consider other categories (i.e., 
undecided, unsampled, out-of-threshold, and skipped reads, in that order) only if coverage is lacking. 

Skip Decision Reads.  While skipping ostensibly ejects DNA from the nanopore, on average 46.7% ± 6.1% of 
mainline experiment skip decisions nevertheless produced fast5s (N=4, excluding outlier C, where the ill-set 
threshold admitted many non-sequence reads).  Skipped-read fast5s occur for two primary reasons.  First, when 
a skip instruction is received, MinKNOW assesses whatever read data has already been acquired and writes it to 
fast5 if it represents viable sequence (personal communication with ONT staff, 1-9-2018).  When skipping is 
operating correctly with decision times substantially shorter than DNA pore-transit times, this data handling 
convention produces characteristic truncation of skipped reads visible in the even pore results of Figure 4 and 
Supplementary Figure S10 as a prominent mound of skipped reads typically centered in the 1500-2500 nt size 
range.  Figure 3 also shows these skip-truncated reads as the higher-coverage “rabbit ear” features (also observed 
by Loose33) at the ends of the non-target lambda fragments.  The absence of skip-truncation is an important 
indication that Read Until DNA rejection is not operating correctly, as discussed in Supplementary Section S-3.  
Skip decision fast5s may also result when reads transit the pore before a RUBRIC decision can be rendered, 
whether due to relatively short DNA fragments or long decision times (see Supplementary Section S-6).  Unlike 
skip-truncated reads, which appear only in the even pore results of Figure 4 and the like, reads short enough to 
escape the decision process in this manner are visible in both odd and even distributions, typically below 1000 nt.  
In combination, fugitive reads and skip-truncation yielded short average skipped-read lengths of 1373 nt ± 606 nt 
(n=424,857 fast5s, N=8 lambda runs), while average quality scores were 8.76 ± 2.50 (Supplementary Figure S2). 

Overall RUBRIC Performance.  Table 2 reports absolute target enrichment on both a sequence- and read-basis.  
Overall, absolute enrichment results were not particularly encouraging, as only mixed sample run G realized both 
read and sequence enrichment (+15% sequence based on 66 reads for filtered dataset G*, Supplementary Figure 
S9 (n)), while lambda run B2 showed a nominal gain in read count (2.1%) but slight depletion (1.3%) of target 
sequence.  Other runs saw net reductions in target sequence as great as 24.4% for lambda run E1 and 57.8% for 
filtered rDNA dataset F* (Supplementary Figure S9 (h) and (l), respectively).   

To help understand these results, Supplementary Section S-7 derives a model predicting the likely best-case 
performance of RUBRIC-style real-time selection for different libraries and computing configurations.  In short, 
because selection only rejects non-target reads, absolute target enrichment is only realized by increasing the total 
throughput of (even) RUBRIC reads vs. (odd) control reads.  Equation 6 in the supplement expresses the maximum 
absolute enrichment (and throughput enhancement) ratio 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁0

=
𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑓𝑓𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑓𝑓𝑛𝑛𝑠𝑠𝑡𝑡𝑛𝑛𝑠𝑠
𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑓𝑓𝑏𝑏𝑏𝑏𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑓𝑓𝑛𝑛𝑠𝑠𝑡𝑡𝑛𝑛𝑠𝑠

 

as a function of read fractions (f) for target (t), background/non-target (bg), and non-sequence (ns) reads and the 
characteristic times required to sequence target reads (tt_seq) and background reads without selection (tbg_seq), skip 
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background reads with selection (tskip), and pass non-sequence reads independent of selection (tns).  As the formula 
indicates, absolute enrichment is purely a consequence of the time saved by skipping versus sequencing 
background reads, scaled by their relative prevalence.  Furthermore, low pore occupancy (large fnstns), as in the 
experiments described here (Table 2 and Supplementary Table S1), significantly diminishes the benefits of 
selection.  Discrepancies between the empirically observed throughput and absolute enrichment ratios in Table 2 
mainly reflect inefficiencies and imperfections in the RUBRIC selection process. 

 

Figure 4: Read length histograms for RUBRIC selection experiments illustrating the distribution of different read types (target, non-target, 
unmapped) and their fate as a function of RUBRIC selection applied to even numbered pores.  Here, reads excluded by the selection process 
(i.e. not receiving an affirmative sequence decision) include skipped, out-of-threshold, and undecided reads, while reads not mapped to 
target include those mapped to background/non-target sequence as well as unmappable reads.  (a) Lambda DNA experiment B2 showing 
selection for the middle (nominally ~17kb) fragment.  (b)  Example use case dataset F* showing selection for Cas9-excised rDNA from E. coli 
gDNA.  (c, d) Example use case dataset G* showing selection of 1% E. coli gDNA from a background of 99% human gDNA.  Supplementary 
Figure S10 provides more detailed distributions of all read types and categories.   

Beyond absolute enrichment, relative enrichment (Table 2) also provides a practical indication of how depleting 
non-target reads improves the final sequence pool.  Computed as the ratio of sequence decision target reads per 
non-target read divided by the ratio of odd target reads per non-target read, relative enrichment ranges from 
~130x to ~330x for mainline lambda experiments.  This metric underscores the idea that sequence decisions yield 
such highly purified target-mapping sequence that in most use cases, significant time savings can be realized by 
analyzing only these reads. 

Example Use Cases 
Figure 4 (b) and Supplementary Figures S9 (l) and S10 (l) show the result of RUBRIC selection applied to Cas9-cut 
E. coli gDNA (dataset F*).  The target-mapping peak associated with cut rDNA fragments is particularly prominent 
because 1) E. coli has seven copies of the rDNA locus and 2) the AMPure XP beads used in the 1D2 library prep 
provide some positive size selection in the relevant 4-5kb range.  While RUBRIC rDNA-mapping reads were 
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reduced 54% versus control, only 3.2% of mappable sequence decision reads mapped to background gDNA versus 
89.3% in the control case, yielding relative enrichment of ~290x.  Table 2 reveals suboptimal threshold settings 
for this run, which realized high specificity but low sensitivity with 38% of the relatively rare target reads falling 
out-of-threshold.  Despite overly aggressive threshold filtering, skip/sequence decisions performed well and had 
the lowest average decision time (0.23 sec) of any experiment here (Supplementary Figure S7 and Table S1), likely 
due to the shorter rDNA target reference and low read rates (Table 2) attributable to the relatively dilute library 
(Table 1). 

Figure 4 (c-d) and Supplementary Figures S9 (n) and S10 (o-p) show the result of E. coli selection in the mixed 
human/E. coli experiment (dataset G*).  Despite LAST-aligning the RUBRIC evaluation window to the entire 4.6 
Mb E. coli genome for selection, decision times still averaged only 0.91 sec (Supplementary Figure S7 and Table 
S1).  Significantly for this application, aligner stringency was reduced to maximize the number of rare bacterial 
reads that would be captured, while the evaluation window was doubled to provide additional discrimination 
between human and bacterial sequence.  Consequently, while more sequence decision reads mapped to target 
(66 vs. 63 control), 42.1% of sequence decision fast5s did not map to target.  Moreover, of 84 total even target 
reads, two were lost to the threshold filter and 17 to skip decisions, as indicated by the comparatively low decision 
sensitivity, precision, and accuracy for this run.  Specificity, however, was comparable to the best seen here, 
reflecting the comparatively large number of correctly skipped non-target reads.  Threshold settings for run G also 
performed better overall than for any other experiment.  Beyond providing nominal absolute target enrichment, 
the run achieved ~290x improvement in sequence decision target:non-target ratio due to background depletion 
of the original 1:99 library.  

Discussion 
In this article, we have introduced RUBRIC, a new adaptation of real-time selective sequencing for the Oxford 
MinION.  Unlike the earlier pattern-matching approach33, RUBRIC operates in sequence-space, making it possible 
to leverage the speed, flexibility, and scalability of bioinformatic tools like LAST for selection.  Significantly, RUBRIC 
pre-screening features seek to admit only informative and timely reads to the decision process, reducing 
computational requirements and enabling real-time basecalling, alignment, and selection of MinION reads 
without specialized, high-performance computing platforms.  While real-time selective sequencing generally 
provides a means to enrich rare target sequence vs. background without target-specific reagents, primers, or baits, 
working in sequence-space simplifies the process of choosing, optimizing, and modifying RUBRIC selection targets, 
all of which can be done on-the-fly based on conventional nucleic acid reference sequences.     

We have characterized RUBRIC operation through a series of lambda DNA digest experiments, obtaining limited 
absolute enrichment of target reads (<2%) but achieving very effective background depletion yielding as much as 
330x relative enrichment versus control.  The high degree of customization offered by RUBRIC (choice of 
basecaller/aligner, ratio of RUBRIC to control pores, threshold filter settings, queue size, queue timeout, 
evaluation window size/offset, aligner settings, etc.) makes it readily adaptable to different sample types, libraries, 
and computing configurations.  Preliminary demonstration experiments have applied RUBRIC to select for 
CRISPR/Cas9-excised rDNA against a background of E. coli gDNA and to select for 1% E. coli gDNA against a 
background of 99% human DNA, achieving absolute target sequence enrichment of 15% in the latter case.  To 
better understand these seemingly modest outcomes, we have proposed a model estimating the likely upper 
bounds on real-time selection performance and have found our results to be largely consistent with its predictions.  
This analysis suggests that the limited target enrichment we have seen to date is less a consequence of the speed 
or fidelity of our method than the relatively high rate of MinION pore vacancy, which critically limits the gains that 
can be realized by real-time selection.           
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Future work will focus on optimizing RUBRIC performance and applying the method to clinically and diagnostically 
relevant sample types (e.g., host/pathogen mixtures), where selection can provide the greatest benefits.  In such 
applications, accumulating RUBRIC sequence decision reads could itself provide a rapid, presumptive diagnostic 
result, given sufficient specificity.  These reads could also be used to prioritize which fast5s should receive 
concurrent full strand basecalling and analysis during sequencing, potentially shortening time to identification.  
With these goals in mind, we will seek to improve our library preparations to increase pore occupancy and DNA 
fragment length, both of which should substantially improve RUBRIC performance based on our model 
predictions.  To avoid the pitfalls of retrospectively setting the RUBRIC threshold filter, we plan to automate this 
process, perhaps using real-time RUBRIC decision and mapping results to iteratively adjust the filter throughout 
each run.  We also expect to migrate RUBRIC to the latest release of the Read Until developer API (v2), adapt the 
method for raw data or GPU basecalling (e.g., with ONT’s Scrappie or Guppy callers, respectively), and explore its 
application to MinION direct RNA sequencing.    
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