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Abstract 

The tumor milieu consists of numerous cell types with each cell existing in a different 

nutritional environment.  However, a characterization of intratumoral metabolic 

heterogeneity at the single-cell level in human cancer is not established. Here, we develop a 

computational pipeline to analyze metabolic gene expression programs of single cells within 

human tumors.  In two representative cancer types, melanoma and head and neck, we apply 

this algorithm to define the single-cell metabolic landscape of human tumors.  We find that 

malignant cells in general have higher metabolic activity and higher metabolic variation than 

previously observed from studies of bulk tumor comparisons. Indeed, most of the observed 

metabolic variation of single tumor and normal cells were found to be inconsistent with 

comparisons with bulk tumor samples. Variation in the expression of mitochondrial programs 

is the major contributor to intratumoral metabolic heterogeneity.  Surprisingly, the expression 

of both glycolytic and mitochondrial programs strongly correlates with hypoxia in almost all 

cell types. Immune and stromal cells could also be distinguished by their metabolic features. 

Taken together this analysis establishes a computational framework for characterizing 

metabolism using single cell expression data and defines principles of intratumoral metabolic 

heterogeneity. 
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Introduction 

Metabolic reprogramming in cancer cells supports specific demands for energy, biomass, redox 

maintenance, and cellular communication1.  Cellular metabolism is shaped by both genetic and 

environmental factors including the somatic driver mutations selected during tumor evolution, 

the tissue of origin, and the local nutrient environment1-5. Given the importance of 

environmental factors, tumor metabolism exhibits grossly different properties in laboratory cell 

culture settings than in vivo.  Also, differences in the metabolism of humans and model 

organisms are also substantial.  Nevertheless, most conclusions surrounding tumor metabolism 

have been obtained using cell culture models and model organisms and the number of direct 

observations of cellular metabolism are few.  Indeed, nearly all observations of human tumor 

metabolism in vivo have been conducted using measurements obtained from bulk tumors. 

These findings have advanced our understanding of tumor metabolism tremendously.  

Nevertheless, they do result from a population average over the genetic and environmental 

variables of each cell. 

There are numerous sources of intratumoral heterogeneity.  Tumor cells exist within a 

microenvironment consisting of stromal cells such as cancer-associated fibroblasts (CAFs), 

immune cells, endothelial cells and many others.  Each of these cell types takes an active role 

in tumor cell proliferation.  For example, CAFs may release cytokines and growth factors that 

are received by and function to signal in cancer cells6.  The immune compartment of an 

established malignant tumor is collectively immunosuppressive7.  Endothelial cells provide 

vasculature to provide nutritional support in challenging environments8.  Each of the cells has 

unique metabolic demands that enable specific function.  In addition to the unique metabolic 

demands of each cell type, each cancer experiences a distinct nutrient environment, distinct 

engagement of extracellular signals, and may derive from a different cell of origin thus possibly 
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having distinct mutational patterns9.  Therefore at the cellular level, each cell within the tumor 

is likely to have a different metabolic status10-12.  Nevertheless, direct observations of cellular 

metabolism in vivo at the level of single cells is difficult.  Most conclusions about the nature 

of the tumor microenvironment have relied on in vitro models such as co-culture systems13-15 

or measurements of single variables such as immunohistochemical staining for the expression 

of a metabolic enzyme16.       

 Metabolism and its associated phenotypic biology are governed by the concentrations 

of metabolites and the rates or fluxes by which one metabolite is converted to another.  A 

comprehensive understanding of metabolism requires knowledge of both concentrations and 

fluxes.  These measurements are difficult to obtain in humans and haves so far been exclusively 

conducted in bulk tumors.  Global gene expression however is readily measurable and the 

advent of single cell sequencing technologies enables expression profiling of individual cells 

within entire tissues or tumors17-22.  It is also an indirect means of assessing metabolism.  

Nevertheless, gene expression has provided many insights into metabolic pathway activity and 

in many documented instances the gene expression is predictive of metabolic flux23,24.  Thus 

single cell sequencing could provide some insight into metabolism at the single cell level in 

human tumors.   

 In this study, we analyze metabolic gene expression profiles of more than 9,000 single 

cells from two representative human tumor types including melanoma19 and squamous cell 

carcinoma of the head and neck (HNSCC)21. We find that activities of metabolic pathways in 

malignant cells are in general more active and plastic than those in non-malignant cells, and 

the metabolic features of single cancer cells are poorly captured by measurements done with 

bulk tumors. Variation in mitochondrial activity is the major contributor to the metabolic 

heterogeneities among both malignant cells and non-malignant cells, and, strikingly, the 
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activities of glycolysis and oxidative phosphorylation both correlate with hypoxia at the single-

cell level. We also identify metabolic features of different immune and stromal cell subtypes 

and find patterns distinct from behaviors of these cells in ex vivo culture conditions. These 

findings begin to unravel principles of how malignant transformation affects the metabolic 

phenotypes of tumor and non-tumor cells within the tumor microenvironment. 

Results 

Landscape of metabolic gene expression at the single-cell level 

We first developed a computational pipeline for analyzing metabolic gene expression profiles 

at the single-cell level (Fig. 1a, Methods). Briefly, we applied missing data imputation and 

data normalization to gene expression profiles to account for the influence of technical noise. 

We then characterized the global structure of single cell metabolic programs using clustering 

analysis, identified cell type-specific metabolic programs using quantitative metrics we 

developed, and designed algorithms for quantitation of metabolic heterogeneity of malignant 

and non-malignant cells. We applied this pipeline to two scRNA-seq datasets for human 

melanoma19 and squamous cell carcinoma of the head and neck (HNSCC)21, which include 

an expansive set of gene expression of 4,054 cells and 5,502 cells respectively (Methods). 

These datasets were selected because they covered the largest numbers of cells and included 

detailed annotation of the cell types, while many of the currently available scRNA-seq 

datasets for human cancer are limited by cell number and sequencing depth. Each dataset 

covers both malignant and non-malignant cells isolated from patient-derived human tumors 

with different genotypic and phenotypic backgrounds (Fig. 1b, 1c), thus enabling an in-depth 

investigation of the expression of metabolic genes and pathways in each cell type. 
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 We first analyzed the global structure of metabolic gene expression profiles in these 

two datasets using t-distributed stochastic neighbor embedding (t-SNE)25 based on expression 

levels of 1566 metabolic genes (Methods). Imputation of zero values was performed before 

applying t-SNE to correct for the influence of the high frequency of dropout events (i.e. 

failure in detecting expressed genes due to low sequencing depth) in certain cell types 

(Methods). The imputation effectively reduced the dropout rates in all cell types 

(Supplementary Fig. 1a-d) without changing the pattern of the metabolic gene expression 

(Supplementary Fig. 1e, f). Clustering analysis after dimensionality reduction with t-SNE 

showed that metabolic gene expression profiles of the malignant cells formed distinct clusters 

that corresponded to their tumors of origin (i.e. from which tumor the cell was derived) for 

both melanoma (Fig. 1d) and HNSCC (Fig. 1e), suggesting that metabolic gene expression in 

malignant cells is largely set by patient-specific factors. This was further corroborated by the 

higher correlation coefficients of metabolic gene expression profiles between malignant cells 

from tumors within the same patient (average Spearman’s correlation = 0.91) than those 

between cells from tumors from different patients (average Spearman’s correlation = 0.79, 

Fig. 1f, g). Cells from patients of the same genotypic background also show higher similarity 

than those from different genotypic backgrounds (average Spearman’s correlation = 0.87 

compared to 0.79 for melanoma, 0.87 compared to 0.77 for HNSCC, Fig. 1f, g). In contrast, 

metabolic gene expression profiles of non-malignant cells showed no distinguishable 

differences between patients (average difference between intratumoral and intertumoral 

Spearman’s correlation = 0.01 for non-malignant cells in melanoma and 0.007 for those in 

HNSCC, Fig. 1h, i), indicating that metabolism of these normal cells in the tumor 

microenvironment exhibits no observable interpatient heterogeneity. Similar trends were also 

observed for the distributions of correlation coefficients of metabolic gene expression 

between cells from the same patient or different patients, in which only malignant cells 
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showed significantly stronger intratumoral correlation than intertumoral correlation 

(Supplementary Fig. 2). Taken together, these results suggest that malignant cells in general 

exhibit higher metabolic plasticity which likely leads to patient-specific metabolic 

reprogramming of cancer cells but not the supporting cells in the tumor microenvironment.  

Cell type-specific metabolic reprogramming in the tumor microenvironment 

We next sought to identify the overall features of metabolic pathway variation among the 

different cell types, especially between malignant and non-malignant cells. To quantify the 

activity of a metabolic pathway, we developed a pathway activity score that we defined as the 

relative gene expression value averaged over all genes in this pathway and all cells of this 

type (Fig. 2a, b, Methods). To enable comparison between different cell types, we normalized 

the gene expression values using a deconvolution method26 which resulted in the highest 

similarity of normalized expression value distributions between cell types among four 

commonly used data normalization methods (Supplementary Fig. S3, Methods). Among the 

80 metabolic pathways with at least 5 genes included, over 70 were more highly expressed 

(pathway activity score >1 and permutation test p-value <0.01) in at least one cell type 

compared to other cell types, indicating that the activities of most metabolic pathways are 

determined by cell type. To further characterize the cell type specific metabolic features, we 

grouped the metabolic pathways into 11 categories based on KEGG classifications 

(Supplementary Fig. 4a, b), and assessed enrichment of each category in pathways up-

regulated in each cell type using a one-sided Fisher’s exact test. These categories reflected 

different aspects of cellular metabolism such as carbohydrate metabolism, amino acid 

metabolism and nucleotide metabolism. To our surprise, most categories (10 out of 11 for 

melanoma and 8 out of 11 for HNSCC) were not enriched in pathways up-regulated in a 

specific cell type (i.e. one-sided Fisher’s exact p-value > 0.05 for all cell types, 
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Supplementary Fig. 4c, d), indicating that each cell type undergoes global up- or down-

regulation of metabolic pathways in all categories. Malignant cells had the largest number of 

metabolic pathways significantly up-regulated in both melanoma (37 pathways up-regulated 

in malignant cells compared to 23 in cancer-associated fibroblasts, 16 in macrophages and 

less than 10 in all other cell types, Fig. 2a) and HNSCC (51 pathways up-regulated in 

malignant cells compared to 27 in fibroblasts and less than 10 in all other cell types, Fig. 2b), 

and the up-regulated pathways included many different parts of cellular metabolism such as 

central carbon metabolism, one carbon metabolism, methionine metabolism, steroid 

biosynthesis and beta-alanine metabolism. Thus, compared to non-malignant cells, malignant 

cells undergo a global up-regulation of metabolic activity. Interestingly, comparison of 

pathway activities between melanoma and HNSCC in the cell types shared by the two 

datasets (Supplementary Fig. 4e) revealed high concordance between the two tumor types in 

the metabolic features of endothelial cells (Pearson’s R=0.49, p-value=1.9e-5), macrophages 

(Pearson’s R=0.75, p-value=9.2e-14) and fibroblasts (Pearson’s R=0.45, p-value=9.3e-5), 

while metabolic pathway activities of B cells, T cells and malignant cells correlated poorly 

between the two tumor types (Pearson’s R<0.1, p-value>0.05 for all three cell types), 

suggesting that metabolism of these cell types is more sensitive to environmental factors and 

the effector status of these immune cells. 

 To evaluate whether patterns of pathway activities in single malignant cells were 

consistent with the more commonly used transcriptomic profiling of bulk tissue samples, we 

computed pathway activity scores based on RNA-seq data for bulk tumor samples and 

matched normal tissue samples from The Cancer Genome Atlas (TCGA)27 and compared the 

results to our analysis in single malignant cells. Since there are no matched normal samples 

for melanoma in TCGA, here we only considered the HNSCC dataset which contains 43 

paired tumor and normal samples28. We found 7 pathways up-regulated and 34 pathways 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/527952doi: bioRxiv preprint 

https://doi.org/10.1101/527952
http://creativecommons.org/licenses/by-nc-nd/4.0/


down-regulated in tumor samples compared to normal samples (Permutation test p-

value<0.01, Fig 2c). Among these pathways, only 13 showed a consistent pattern of activity 

in single malignant cells and bulk tumors (Fig. 2c). Notably, 23 out of the 51 pathways up-

regulated in the single malignant cells were identified as down-regulated in tumors based on 

the bulk RNA-seq, and the pathway activities correlated poorly (Pearson’s R=-0.2, p-

value=0.04) between bulk tumors and single malignant cells (Fig. 2d). The discrepancy 

between single-cell and bulk RNA-seq in identifying tumor-associated metabolic pathway 

activities is likely due to the intrinsic heterogeneity in cellular composition of the tumors 

(Fig. 2e).  Bulk RNA-seq measures the average expression levels over a mixture of different 

cell types thus masking the difference between cell types in the same sample. This was 

further supported by an analysis of the distributions of pathway activities in single cells and 

bulk samples showing higher variation of pathway activities between different types of single 

cells than between bulk tumors and normal tissues (average standard deviation of pathway 

activities = 0.39 for single cells compared to 0.14 for bulk samples, Fig. 2f). Taken together, 

these results reveal a global enhancement of metabolic activity in single malignant cells 

which can only be detected with gene expression profiling at the single cell level.   

Intratumoral metabolic heterogeneity of malignant cells 

In addition to the common routes of metabolic reprogramming in malignant cells, metabolism 

is also affected by a location-specific, fluctuating nutrient supply and interactions with other 

neighboring cells in space. It is thus intriguing to investigate what parts of cellular 

metabolism are impacted by these environmental factors.  To identify major contributors to 

intratumoral metabolic heterogeneity of malignant cells (i.e. variation of metabolism among 

malignant cells from the same tumor), we performed principal component analysis (PCA) 

and gene set enrichment analysis (GSEA)29 to identify metabolic pathways enriched in genes 
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explaining most of the variance among malignant cells in each tumor (Fig. 3a, Supplementary 

Fig. 5). We found that for both melanoma and HNSCC, oxidative phosphorylation 

(OXPHOS) was the top-scoring pathway in most tumors (Fig. 3b, c). Similarly, tricarboxylic 

acid cycle (TCA cycle) gene expression also showed a substantial contribution to metabolic 

heterogeneity in several tumors, indicating that variation in mitochondrial activity is the 

major contributor to intratumoral metabolic heterogeneity of malignant cells. 

 We next sought to investigate the coupling between mitochondrial activity and 

environmental factors such as oxygen and other nutritional supplies in single malignant cells. 

Since direct measurements of nutritional status of the individual cells are not available, we 

used the average expression level of a set of genes known to respond to hypoxia as a metric 

of oxygen supply which is an environmental factor known to have great impact on cellular 

metabolism (Methods). We used the average expression level of genes in OXPHOS as a 

surrogate of mitochondrial activity. We also considered glycolysis since it is another 

important pathway in supplying energy and material for cell survival and proliferation, and 

its relationship with OXPHOS in cancer metabolism is still a matter of interest. We found 

that activity of glycolysis and the hypoxia signature were highly correlated in both melanoma 

and HNSCC (Pearson’s R=0.72 for melanoma and 0.52 for HNSCC, Fig. 3d, e), which 

agrees with previous studies showing that hypoxia increases glycolytic activity30,31. To our 

surprise, we also found that OXPHOS significantly correlated with glycolysis (Pearson’s 

R=0.67 for melanoma and 0.53 for HNSCC, Fig. 3d, e) and the response to hypoxia 

(Pearson’s R=0.49 for melanoma and 0.27 for HNSCC, Fig. 3d, e). To exclude the possibility 

that the positive correlations between pathways were driven by a few correlated genes with 

high variation in their expression levels while most other genes were not correlated, we 

confirmed that most pairwise correlation coefficients of expression levels between individual 

genes from the pathways were also positive (Supplementary Fig. S6). These results together 
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indicate that mitochondrial OXPHOS expression is the most important contributor to 

intratumoral metabolic heterogeneity, and OXPHOS is not mutually exclusive with 

glycolysis as routes for energy production in adapting to the tumor microenvironment with 

varying oxygen supply. 

Metabolic heterogeneity of non-malignant cells 

We next explored the heterogeneity of metabolic pathway activities in non-malignant cells. 

Since metabolic gene expression profiles of non-malignant cells were clustered according to 

cell type, and there were no significant differences between different tumors for the same cell 

type (Fig. 1h, j and Supplementary Fig. 2a, b). Thus we focused on identifying the major 

contributors to metabolic heterogeneity in each non-malignant cell type. For each non-

malignant cell type, we repeated the PCA and GSEA analyses as we did for malignant cells 

and found that variations in OXPHOS also dominated the metabolic heterogeneity in all non-

malignant cell types (Fig. 4a, b). In addition to OXPHOS, TCA cycle expression also 

substantially contributed to the metabolic heterogeneity of all non-malignant cell types. 

These results demonstrate that similar to the case of malignant cells, mitochondrial activity is 

also the major contributor to metabolic heterogeneity in non-malignant cells.  

 To evaluate how mitochondrial activity in non-malignant cells relates to oxygen 

availability, we correlated activities of OXPHOS and glycolysis with the hypoxia-associated 

feature in each cell type (Fig 4c, d). Similar to the case of malignant cells, glycolysis, 

OXPHOS and the hypoxia feature were also significantly correlated in almost all cell types 

except for macrophages in the HNSCC dataset, in which OXPHOS and hypoxia showed no 

significant correlation (Pearson’s R= -0.02, p-value= 0.87). These findings, together with the 

results for malignant cells, challenge the long-standing concept that metabolic 

reprogramming of central carbon metabolism frequently takes the form of a switch between 
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glycolysis and mitochondrial respiration. At the single-cell level, it is plausible that cells 

facing more severe oxygen deprivation tend to up-regulate both glycolysis and mitochondrial 

OXPHOS, which may help cells to more effectively compete with other cells for limited 

resources. Such a positive correlation between the hypoxia signature and energy-producing 

pathways is conserved in almost all cell types included in the single-cell RNA-seq datasets. 

Metabolic features of non-malignant cell subtypes 

Non-malignant cells such as immune and stromal cells are important constituents of the 

tumor microenvironment. These cells are known to differentiate into subtypes with distinct 

roles, and this process involves metabolic reprogramming to satisfy their cell autonomous 

metabolic demands and enable interactions with other cell types10,11,32,33.  Next, we use 

scRNA-seq to characterize the metabolic features of T cell and fibroblast subpopulations 

which together constitute the largest non-malignant cell populations in the melanoma and 

HNSCC datasets. T cells were first separated into CD8+ and CD4+ subtypes based on the 

expression of CD4 and CD8A34 (Fig. 5a, Methods). The CD4+ T cells were further classified 

into regulatory T cells (Tregs) and T helper cells (Ths) based on expression levels of FOXP3 

and CD25 which are known to be specifically expressed in these specific cell types35 (Fig. 5a, 

Methods). We then performed GSEA analysis to identify metabolic pathways enriched in 

each subtype. We found that OXPHOS was the most important metabolic pathway 

distinguishing T cell subtypes: CD4+ T cells exhibited significantly higher levels of 

OXPHOS compared to CD8+ T cells in both melanoma (GSEA p-value=0.002) and HNSCC 

(GSEA p-value=0, Fig. 5b, c). Interestingly, compared to Ths, Tregs exhibited up-regulation 

of glycolysis (GSEA p-value=0 for both tumors) in addition to OXPHOS (GSEA p-value=0 

for both tumors, Fig. 5d, e). This appears to contradict with previous studies showing that 

among immune cells derived from healthy mice not bearing tumors, Ths tend to be more 
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glycolytic compared to Tregs36. On the other hand, the OXPHOS preference of CD4+ T cells 

and Tregs is consistent with previous studies37,38, highlighting enhanced mitochondrial 

oxidative metabolism as a universal metabolic feature of these T cell subtypes in different 

contexts. These results suggest that subpopulations of immune cells in the tumor 

microenvironment have metabolic features that differ from their behaviors in normal tissues. 

 We next characterized the metabolic features of subpopulations of fibroblasts which 

serve as a major component of tumor stroma and have diverse roles in both normal functions 

such as wound healing and tumor-promoting functions such as remodeling the extracellular 

matrix and interacting with tumor cells to support their growth39. According to a previous 

study21, the 1,422 fibroblasts in the HNSCC dataset formed two major subpopulations 

exhibiting gene expression corresponding to cancer-associated fibroblasts (CAFs) or 

myofibroblasts, respectively (Fig. 5f, Methods). We thus performed GSEA analysis to 

compare metabolic gene expression between the two fibroblast subtypes (Fig. 5g, 

Supplementary Table 1). We found significant up-regulation of 15 metabolic pathways 

(GSEA p-value<0.05) that distinguished CAFs from myofibroblasts. On the other hand, 

inositol phosphate metabolism was the only metabolic pathway up-regulated in 

myofibroblasts (p-value=0), indicating that CAFs are more metabolically active compared to 

myofibroblasts. Glycolysis was significantly up-regulated in CAFs (GSEA p-value=0.048), 

which is in line with a hypothesized metabolic feature of CAFs, in which CAFs exhibit 

enhanced glycolysis which produces excess lactate that can be utilized by adjacent tumor 

cells to support growth40,41. Notably, we also found several other groups of metabolic 

pathways up-regulated in CAFs. These pathways included arachidonic acid metabolism 

(GSEA p-value=0) and linoleic acid metabolism (GSEA p-value=0.002), which are known to 

produce inflammatory mediators42, and a group of pathways related to glycan biosynthesis 

and degradation. Up-regulation of these pathways in CAFs may support the function of CAFs 
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in secreting small molecule compounds and proteins to remodel the tumor microenvironment. 

Taken together, these results identify a metabolic phenotype of CAFs that potentially helps 

establish their roles in interacting with other cell types and modulating the tumor 

microenvironment. 

Discussion 

We have characterized the rewiring of metabolic pathways in single malignant cells 

compared to their normal partners in the same tumor microenvironment. We found that, 

compared to non-malignant cells, malignant cells not only exhibit high metabolic plasticity 

that allows them to adapt their metabolism to different genotypic and environmental contexts, 

but also follow a common pattern of global up-regulation of activities of metabolic pathways 

in almost all functional categories. These results point to the principle that metabolism of 

cancer cells is in general more flexible and active than that of non-malignant cells. Notably, 

most of the metabolic changes detected in single malignant cells compared to single non-

malignant cells were not captured by comparing expression levels of metabolic genes 

between bulk tumor and normal samples, implying that comparison of metabolic 

configurations between tumors and normal tissues based on bulk measurements tends to 

underestimate the differences between malignant and non-malignant cells due to the highly 

complicated cellular composition of the bulk samples.  Consistently, our results appear to be 

different from previous studies comparing metabolic network expression in tumor and normal 

tissues43,44.  

 There are several interesting findings around the role of mitochondrial activity in 

shaping the metabolic heterogeneity of tumors. First, variation in activity of OXPHOS genes 

is the most important contributor to the metabolic heterogeneity among malignant cells from 

the same tumor and that among non-malignant cells of the same type. The high variation in 
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OXPHOS activity suggests that this pathway might be responsible for adapting to alterations 

in the environment. It is thus interesting to investigate how such variability in OXPHOS 

activity contributes to tumor progression.  

 The role of mitochondria (OXPHOS and TCA cycle) in cancer is still a matter of 

debate. In addition to the well-known Warburg effect45, several studies comparing metabolic 

gene expression between bulk tumors and normal tissues have also identified suppression of 

OXPHOS as a recurrent metabolic phenotype in tumors43,46-48. However, there are also 

numerous studies showing that active OXPHOS activity is in fact required for cancer 

progression. Mitochondrial inhibitors such as metformin are known to suppress cancer cell 

growth49-51.  In this study, we found that OXPHOS gene expression levels were in general 

higher in single malignant cells (Fig 2a, b), which appears to contradict observations based 

on bulk gene expression levels43,46-48. Further work is needed to resolve the discrepancy 

between single-cell and bulk RNA-seq in evaluating the role of OXPHOS in tumors, but it is 

likely due to the complexity of cellular composition of tumors that is almost impossible to be 

dissected by bulk measurements. 

 Another interesting finding about OXPHOS activity in single cells is that it is 

correlated with both glycolysis and response to hypoxia in almost all cell types. This at the 

first glance is counterintuitive because hypoxia activates signal transduction pathways that 

induce glycolysis and suppress OXPHOS and other mitochondria-associated pathways31. 

Nevertheless, OXPHOS also has established role in mediating the response to hypoxia by 

serving as a sensor of oxygen availability through stabilization of hypoxia-induced factors 

(HIF)52,53. Therefore, the interplay between glycolysis, OXPHOS, and hypoxia is highly 

dynamic in living cells, and the quantitative relationship between them is at least partly 

determined by the interaction between the inhibitory effects of the HIF signaling pathway and 
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the positive feedback from OXPHOS activity to HIF signaling in response to oxygen 

availability. Our analysis of single cell transcriptomic profiles clarifies that activities of these 

pathways tend to be positively correlated in single cells from the tumor microenvironment 

with scarce and fluctuating oxygen supply. Whether such coupling at single cell level exists 

in other types of tumor and whether it benefits the cancer cells needs further investigation. 

 With the gene expression profiles of single cells from tumors, we were able to 

identify metabolic features that distinguish subpopulations of immune and stromal cells. This 

approach has the advantage of providing a direct snapshot of the metabolic landscape of 

tumors and their microenvironment consisting of numerous known and unknown types of 

cells whose metabolism is greatly influenced by the interactions between them and the 

shortage of nutrients in the tumor microenvironment11,54,55. We found that some non-

malignant cell subpopulations, Ths and Tregs for instance, adopt metabolic phenotypes 

distinct from what they show in ex vivo culture conditions36. Metabolic reprogramming of 

CAFs compared to myofibroblasts was also shown to involve more pathways than what is 

currently known. These results highlight the great impact of the tumor microenvironment on 

cellular metabolism. It is worth noting that currently the ability to characterize metabolic 

phenotypes of cell subpopulations is still limited by the number of single cells that can be 

profiled at the same time due to the diversity of cell types and noisy gene expression in single 

cells. Improvement in single cell omics techniques will help address this issue and provide 

higher resolution in identifying cell subpopulations with different metabolic phenotypes.  

 To summarize, this study offers a global picture of metabolic gene expression in 

single tumor and non-tumor cells from the highly complex tumor microenvironment. These 

cells display metabolic activities distinct from the average pattern of their metabolism at the 

bulk level. Although this study only focused on two tumor types consisting of the highest 
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quality data at this time that allowed for the current scope of analysis, the principles about 

metabolic landscape of single cells in the tumors – the metabolic plasticity and activity of 

malignant cells, the dominant role of mitochondrial programs in shaping metabolic 

heterogeneity of malignant and non-malignant cells, and the metabolic features of immune 

cell subtypes - were applicable to both tumor types, and the data analysis pipeline that we 

developed here can easily be extended to datasets of other tumor types. With the rapid 

development of novel single-cell omics techniques and accumulation of data in more tumor 

types and patients, we are optimistic that a comprehensive portrait of metabolic features of 

every unique tumor cell will emerge in the near future. 

Methods 

Data acquisition and processing 

Processed gene expression profiles for melanoma19 and HNSCC21 were retrieved from Gene 

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/gds) under accession numbers 

GSE72056 and GSE103322. Gene expression levels were quantified using the metric log2 

(TPM +1). Tumors and non-malignant cell types containing less than 50 cells were excluded 

from the downstream analysis. Missing gene expression values were imputed using the 

scImpute algorithm56 with default parameters and TPM values and gene lengths (for a gene 

associated with multiple transcripts, the length of the longest transcript was used) as the 

input. Imputation was only applied to genes with dropout rates (i.e. the fraction of cells in 

which the corresponding gene has zero expression value) larger than 50% to avoid over-

imputation56. Lists of metabolic genes and pathways were obtained from the KEGG database 

(http://www.kegg.jp). The imputed expression values were then used in clustering analysis 

using the tSNE method25 implemented in the Rtsne package57 with default parameters. Bulk 
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RNA-seq data for matched HNSCC tumor and normal samples were downloaded from 

TCGA database (https://portal.gdc.cancer.gov/). 

Evaluation of normalization methods 

The relative log expression (RLE) method58 was implemented using the 

‘estimateSizeFactorsForMatrix’ function in DESeq259. The trimmed mean of M-values 

(TMM)60 and upper quartile61 methods were performed using the ‘calcNormFactors’ function 

in the edgeR package60. For deconvolution normalization26 for scRNA data with annotated 

cell type information, the ‘computeSumFactors’ function in the scran package was used to 

compute cell type specific size factors62. TPM values were transformed to read counts by 

multiplying TPM values and gene lengths (for genes with multiple transcripts, the length of 

the longest transcript was used). Normalized gene counts were computed by dividing read 

counts by the size factor corresponding to the cell and then transforming back to TPM by 

dividing the gene lengths. To avoid noise caused by low expressed and undetected genes, 

only genes with dropout rate < 0.75 (i.e. genes with non-zero expression levels in at least 

25% of the cells) were used as the reference genes to do normalization. The distributions of 

relative gene expression values (defined in ‘Calculation of pathway activity’) in different cell 

types were used to evaluate the performances of these methods. The method minimizing 

differences in distributions of relative gene expression levels between cell types was selected 

for the following analysis. 

Calculation of pathway activity 

For the i-th metabolic gene, we first calculated its mean expression level across cells of the j-

th cell type: 
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𝐸 , =  
∑ ,

, 𝑖 ∈ 1 … 𝑀, 𝑗 ∈ 1 … 𝑁     (1) 

In which nj is the number of cells in the j-th cell type, 𝑔 ,  is the expression level of the i-th 

gene in the k-th cell in this cell type, M is the number of metabolic genes, and N is the 

number of cell types. The relative expression level of the i-th gene in the j-th cell type was 

then defined as the ratio of Ei,j to its average over all cell types: 

𝑟 , =  
,

∑ ,

     (2) 

Here ri,j quantifies the relative expression level of gene i in cell type j comparing to the 

average expression level of this gene in all cell types. A ri,j value larger than 1 means that 

expression level of gene i is higher in cell type j compared to its average expression level 

over all cell types. The pathway activity score for the t-th pathway and the j-th cell type was 

then defined as the weighted average of ri,j over all genes included in this pathway: 

𝑝 , =  
∑ × ,

∑
    (3) 

Where pt,j represents the activity of the t-th pathway in the j-th cell type, mt is the number of 

genes in the pathway t, wi is the weighting factor equal to the reciprocal of number of 

pathways that include the i-th gene. Statistical significance of higher or lower pathway 

activity in a specific cell type was evaluated by a random permutation test, in which the cell 

type labels were randomly shuffled for 5,000 (for the scRNA datasets) or 1,000 times (for the 

TCGA data) to simulate a null distribution of the pathway activity scores and compare to the 

pathway activity scores in the original, non-shuffled dataset. For the pathway activity score 

𝑝 , , we then calculated a p-value defined as the fraction of random pathway activity scores 
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larger than 𝑝 ,  (if 𝑝 ,  is larger than 1) or smaller than 𝑝 ,  (if 𝑝 ,  is smaller than 1) to assess 

if activity of this pathway is significantly higher or lower in this cell type than average. 

Analyzing heterogeneity of metabolic pathways 

The PCA analysis was applied on the raw gene expression data without imputation of 

missing values. The function ‘prcomp’ in R was used to perform the PCA analysis. For each 

metabolic gene, we computed its PCA score defined as the sum of absolute values of the 

loadings of this gene in the top PCs that in total account for at least 80% of the variance to 

measure variability of gene expression across cells. We then sorted the PCA scores of the 

genes in descending order and applied GSEA analysis to the ranked list of genes to identify 

metabolic pathways enriched in genes with highest variability. GSEA analysis was done by 

the software javaGSEA available at http://software.broadinstitute.org/gsea/downloads.jsp 

with the option “Pre-ranked” and default parameters. The hypoxia signature genes were 

retrieved from the gene set ‘HALLMARK_HYPOXIA’ in the molecular signature database 

(MSigDB) available at http://software.broadinstitute.org/gsea/msigdb/index.jsp. 

Analysis of non-malignant cell subtypes 

T cells were classified as CD4+ or CD8+ based on expression levels of CD4 and CD8A. T 

cells with CD4 expression level higher than 1 and CD8A expression level lower than 1 were 

classified as CD4+ T cells, while those with CD4 expression level lower than 1 and CD8A 

expression level higher than 1 were classified as CD8+ T cells. Cells with CD4 and CD8A 

expression levels both higher than 1 were excluded from the following analysis.  CD4+ T 

cells with the total expression level of FOX3P and CD25 higher than 2 were further defined 

as Tregs, while CD4+ T cells without these two genes expressed (i.e. both genes have zero 

expression values in these cells) were defined as Ths. For fibroblast cells, k-means clustering 
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analysis was performed on the expression levels of a set of gene markers (Fig. 5f) to classify 

them into CAFs and myofibroblasts. The metabolic gene expression profiles were then 

compared between different cell subtypes using GSEA with the following parameters: 

nperm=1000, metric=Diff_of_Classes, permute=gene_set, set_max=500, set_min=5. The 

metabolic pathways with GSEA nominal p-value<0.05 were considered as significant.  

Data availability 

Raw and processed gene expression values and annotation of cell and tumor types used in 

this study are available at: https://doi.org/10.6084/m9.figshare.7174922. 

Code availability 

Computer codes used in this study are available at the Github page of the Locasale Lab: 

https://github.com/LocasaleLab/Single-Cell-Metabolic-Landscape.  
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Figures 

Figure 1 | Landscape of metabolic gene expression at the single-cell level.  

(a) Schematic representation of the scRNA-seq data analysis pipeline. 

(b) Numbers of each type of cells in the melanoma dataset. 

(c) Numbers of each type of cells in the head and neck squamous cell carcinoma (HNSCC) 

dataset. 

(d) t-SNE plot of metabolic gene expression profiles of malignant cells from the melanoma 

dataset. The color of each dot indicates the tumor which the cell comes from.  

(e) Same as in (d) but for the HNSCC dataset. 

(f) Clustered correlation matrix showing Spearman’s rank correlation coefficients of 

metabolic gene expression profiles between malignant cells in the melanoma dataset. 

(g) Same as in (f) but for the HNSCC dataset.  

(h) t-SNE plot of metabolic gene expression profiles of non-malignant cells from the 

melanoma dataset. The color of each dot indicates the tumor which the cell comes from. 

(i) Same as in (h) but for the HNSCC dataset. 

 

Figure 2 | Cell type-specific metabolic reprogramming in the tumor microenvironment.  

(a) Metabolic pathway activities in cell types in the melanoma dataset. 

(b) Metabolic pathway activities in cell types in the HNSCC dataset. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/527952doi: bioRxiv preprint 

https://doi.org/10.1101/527952
http://creativecommons.org/licenses/by-nc-nd/4.0/


(c) Metabolic pathway activities in HNSCC tumor samples and matched adjacent normal 

samples from TCGA computed based on bulk RNA-seq data. The color bar on the top marks 

the pathways with similar activity changes in single malignant cells compared to single non-

malignant cells and bulk tumors compared to normal tissue samples.  

(d) Scatter plot comparing pathway activities between bulk HNSCC tumors in TCGA and 

single malignant cells in the HNSCC scRNA-seq dataset.  

(e) Difference between bulk and single cell RNA-seq in characterizing gene expression 

profiles in tumors.  

(f) Distributions of pathway activities in different cell types from the HNSCC scRNA-seq 

dataset (left) and in bulk tumors and normal samples from TCGA (right). 

 

Figure 3 | Intratumoral metabolic heterogeneity of malignant cells.  

(a) Workflow for quantitating metabolic heterogeneity of malignant cells.  

(b) Metabolic pathways enriched in genes with highest contribution to the metabolic 

heterogeneities among malignant cells from different tumors in the melanoma dataset. 

(c) Same as in (b) but for the HNSCC dataset.  

(d) Scatter plots comparing activities of glycolysis, OXPHOS and response to hypoxia in 

single malignant cells from the melanoma dataset. 

(e) Same as in (d) but for the HNSCC dataset. 

 

Figure 4 | Metabolic heterogeneity of non-malignant cells.  

(a) Metabolic pathways enriched in genes with highest contribution to the metabolic 

heterogeneities among different types of non-malignant cells from the melanoma dataset.  

(b) Pearson’s correlation coefficients between the activities of glycolysis, OXPHOS and 

response to hypoxia in non-malignant cells from the melanoma dataset. 
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(c) Same as in (a) but for the HNSCC dataset. 

(d) Same as in (b) but for the HNSCC dataset. 

 

Figure 5 | Metabolic features of non-malignant cell subtypes.  

(a) Left panel: classification of T cells into CD4+, CD8+, regulatory T cells (Tregs) and T 

helper cells (Ths). Middle and right: expression levels of the gene markers used for 

separating T cell subtypes in melanoma (middle) and HNSCC (right) datasets.  

(b) Top 10 metabolic pathways enriched in CD4+ or CD8+ T cells in the melanoma dataset. 

Significantly enriched pathways with GSEA p-value < 0.05 are highlighted in red (higher in 

CD8+) or blue (higher in CD4+). 

(c) Same as in (b) but for the HNSCC dataset.  

(d) Top 10 metabolic pathways enriched in Tregs or Ths in the melanoma dataset. 

Significantly enriched pathways with GSEA p-value < 0.05 are highlighted in red (higher in 

Th) or blue (higher in Treg). 

(e) Same as in (d) but for the HNSCC dataset.  

(f) Gene markers and their expression levels used for classifying fibroblast cells in the 

HNSCC dataset into CAFs and myofibroblasts. 

(g) Top 10 metabolic pathways enriched in CAFs or myofibroblasts in the HNSCC dataset. 

Significantly enriched pathways with GSEA p-value < 0.05 are highlighted in red (higher in 

myofibroblasts) or blue (higher in CAFs). 
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