SUPPLEMENTARY MATERIALS

Contents:

Supplementary Figures

Fig. S1. Forest plot of the effect of pollinator richness on pollination for individual crop systems.

Fig. S2. Forest plot of the effect of natural enemy richness on pest control for individual crop systems.

Fig. S3. Direct and mediated effects of richness and abundance on ecosystem services.

Fig. S4. Direct and indirect landscape simplification effects on ecosystem services via changes in richness and abundance.

Fig. S5. Direct and cascading landscape simplification effects on final crop production via changes in natural enemy richness, abundance and pest control (all sites together, with and without insecticide application).

Fig. S6. Forest plot of the effect of landscape simplification on natural enemy abundance for individual crop systems.

Fig. S7. Mediation model.

Fig. S8. Direct and mediated effects of pollinator richness and abundance (with honey bees) on pollination.

Fig. S9. Direct and cascading landscape simplification effects on area-based yield via changes in richness, abundance and ecosystem services

Supplementary Tables

Table S1. List of 88 crop systems considered in our analyses.

Table S2. Model output for richness-ecosystem service relationships.

Table S3. Model output for path models testing direct and indirect effects (mediated by changes in abundance) of richness on ecosystem services.

Table S4. Model output for path models testing direct and indirect effects (mediated by changes in richness) of abundance on ecosystem services.

Table S5. Model output for path models testing direct and indirect effects (mediated by changes in richness) of landscape simplification on ecosystem services.

Table S6. Model output for path models testing the direct and cascading landscape simplification effects on ecosystem services via changes in richness and abundance.

Table S7. Model output for path models testing the direct and cascading landscape simplification effects on final crop production via changes in richness, abundance and ecosystem services.

Table S8. Model output for path models testing direct and mediated effects of pollinator richness and abundance (with honey bees) on pollination.

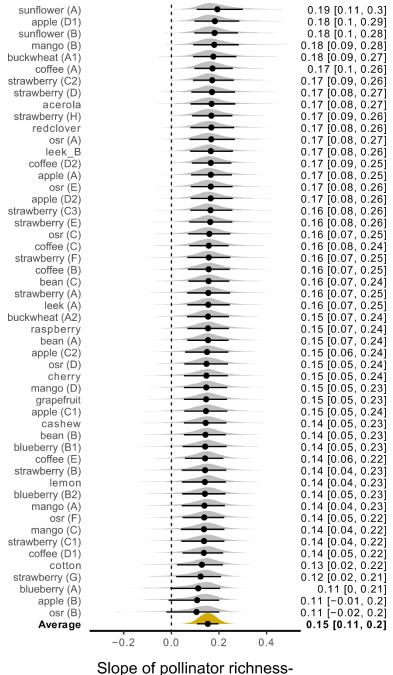
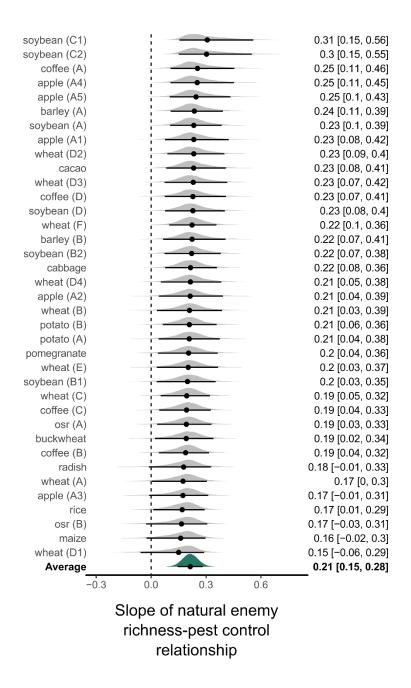

Table S9. Results of pairwise comparison of richness-ecosystem service relationships according to the methods used to sample pollinators and natural enemies.

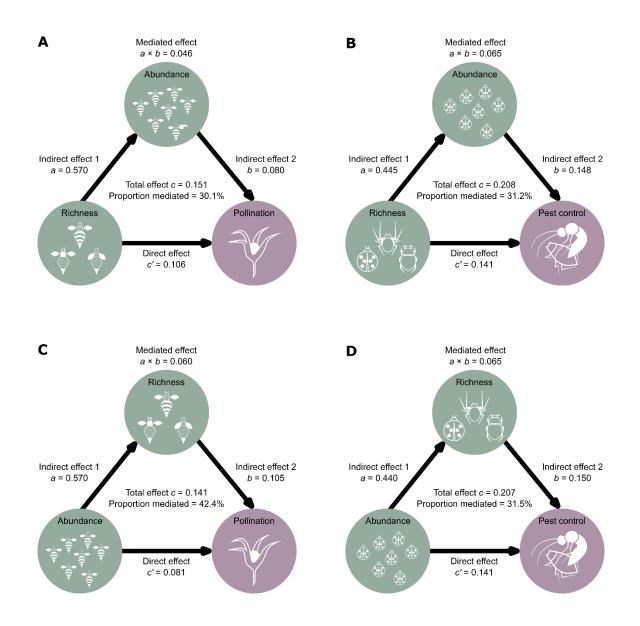
Table S10. Results of pairwise comparison of richness-ecosystem service relationships according to the methods used to quantify pollination and pest control services.

Supplementary Text

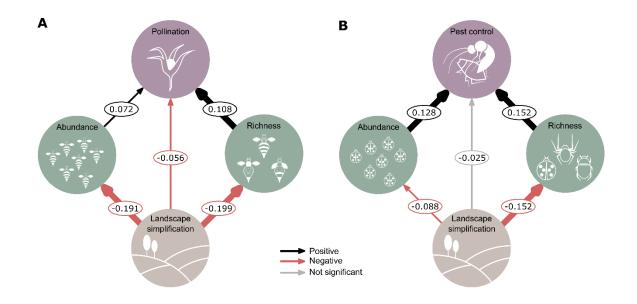
Detailed Acknowledgemnts


References

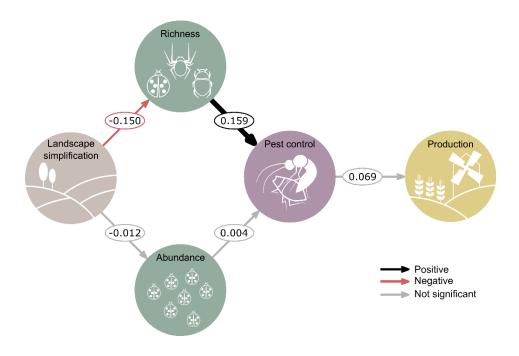
pollination relationship


Fig. S1.

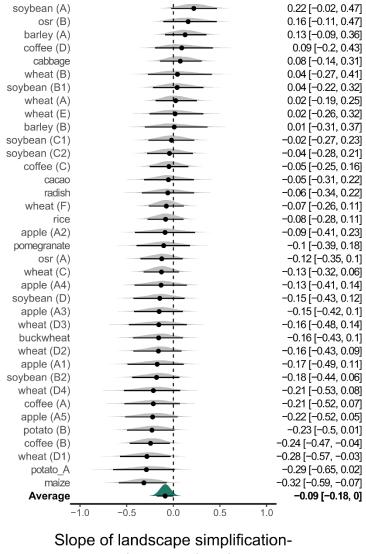
Forest plot of the effect of pollinator richness on pollination for individual crop systems. Each posterior distribution represents medians (symbol centres) and 90% density intervals (black lines).


Fig. S2.

Forest plot of the effect of natural enemy richness on pest control for individual crop systems. Each posterior distribution represents medians (symbol centres) and 90% density intervals (black lines).

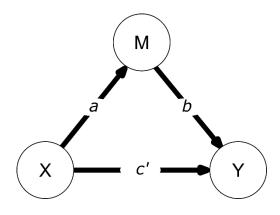

Fig. S3.

Direct and mediated effects of richness and abundance on ecosystem services. (A) Path model of pollinator richness as predictor of pollination, mediated by pollinator abundance. (B) Path model of natural enemy richness as predictor of pest control, mediated by natural enemy abundance. (C) Path model of pollinator abundance as predictor of pollination, mediated by pollinator richness. (D) Path model of natural enemy abundance as predictor of pest control, mediated by natural enemy richness. Pollination model, N = 821 fields of 52 crop systems; pest control model, N = 654 fields of 37 crop systems. Coefficients of the three causal paths (*a*, *b*, *c*') correspond to the median of the posterior distribution of the model. The proportion mediated is the mediated effect ($a \times b$) divided by the total effect (*c*).

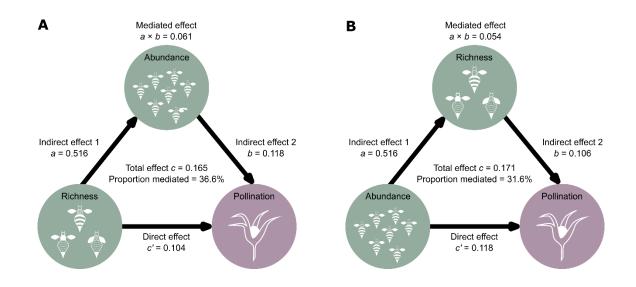

Fig. S4.

Direct and indirect landscape simplification effects on ecosystem services via changes in richness and abundance. (A) Path model representing direct and indirect effects of landscape simplification on pollination through changes in pollinator richness and abundance (N = 821 fields of 52 crop systems. (B) Path model representing direct and indirect effects of landscape simplification on pest control services through changes in natural enemy richness and abundance (N = 654 fields of 37 crop systems). Path coefficients are effect sizes estimated from the median of the posterior distribution of the model. Black and red arrows represent positive or negative effects, respectively. Arrow widths are proportional to highest density intervals (HDIs). Grey arrows represent non-evident effects (HDIs overlapped zero).

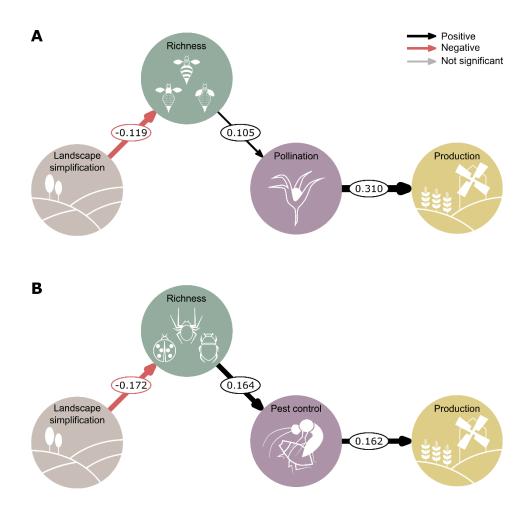
Fig. S5.


Direct and cascading landscape simplification effects on final crop production via changes in natural enemy richness, abundance and pest control (all sites together, with and without insecticide application). Path coefficients are effect sizes estimated from the median of the posterior distribution of the model (N = 236 fields of 15 crop systems). Black and red arrows represent positive or negative effects, respectively. Arrow widths are proportional to highest density intervals (HDIs). Grey arrows represent non-significant effects (HDIs overlapped zero).

Slope of landscape simplification natural enemy abundance relationship


Fig. S6.

Forest plot of the effect of landscape simplification on natural enemy abundance for individual crop systems. Each posterior distribution represents medians (symbol centres) and 90% density intervals (black lines).


Fig. S7.

Mediation model. Mediation analysis is a statistical procedure to test whether the effect of an independent variable X on a dependent variable Y $(X \rightarrow Y)$ is at least partly explained via the inclusion of a third hypothetical variable, the mediator variable M $(X \rightarrow M \rightarrow Y)$. The three causal paths *a*, *b*, and *c*' represent X's effect on M, M's effect on Y, and X's effect on Y while accounting for M, respectively. The three causal paths correspond to parameters from two regression models, one in which M is the outcome and X the predictor, and one in which Y is the outcome and X and M the simultaneous predictors.

Fig. S8.

Direct and mediated effects of pollinator richness and abundance (with honey bees) on pollination. (A) Path model of pollinator richness as a predictor of pollination, mediated by pollinator abundance. (B) Path model of pollinator abundance as a predictor of pollination, mediated by pollinator richness. N = 821 fields of 52 crop systems. Coefficients of the three causal paths (a, b, c') correspond to the median of the posterior distribution of the model. The proportion mediated is the mediated effect $(a \times b)$ divided by the total effect (c).

Fig. S9.

Direct and cascading landscape simplification effects on area-based yield via changes in richness, abundance and ecosystem services. (A) Path model representing direct and indirect effects of landscape simplification on final area-based yield through changes in pollinator richness, abundance and pollination (N = 203 fields of 13 crop systems). (B) Path model representing direct and indirect effects of landscape simplification on final area-based yield through changes in natural enemy richness, abundance and pest control (N = 102 fields of 7 crop systems). Path coefficients are effect sizes estimated from the median of the posterior distribution of the model. Black and red arrows represent positive or negative effects, respectively. Arrow widths are proportional to highest density intervals (HDIs). Grey arrows represent non-significant effects (HDIs overlapped zero).

Table S1.List of 89 crop systems considered in our analyses.

Crop and system code	Reference and (or) data holder contact	Crop species	Country, region	Study year	Sites (with vield)	Sampling methods	Taxa	Functions	Production
Pollination studies					Jield)				
acerola	(<i>30</i>) Freitas, freitas@ufc.br	Malpighia emarginata	Brazil, Ceará	2011	8	active	bees	fruit set	-
apple (A)	(58) Boreux, virginie.boreux@nature.uni-freiburg.de	Malus domestica	Germany, Lake Constance	2015	25	active	bees	fruit set	-
apple (B)	(59) Garratt, m.p.garratt@reading.ac.uk	Malus domestica	UK, Kent	2011	8	active, passive	bees	fruit set	-
apple (C1)	(60) de Groot, g.a.degroot@wur.nl	Malus domestica	Netherlands, Betuwe	2013	8 (4)	active	bees, hoverflies	fruit set	crop yield
apple (C2)	(60) de Groot, g.a.degroot@wur.nl	Malus domestica	Netherlands, Betuwe	2014	10 (9)	active	bees, hoverflies	fruit set	crop yield
apple (D1)	(61) Mallinger, rachel.mallinger@ars.usda.gov	Malus domestica	USA, Wisconsin	2012	17	passive	bees	fruit set	-
apple (D2)	(61) Mallinger, rachel.mallinger@ars.usda.gov	Malus domestica	USA, Wisconsin	2013	19	passive	bees	fruit set	-
bean (A)	Ekroos, johan.ekroos@cec.lu.se	Vicia faba	Sweden, Scania	2016	16 (16)	active	bees	seed set	plant yield
bean (B)	(62) Garratt, m.p.garratt@reading.ac.uk	Vicia faba	UK, Berkshire	2011	8	active, passive	bees	seed set	-
bean (C)	Ramos, Silva davilramos91@gmail.com felipe.silva@bag.ifmt.edu.br	Phaseolus vulgaris	Brazil, Goias/DF	2015/2016	22 (22)	active	bees	seed set	crop yield
blueberry (A)	Cavigliasso, pablo.cavigliaso@gmail.com	Vaccinium corymbosum	Argentina, Espinal- Ñandubay	2016	13	active	bees, wasps, hoverflies	fruit set	-
blueberry (B1)	(60) de Groot, g.a.degroot@wur.nl	Vaccinium corymbosum	Netherlands, Limburg/Overijssel	2013	10 (9)	active	bees	fruit set	crop yield
blueberry (B2)	(60) de Groot, g.a.degroot@wur.nl	Vaccinium corymbosum	Netherlands, Limburg/Overijssel	2014	15 (13)	active	bees	fruit set	crop yield
buckwheat (A1)	(63, 64) Taki, htaki@affrc.go.jp	Fagopyrum esculentum	Japan, Ibaraki	2007	15	active	bees, butterflies , flies, wasps	seed set	-
buckwheat (A2)	(63, 64) Taki, htaki@affrc.go.jp	Fagopyrum esculentum	Japan, Ibaraki	2008	17	active	bees, butterflies , flies, wasps	seed set	-
cashew	(14) Freitas, freitas@ufc.br	Anacardium occidentale	Brazil, Ceará	2012	10 (10)	active	bees	fruit set	crop yield

cherry	(65) Holzschuh, andrea.holzschuh@uni-wuerzburg.de	Prunus avium	Germany, Hesse	2008	7	active	bees	fruit set	-
coffee (A)	(33, 66, 67) Boreux, virginie.boreux@nature.uni-freiburg.de	Coffea canephora	India, Kodagu	2008	53 (51)	active	bees	fruit set	plant yield
coffee (B)	(68) Classen, alice.classen@uni-wuerzburg.de	Coffea arabica	Tanzania, Kilimanjaro	2011/2012	11 (7)	active, passive	bees	fruit set	plant yield
coffee (C)	(69) Hipólito, jhdsousa@yahoo.com	Coffea arabica	Brazil, Chapada Diamantina	2013	30 (28)	active	bee, flies, butterflies , beetles, wasps	fruit set	crop yield
coffee (D1)	(66, 70, 71) Krishnan, smithakrishnan@gmail.com	Coffea canephora	India, Kodagu	2007	35	active	bees	fruit set	-
coffee (D2)	(66, 70, 71) Krishnan, smithakrishnan@gmail.com	Coffea canephora	India, Kodagu	2008	37	active	bees	fruit set	
coffee (E)	(72) Krishnan, Nesper, smithakrishnan@gmail.com maike.nesper@gmail.com	Coffea canephora	India, Kodagu	2014	49 (49)	active	bees	fruit set	crop yield
cotton	(73) Cusser, sarah.cusser@gmail.com	Gossypium hirsutum	USA, Gulf Coast Texas	2014	11	active	bee, hoverflies, butterflies , beetles	fruit set	-
grapefruit	(74, 75) Chacoff, nchacoff@gmail.com	Citrus paradisi	Argentina, Yungas	2000	6	active	bee, flies, butterflies , wasps	fruit set	
leek (A)	(34) Fijen, thijs.fijen@wur.nl	Allium porrum	France, Loire	2016	18 (18)	active	bees, wasps, hoverflies	seed set	plant yield
leek (B)	(34) Fijen, thijs.fijen@wur.nl	Allium porrum	Italy, South Italy	2016	18 (18)	active	bees, wasps, hoverflies	seed set	plant yield
lemon	Chacoff, nchacoff@gmail.com	Citrus limon	Argentina, Yungas	2015	9	active	bee, flies, butterflies , wasps	fruit set	-
mango (A)	(76) Carvalheiro, lgcarvalheiro@gmail.com	Mangifera indica	South Africa, Limpopo	2008	8	active	bee, flies, butterflies , beetles, wasps	fruit set	-
mango (B)	(77) Carvalheiro, lgcarvalheiro@gmail.com	Mangifera indica	South Africa, Limpopo	2009	14 (10)	active	bee, flies, butterflies , beetles, wasps	fruit set	plant yield
mango (C)	Rader, rrader@une.edu.au	Mangifera indica	Australia, Queensland	2014	10	active	bees, flies, hoverflies, beetles, moths, butterflies	fruit set	-
mango (D)	Willcox, bwillcox@myune.edu.au	Mangifera indica	Australia, Queensland	2016	7	active	bees, flies, hoverflies, beetles,	fruit set	-

							moths, butterflies		
osr (A)	Andersson, gandersson@unrn.edu.ar	Brassica napus	Sweden, Scania	2010	6	active	bees, hoverflies	seed set	-
osr (B)	(35) Bartomeus, Gagic, nacho.bartomeus@gmail.com vesna.gagic@bio.bg.ac.rs	Brassica napus	Sweden, Västergötland	2013	12 (9)	active	bees, butterflies	seed set	crop yield
osr (C)	(62) Garratt, m.p.garratt@reading.ac.uk	Brassica napus	UK, Yorkshire	2012	8	active, passive	bees	seed set	-
osr (D)	(78, 79) Stanley, dara.stanley@ucd.ie	Brassica napus	Ireland, South-East	2010	3	active	bees, hoverflies	seed set	-
osr (E)	Sutter, louis.sutter@agroscope.admin.ch	Brassica napus	Switzerland, Zurich	2014	18 (18)	active	bees, hoverflies	seed set	crop yield
osr (F)	(80) Zou Yi, yi.zou.1@hotmail.com	Brassica napus	China, Jiangxi	2015	18	passive	bees, hoverflies, butterflies	fruit set	-
raspberry	(29) Saez, agustinsaez@live.com.ar	Rubus idaeus	Argentina, Comarca Andina	2014	16 (16)	active	bees	fruit set	crop yield
red clover	Rundlöf, maj.rundlof@biol.lu.se	Trifolium pratense	Sweden, Scania	2013	6 (6)	active	bees	seed set	crop yield
strawberry (A)	Andersson, gandersson@unrn.edu.ar	Fragaria × ananassa	Sweden, Scania	2009	11	passive	bees, hoverflies	fruit set	-
strawberry (B)	Baensch, Tscharntke, Westphal, svenja.baensch@agr.uni-goettingen.de cwestph@gwdg.de ttschar@gwdg.de	Fragaria × ananassa	Germany, Lower Saxony,	2015	8 (8)	active	bees	Δ fruit weight	plant yield
strawberry (C1)	(81) Grab, hlc66@cornell.edu	Fragaria × ananassa	USA, New York	2012	11 (11)	active, passive	bees	Δ fruit weight	plant yield
strawberry (C2)	Grab, hlc66@cornell.edu	Fragaria × ananassa	USA, New York	2014	27 (27)	active	bees	seed set	plant yield
strawberry (C3)	(82) Grab, hlc66@cornell.edu	Fragaria × ananassa	USA, New York	2015	14 (14)	active	bees	seed set	plant yield
strawberry (D)	Garratt, m.p.garratt@reading.ac.uk	Fragaria × ananassa	UK, Yorkshire	2011	7 (7)	active, passive	bees	Δ fruit weight	plant yield
strawberry (E)	Klatt, klattbk@googlemail.com	Fragaria × ananassa	Germany, Lower Saxony	2010	8 (8)	active	bees	fruit set	plant yield
strawberry (F)	Krewenka, kristin.marie.krewenka@uni- hamburg.de	Fragaria × ananassa	Germany, Lower Saxony	2005	10 (10)	active	bees	fruit set	crop yield
strawberry (G)	Sciligo, amber.sciligo@berkeley.edu	Fragaria × ananassa	USA, California	2012	15 (15)	active, passive	bees	Δ fruit weight	plant yield
strawberry (H)	(83) Stewart, rebecca.stewart@cec.lu.se	Fragaria × ananassa	Sweden, Scania	2014	27 (27)	active	hoverflies	fruit set	plant yield
sunflower (A)	(32) Carvalheiro, lgcarvalheiro@gmail.com	Helianthus annuus	South Africa, Limpopo	2009	28	active	bee, flies, butterflies , beetles, wasps	seed set	-
sunflower (B)	Scheper, jeroen.scheper@wur.nl	Helianthus annuus	France, Poitou- Charentes	2015	24	active	bees, hoverflies	seed set	-

Pest control studies									
apple (A1)	(84, 85) Lavigne, claire.lavigne@inra.fr	Malus domestica	France, Provence- Alpes-Côte d'Azur	2006	9	active	parasitoid s	sentinel exp. (enemy activity)	-
apple (A2)	(84, 85) Lavigne, claire.lavigne@inra.fr	Malus domestica	France, Provence- Alpes-Côte d'Azur	2007	6	active	parasitoid s	sentinel exp. (enemy activity)	-
apple (A3)	(84, 85) Lavigne, claire.lavigne@inra.fr	Malus domestica	France, Provence- Alpes-Côte d'Azur	2008	17	active	parasitoid s	sentinel exp. (enemy activity)	-
apple (A4)	(84, 85) Lavigne, claire.lavigne@inra.fr	Malus domestica	France, Provence- Alpes-Côte d'Azur	2009	12	active	parasitoid s	sentinel exp. (enemy activity)	-
apple (A5)	(84, 85) Lavigne, claire.lavigne@inra.fr	Malus domestica	France, Provence- Alpes-Côte d'Azur	2010	14	active	parasitoid s	sentinel exp. (enemy activity)	-
barley (A)	(86) Caballero-Lopez, bcaballerolo@bcn.cat	Hordeum vulgare	Sweden, Scania	2007	20	active, passive	carabids, ladybugs, parasitoid s	sentinel exp. (enemy activity)	-
barley (B)	(87–89) Tamburini, giovanni.tamburini@slu.se	Hordeum vulgare	Italy, Friuli Venezia- Giulia	2014	5 (5)	passive	carabids	cage exp. (infestation)	crop yield
buckwheat	(90) Taki, htaki@affrc.go.jp	Fagopyrum esculentum	Japan, Ibaraki	2008	15	passive	ladybugs, lacewings	sentinel exp. (enemy activity)	-
cabbage	(91) Letourneau, dletour@ucsc.edu	Brassica oleracea	USA, Monterey Bay Area	2006	33	passive	parasitoid s	sentinel exp. (enemy activity)	-
cacao	(92) Maas, beamaas@gmx.at	Theobroma cacao	Indonesia, Sulawesi	2010	15 (15)	active	spiders	cage exp. (crop damage)	plant yield
coffee (A)	Schleuning, Schmack, Matthias.Schleuning@senckenberg.de juliaschmack@gmx.de	Coffea arabica	Tanzania, Kilimanjaro	2011/2012	11 (6)	passive	bats, birds	cage exp. (crop damage)	plant yield
coffee (B)	Iverson, iverson@umich.edu	Coffea arabica	Mexico, Soconusco	2012	37 (35)	passive	parasitoid s	sentinel exp. (enemy activity)	crop yield
coffee (C)	Iverson, iverson@umich.edu	Coffea arabica	Puerto Rico, Utuado	2013	36	passive	parasitoid s, wasps	cage exp. (crop damage)	-
coffee (D)	Martinez-Salinas, amartinez@catie.ac.cr	Coffea arabica	Costa Rica, Turrialba	2013	10	passive	birds	cage exp. (crop damage)	-
maize	(93) O'Rourke, megorust@vt.edu	Zea mays	USA, New York	2006	26	passive	ladybugs	pest damage	-
osr (A)	(94) Jonsson, mattias.jonsson@slu.se	Brassica napus	New Zealand, Canterbury	2007	26	active	hoverflies, ladybugs, lacewings	pest damage	-
osr (B)	Sutter, louis.sutter@agroscope.admin.ch	Brassica napus	Switzerland, Zurich	2014	18 (18)	passive	carabids	sentinel exp. (enemy activity)	crop yield

pomegranate	(95) Keasar, tkeasar@research.haifa.ac.il	Punica granatum	Israel, Hefer Valley	2014	10	active	spiders, parasitoid	pest damage	-
potato (A)	(96) Martin, emily.martin@uni-wuerzburg.de	Solanum tuberosum	South Korea, Haean	2009	6 (2)	active, passive	birds, carabids, hoverflies, parasitoid s, rove beetles, wasps	pest damage	plant yield
potato (B)	(97) Poveda, kap235@cornell.edu	Solanum tuberosum	Colombia, Cundinamarca	2007	11 (11)	active, passive	carabids, hoverflies, ladybugs, lacewings, parasitoid s	pest damage	crop yield
radish	(96) Martin, emily.martin@uni-wuerzburg.de	Raphanus raphanistrum subsp. sativus	South Korea, Haean	2009	8 (5)	active, passive	birds, carabids, hoverflies, parasitoid s, rove beetles, wasps	pest damage	plant yield
rice	(98) Takada, mayura@isas.a.u-tokyo.ac.jp	Oryza sativa	Japan, Miyagi	2008	44	active	spiders	pest damage	-
soybean (A)	(25) Kim, tkim@glbrc.wisc.edu	Glycine max	USA, Upper Midwest	2012	35 (33)	passive	flower bugs, ladybugs	cage exp. (infestation)	plant yield
soybean (B1)	(99) Mitchell, matthew.mitchell@ubc.ca	Glycine max	Canada, Montérégie	2010	15 (15)	active	hoverflies, ladybugs, lacewings, true bugs	pest damage	crop yield
soybean (B2)	(99) Mitchell, matthew.mitchell@ubc.ca	Glycine max	Canada, Montérégie	2011	19 (19)	active	hoverflies, ladybugs, lacewings, true bugs	pest damage	crop yield
soybean (C1)	Molina, gonzalormolina@agro.uba.ar	Glycine max	Argentina, North Buenos Aires	2011	20	active	parasitoid s	sentinel exp. (enemy activity)	-
soybean (C2)	Molina, gonzalormolina@agro.uba.ar	Glycine max	Argentina, North Buenos Aires	2012	20	active	parasitoid s	sentinel exp. (enemy activity)	-
soybean (D)	(96) Martin, emily.martin@uni-wuerzburg.de	Glycine max	South Korea, Haean	2009	8 (6)	active, passive	birds, carabids, hoverflies, parasitoid s, rove beetles, wasps	pest damage	plant yield

wheat (A)	(100) Bommarco, riccardo.bommarco@slu.se	Triticum aestivum	Sweden, Scania	2007	31 (31)	passive	carabids	sentinel exp. (enemy activity)	crop yield
wheat (B)	(86) Caballero-Lopez, bcaballerolo@bcn.cat	Triticum aestivum	Sweden, Scania	2007	4	active, passive	carabids, ladybugs, parasitoid s	sentinel exp. (enemy activity)	-
wheat (C)	Kim, tkim@glbrc.wisc.edu	Triticum aestivum	USA, Upper Midwest	2012	24 (24)	active, passive	flower bugs, ladybugs	cage exp. (infestation)	plant yield
wheat (D1)	(101) Plećaš, mplecas@bio.bg.ac.rs	Triticum aestivum	Serbia, Pacevacki Rit	2008	18	active	parasitoid s	sentinel exp. (enemy activity)	-
wheat (D2)	(101) Plećaš, mplecas@bio.bg.ac.rs	Triticum aestivum	Serbia, Pacevacki Rit	2009	17	active	parasitoid s	sentinel exp. (enemy activity)	-
wheat (D3)	(101) Plećaš, mplecas@bio.bg.ac.rs	Triticum aestivum	Serbia, Pacevacki Rit	2010	8	active	parasitoid s	sentinel exp. (enemy activity)	-
wheat (D4)	(101) Plećaš, mplecas@bio.bg.ac.rs	Triticum aestivum	Serbia, Pacevacki Rit	2011	10	active	parasitoid s	sentinel exp. (enemy activity)	-
wheat (E)	(87–89) Tamburini, giovanni.tamburini@slu.se	Triticum aestivum	Italy, Friuli Venezia- Giulia	2014	11 (11)	passive	carabids	cage exp. (infestation)	crop yield
wheat (F)	(102) Tschumi, matthias.tschumi@vogelwarte.ch	Triticum aestivum	Switzerland, Central Plateau	2012	25	active, passive	carabids, ladybugs, true bugs	pest damage	-

Table S2.

Model output for richness-ecosystem service relationships. (A) Richness was calculated as the number of unique taxa sampled per crop system. (B) Richness was calculated considering only organisms classified at the fine taxonomy level (i.e. species- or morphospecies-levels). Posterior samples were summarized based on the Bayesian point estimate (median), standard error (median absolute deviation), and 80%, 90% and 95% highest density intervals (HDIs). HDIs that do not include zero are reported in bold.

Parameter	Estimate	SE	HDI (80%)	HDI (90%)	HDI (95%)
Pollination					
Intercept	0.0004	0.0311	[-0.0419, 0.0411]	[-0.0531, 0.0544]	[-0.0670, 0.0622]
Pollinator richness	0.1532	0.0353	[0.1062, 0.1962]	[0.0951, 0.2110]	[0.0865, 0.2266]
Pest control					
Intercept	-0.0003	0.0353	[-0.0434, 0.0485]	[-0.0579, 0.0589]	[-0.0724, 0.0657]
Natural enemy richness	0.2132	0.0412	[0.1585, 0.2646]	[0.1451, 0.2810]	[0.1314, 0.2954]

(B)

(A)

Parameter	Estimate	SE	HDI (80%)	HDI (90%)	HDI (95%)
Pollination					
Intercept	0.0010	0.0333	[-0.0409, 0.0421]	[-0.0536, 0.0537]	[-0.0662, 0.0617]
Pollinator richness	0.1535	0.0356	[0.1096, 0.2006]	[0.0967, 0.2141]	[0.0848, 0.2256]
Pest control					
Intercept	0.0001	0.0401	[-0.0536, 0.0514]	[-0.0712, 0.0646]	[-0.0834, 0.0775]
Natural enemy richness	0.2262	0.0484	[0.1671, 0.2913]	[0.1420, 0.3022]	[0.1315, 0.3225]

Table S3.

Model output for path models testing direct and indirect effects (mediated by changes in abundance) of richness on ecosystem services. Posterior samples were summarized based on the Bayesian point estimate (median), standard error (median absolute deviation), and 80%, 90% and 95% highest density intervals (HDIs). HDIs that do not include zero are reported in bold.

Effect	Estimate	SE	HDI (80%)	HDI (90%)	HDI (95%)
Pollination					
Richness \rightarrow Pollination	0.1058	0.0428	[0.0511, 0.1635]	[0.0326, 0.1779]	[0.0199, 0.1933]
Richness \rightarrow Abundance	0.5701	0.0379	[0.5222, 0.6212]	[0.5044, 0.6319]	[0.4900, 0.6449]
Abundance \rightarrow Pollination	0.0804	0.0460	[0.0232, 0.1401]	[0.0057, 0.1564]	[-0.0140, 0.1665]
Causal mediation analysis					
Direct effect	0.1058		[0.0511, 0.1635]	[0.0326, 0.1779]	[0.0199, 0.1933]
Indirect effect	0.0456		[0.0142, 0.0812]	[0.0038, 0.0903]	[-0.0079, 0.0955]
Total effect	0.1512		[0.1036, 0.1997]	[0.0905, 0.2136]	[0.0774, 0.2239]
Proportion mediated	30.1%				
Pest control					
Richness \rightarrow Pest control	0.1413	0.0434	[0.0832, 0.1951]	[0.0684, 0.2105]	[0.0564, 0.2275]
Richness \rightarrow Abundance	0.4447	0.0494	[0.3782, 0.5070]	[0.3646, 0.5315]	[0.3467, 0.5452]
Abundance \rightarrow Pest control	0.1481	0.0553	[0.0772, 0.2170]	[0.0612, 0.2406]	[0.0467, 0.2619]
Causal mediation analysis					
Direct effect	0.1413		[0.0832, 0.1951]	[0.0684, 0.2105]	[0.0564, 0.2275]
Indirect effect	0.0650		[0.0306, 0.0986]	[0.0242, 0.1119]	[0.0175, 0.1226]
Total effect	0.2084		[0.1545, 0.2629]	[0.1398, 0.2778]	[0.1276, 0.2945]
Proportion mediated	31.2%				

Table S4.

Model output for path models testing direct and indirect effects (mediated by changes in richness) of abundance on ecosystem services. Posterior samples were summarized based on the Bayesian point estimate (median), standard error (median absolute deviation), and 80%, 90% and 95% highest density intervals (HDIs). HDIs that do not include zero are reported in bold.

Effect	Estimate	SE	HDI (80%)	HDI (90%)	HDI (95%)
Pollination					
Abundance \rightarrow Pollination	0.0807	0.0455	[0.0276, 0.1438]	[0.0045, 0.1534]	[-0.0077, 0.1728]
Abundance \rightarrow Richness	0.5706	0.0376	[0.5215, 0.6206]	[0.5053, 0.6342]	[0.4915, 0.6466]
Richness \rightarrow Pollination	0.1052	0.0432	[0.0479, 0.1599]	[0.0362, 0.1799]	[0.0171, 0.1901]
Causal mediation analysis					
Direct effect	0.0807		[0.0276, 0.1438]	[0.0045, 0.1534]	[-0.0077, 0.1728]
Indirect effect	0.0597		[0.0267, 0.0912]	[0.0184, 0.1020]	[0.0117, 0.1119]
Total effect	0.1409		[0.0900, 0.1874]	[0.0753, 0.2012]	[0.0665, 0.2172]
Proportion mediated	42.4%				
Pest control					
Abundance \rightarrow Pest control	0.1409	0.0522	[0.0677, 0.2060]	[0.0548, 0.2353]	[0.0366, 0.2538]
Abundance \rightarrow Richness	0.4396	0.0522	[0.3762, 0.5058]	[0.3566, 0.5239]	[0.3404, 0.5414]
Richness \rightarrow Pest control	0.1495	0.0430	[0.0946, 0.2058]	[0.0770, 0.2195]	[0.0655, 0.2351]
Causal mediation analysis					
Direct effect	0.1409		[0.0677, 0.2060]	[0.0548, 0.2353]	[0.0366, 0.2538]
Indirect effect	0.0651		[0.0398, 0.0922]	[0.0324, 0.0997]	[0.0280, 0.1088]
Total effect	0.2069		[0.1405, 0.2688]	[0.1227, 0.2891]	[0.1133, 0.3135]
Proportion mediated	31.5%				

Table S5.

Model output for path models testing direct and indirect effects (mediated by changes in richness) of landscape simplification on ecosystem services. Posterior samples were summarized based on the Bayesian point estimate (median), standard error (median absolute deviation), and 80%, 90% and 95% highest density intervals (HDIs). HDIs that do not include zero are reported in bold.

Effect	Estimate	SE	HDI (80%)	HDI (90%)	HDI (95%)
Pollination					
Landscape \rightarrow Pollination	-0.0573	0.0409	[-0.1083, -0.0041]	[-0.1203, 0.0147]	[-0.1374, 0.0229]
Landscape \rightarrow Richness	-0.1984	0.0453	[-0.2593, -0.1430]	[-0.2750, -0.1263]	[-0.2909, -0.1119]
$Richness \to Pollination$	0.1543	0.0362	[0.1060, 0.1992]	[0.0937, 0.2148]	[0.0815, 0.2278]
Causal mediation analysis					
Direct effect	-0.0573		[-0.1083, -0.0041]	[-0.1203, 0.0147]	[-0.1374, 0.0229]
Indirect effect	-0.0293		[-0.0425, -0.0168]	[-0.0465, -0.0136]	[-0.0515, -0.0117]
Total effect	-0.0859		[-0.1391, -0.0361]	[-0.1560, -0.0239]	[-0.1642, -0.0074]
Proportion mediated	34.0%				
Pest control					-
Landscape \rightarrow Pest control	-0.0285	0.0442	[-0.0864, -0.0289]	[-0.1043, 0.0461]	[-0.1248, 0.0570]
Landscape \rightarrow Richness	-0.1510	0.0479	[-0.2123, -0.0886]	[-0.2299, -0.0706]	[-0.2491, -0.0581]
Richness \rightarrow Pest control	0.2114	0.0418	[0.1609, 0.2682]	[0.1429, 0.2810]	[0.1315, 0.2962]
Causal mediation analysis					
Direct effect	-0.0285		[-0.0864, -0.0289]	[-0.1043, 0.0461]	[-0.1248, 0.0570]
Indirect effect	-0.0311		[-0.0460 -0.0149]	[-0.0523, -0.0118]	[-0.0578, -0.0083]
Total effect	-0.0610		[-0.1214, -0.0060]	[-0.1378, 0.0120]	[-0.1511, 0.0301]
Proportion mediated	50.9%				

Table S6.

Model output for path models testing the direct and cascading landscape simplification effects on ecosystem services via changes in richness and abundance. Posterior samples were summarized based on the Bayesian point estimate (median), standard error (median absolute deviation), and 80%, 90% and 95% highest density intervals (HDIs). HDIs that do not include zero are reported in bold.

Effect	Estimate	SE	HDI (80%)	HDI (90%)	HDI (95%)
Pollination					
Landscape \rightarrow Richness	-0.1991	0.0458	[-0.2593, -0.1431]	[-0.2779, -0.1269]	[-0.2918, -0.1109]
Landscape \rightarrow Abundance	-0.1914	0.0462	[-0.2503, -0.1302]	[-0.2721, -0.1167]	[-0.2812, -0.0955]
Landscape \rightarrow Pollination	-0.0559	0.0390	[-0.1043, -0.0035]	[-0.1223, 0.0078]	[-0.1351, 0.0215]
Richness \rightarrow Pollination	0.1082	0.0430	[0.0517, 0.1629]	[0.0366 0.1810]	[0.0197, 0.1924]
Abundance \rightarrow Pollination	0.0721	0.0444	[0.0155, 0.1313]	[-0.0017, 0.1479]	[-0.0229, 0.1558]
Pest control					
Landscape \rightarrow Richness	-0.1515	0.0471	[-0.2160, -0.0939]	[-0.2322, -0.0730]	[-0.2430, -0.0471]
Landscape \rightarrow Abundance	-0.0880	0.0511	[-0.1617, -0.0240]	[-0.1727, 0.0044]	[-0.1968, 0.0148]
Landscape \rightarrow Pest control	-0.0250	0.0436	[-0.0785, 0.0316]	[-0.0971, 0.0451]	[-0.1128, 0.0559]
Richness \rightarrow Pest control	0.1524	0.0436	[0.0928, 0.2049]	[0.0822, 0.2272]	[0.0642, 0.2385]
Abundance \rightarrow Pest control	0.1282	0.0540	[0.0597, 0.1967]	[0.0398, 0.2146]	[0.0323, 0.2403]

Table S7.

Model output for path models testing the direct and cascading landscape simplification effects on final crop production via changes in richness, abundance and ecosystem services. Posterior samples were summarized based on the Bayesian point estimate (median), standard error (median absolute deviation), and 80%, 90% and 95% highest density intervals (HDIs). HDIs that do not include zero are reported in bold.

Effect	Estimate	SE	HDI (80%)	HDI (90%)	HDI (95%)
Pollination					
Landscape \rightarrow Richness	-0.1870	0.0571	[-0.2631, -0.1128]	[-0.2876, -0.0926]	[-0.3067, -0.0722]
Landscape \rightarrow Abundance	-0.1988	0.0542	[-0.2680, -0.1270]	[-0.2915, -0.1069]	[-0.3103, -0.0884]
Richness \rightarrow Pollination	0.1477	0.0638	[0.0645, 0.2281]	[0.0485, 0.2568]	[0.0212, 0.2712]
Abundance \rightarrow Pollination	0.0104	0.0667	[-0.0742, 0.0961]	[-0.0951, 0.1243]	[-0.1250, 0.1373]
Pollination \rightarrow Production	0.3388	0.0868	[0.2268, 0.4509]	[0.1910, 0.4813]	[0.1549, 0.5070]
Pest control					
Landscape \rightarrow Richness	-0.2073	0.0840	[-0.3197, -0.0977]	[-0.3502, -0.0554]	[-0.3915, -0.0216]
Landscape \rightarrow Abundance	-0.0304	0.1060	[-0.1759, 0.1106]	[-0.2242, 0.1587]	[-0.2745, 0.1938]
Richness \rightarrow Pest control	0.2255	0.0786	[0.1201, 0.3236]	[0.0932, 0.3573]	[0.0730, 0.3905]
Abundance \rightarrow Pest control	0.0040	0.0793	[-0.1016, 0.1064]	[-0.1331, 0.1413]	[-0.1572, 0.1769]
Pest control \rightarrow Production	0.1395	0.0786	[0.0404, 0.2451]	[0.0151 0.2822]	[-0.0257, 0.3011]

Table S8.

Model output for path models testing direct and mediated effects of pollinator richness and abundance (with honey bees) on pollination. Posterior samples were summarized based on the Bayesian point estimate (median), standard error (median absolute deviation), and 80%, 90% and 95% highest density intervals (HDIs). HDIs that do not include zero are reported in bold.

Effect	Estimate	SE	HDI (80%)	HDI (90%)	HDI (95%)
Pollination					
Richness \rightarrow Pollination	0.1043	0.0419	[0.0524, 0.1588]	[0.0356, 0.1715]	[0.0250, 0.1878]
Richness \rightarrow Abundance	0.5160	0.0377	[0.4682, 0.5659]	[0.4511, 0.5784]	[0.4328, 0.5882]
Abundance \rightarrow Pollination	0.1183	0.0452	[0.0617, 0.1768]	[0.0430, 0.1903]	[0.0278, 0.2038]
Causal mediation analysis					
Direct effect	0.1043		[0.0524, 0.1588]	[0.0356, 0.1715]	[0.0250, 0.1878]
Indirect effect	0.0606		[0.0292, 0.0893]	[0.0226, 0.0996]	[0.0162, 0.1085]
Total effect	0.1653		[0.1195, 0.2138]	[0.1038, 0.2260]	[0.0922, 0.2371]
Proportion mediated	36.6%				
Pollination					
Abundance \rightarrow Pollination	0.1176	0.0443	[0.0588, 0.1739]	[0.0440, 0.1938]	[0.0300, 0.2110]
Abundance \rightarrow Richness	0.5157	0.0386	[0.4631, 0.5629]	[0.4510, 0.5791]	[0.4357, 0.5901]
Richness \rightarrow Pollination	0.1055	0.0402	[0.0511, 0.1565]	[0.0355, 0.1708]	[0.0220, 0.1851]
Causal mediation analysis					
Direct effect	0.1176		[0.0588, 0.1739]	[0.0440, 0.1938]	[0.0300, 0.2110]
Indirect effect	0.0540		[0.0259, 0.0810]	[0.0173, 0.0884]	[0.0105, 0.0963]
Total effect	0.1710		[0.1205, 0.2223]	[0.1005, 0.2329]	[0.0944, 0.2522]
Proportion mediated	31.6%				

Table S9.

Results of pairwise comparison of richness-ecosystem service relationships according to the methods used to sample pollinators and natural enemies. A Bayesian hypothesis testing was used to assess the relative statistical evidence in favor of the null hypothesis versus the alternative hypothesis.

Hypothesis	Estimate difference	Estimate Error	CI lower	CI upper	Evidence Ratio
Pollination					
Active > Passive	-0.02	0.10	-0.18	Inf	0.78
Pest control					
Active > Passive	0.04	0.08	-0.01	Inf	2.17

Table S10.

Results of pairwise comparison of richness-ecosystem service relationships according to the methods used to quantify pollination and pest control services. A Bayesian hypothesis testing was used to assess the relative statistical evidence in favor of the null hypothesis versus the alternative hypothesis.

Hypothesis	Estimate difference	Estimate Error	CI lower	CI upper
Pollination				
Fruit set = Δ Fruit weight	0.11	0.13	-0.15	0.37
Fruit set = Seed set	-0.10	0.08	-0.26	0.06
Δ Fruit weight = Seed set	0.22	0.15	-0.07	0.50
Pest control				
Cage (damage) = Cage (pest abundance)	0.09	0.18	-0.26	0.44
Cage (damage) = Pest damage	0.17	0.15	-0.12	0.47
Cage (damage) = Sentinel experiments	0.05	0.15	-0.24	0.34
Cage (pest abundance) = Pest damage	0.08	0.14	-0.19	0.36
Cage (pest abundance) = Sentinel experiments	-0.04	0.13	-0.30	0.22
Pest damage = Sentinel experiments	-0.12	0.10	-0.32	0.07

Supplementary Text

Detailed Acknowledgements

M.D., E.A.M and I.S.D. were supported by EU-FP7 LIBERATION (311781).

M.D., E.A.M, A.H., J.S and I.S.D were supported by Biodiversa-FACCE ECODEAL (PCIN-2014–048).

C.M.K. was supported by an USDA-NIFA Organic Agriculture Research & Extension Award (2015-51300-24155).

D.S.K. was supported by the "National Socio-Environmental Synthesis Center (SESYNC)— National Science Foundation Award DBI-1052875".

D.A.S. was supported by the Environmental Protection Agency, Ireland.

D.K.L. was supported by the United States Dept. Agriculture-NRI grant 2005-55302-16345.

D.A.L. was supported by the US DOE Office of Science (DE-FCO2-07ER64494) and Office of Energy Efficiency and Renewable Energy (DE-ACO5-76RL01830) to the DOE Great Lakes Bioenergy Research Center, and by the NSF Long-term Ecological Research Program (DEB 1027253) at the Kellogg Biological Station and by Michigan State University AgBioResearch.

H.G.S. was supported by The Swedish Research Council Formas & the Strategic Research Area BECC.

J.G. was supported by the Swiss National Science Foundation, the Mercator Fuondation, and ETH Zurich grants. L.M. was supported by EU-FP7 LIBERATION (311781).

H.G. was supported by an USDA Northeast Sustainable Agriculture Research and Extension Award #GNE12-037.

M.J. was supported by the Centre for Biological Control, SLU.

T.T. was supported by the DFG FOR 2432 (India), the project "Diversity Turn" (VW Foundation), the DFG SFB 990 EFForTS and the GIZ-Bioversity project on Peruvian cocoa.

I.B. was supported by Biodiversa-FACCE ECODEAL (PCIN-2014-048).

S.B. acknowledges her Ph.D scholarship by the Deutsche Bundesstiftung Umwelt (German Federal Environmental Foundation).

A.D.M.B. thanks for a Ph.D scholarship financed by The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. P.C. was supported by Programa Nacional Apicola (PROAPI).

A.C. research conducted within the Research Unit FOR1246 (KILI project) funded by the German Research Foundation (DFG).

F.D.S.S. was supported by the "Fundação de Apoio à Pesquisa do Distrito Federal"/FAPDF, Brazil (Foundation for Research Support of the Distrito Federal), nº 9852.56.31658.07042016. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

G.A.G. was funded by the Dutch Ministry of Agriculture, Nature and Food Quality (BO-11-0.11.01-0.51).

J.E. was supported by The Swedish Research Council Formas & the Strategic Research Area BECC.

T.F. was jointly funded by the Netherlands Organization for Scientific Research (research programme NWO-Green) and BASF - Vegetable Seeds under project number 870.15.030. P.F. and C. L. were supported by ANR grant Peerless "Predictive Ecological Engineering for Landscape Ecosystem Services and Sustainability" (ANR-12-AGRO-0006).

B.M.F thanks the Project "Conservation and Management of Pollinators for Sustainable Agriculture, through an Ecosystem Approach", which is supported by the Global Environmental Facility Bank (GEF), coordinated by the Food andAgriculture Organization of the United Nations (FAO) with implementation support from the United Nations Environment Programme (UNEP) and supported in Brazil by the Ministry of Environment (MMA) and Brazilian Biodiversity Fund (Funbio). Also to the National Council for Scientific and Technological Development - CNPq, Brasília-Brazil for financial support to the Brazilian Network of Cashew Pollinators (project # 556042/2009-3) and a Productivity Research Grant (#302934/2010-3).

M.P.D.G. was funded jointly by a grant from BBSRC, Defra, NERC, the Scottish Government and the Wellcome Trust, under the UK Insect Pollinators Initiative.

C.G. was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494) and by a USDA Agriculture and Food Research Initiative Competitive Grant 2011-67009-30022.

J.H. was supported by CNPq – INCT-IN-TREE (465767/2014-1), CNPq-PVE (407152/2013-0) and Capes for Ph.D scholarship.

A.L.I. was supported by the University of Michigan - Department of Ecology and Evolutionary Biology and the Rackham Graduate School, University of Michigan.

B.K.K. was supported by the German Research Foundation (DFG).

A.M.K. data are part of the EcoFruit project funded through the 2013-2014 BiodivERsA/FACCE-JPI joint call (agreement# BiodivERsA-FACCE2014-74), with the national funder of the German Federal Ministry of Education and Research (PT-DLR/BMBF) (grant# 01LC1403).

T.K. was supported by the Israeli Ministry of Agriculture and Rural Development (grant number 131-1793-14).

T.N.K. was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494) and by a USDA Agriculture and Food Research Initiative Competitive Grant 2011-67009-30022.

B.M. was partly funded by a scholarship of the German National Academic Foundation (Studienstiftung des deutschen Volkes) and benefited from financial support from the German Science Foundation (DFG Grant CL-474/1-1, ELUC).

R.E.M. was funded by a Specialty Crop Block Grant from the Wisconsin Department of Agriculture, Trade, and Consumer Protection.

M.G.E.M. was supported by an NSERC PGS-D Scholarship and an NSERC Strategic Projects Grant.

S.G.P. was funded jointly by a grant from BBSRC, Defra, NERC, the Scottish Government and the Wellcome Trust, under the UK Insect Pollinators Initiative.

J.A.R. was supported by an USDA grant CA-D-ENM-5671-RR. A.M.S. was supported by The University of Idaho, the USFWS (NMBCA grant F11AP01025), the Perennial Crop Platform (PCP) and CGIAR - Water Land and Ecosystems (WLE).

M.S. was supported by DFG grant FOR 1246 "Kilimanjaro ecosystems under global change: Linking biodiversity, biotic interactions and biogeochemical ecosystem processes".

A.R.S. research was funded by the CS Fund and the United States Army Research Office (ARO).

M.T. was supported by JSPS KAKENHI Grant Number 16H05061.

H.T. was supported by the Environment Research and Technology Development Fund (S-15-2) of the Ministryof the Environment, and JSPS KAKENHI Grant Number 18H02220.

B.F.V. was supported by CNPq – INCT-IN-TREE (#465767/2014-1), CNPq-PVE (407152/2013-0) and and a Productivity Research Grant CNPq (#305470/2013-2).

C.W. was supported by the Deutsche Forschungsgemeinschaft (DFG) (Projekt number 405945293).

B.K.W. was supported by a PhD scholarship from the University of New England and funded by RnD4Profit-14-01-008 "Multi-scale monitoring tools for managing Australian Tree Crops: Industry meets innovation".

C.Z.T. was supported by a Severo-Ochoa predoctoral fellowship (SVP-2014-068580) and by the Biodiversa-FACCE project ECODEAL.

W.Z. was supported by CGIAR research program on Water, land and ecosystems (WLE).

Y.Z. was funded by the Division for Earth and Life Sciences of the Netherlands Organization for Scientific Research (grant 833.13.004).

References

- 58. U. Samnegård *et al.*, Management trade-offs on ecosystem services in apple orchards across Europe: direct and indirect effects of organic production. *J. Appl. Ecol.* (2018), doi:10.1111/1365-2664.13292.
- 59. M. P. D. Garratt *et al.*, Pollination deficits in UK apple orchards. *J. Pollinat. Ecol.* **12**, 9–14 (2014).
- 60. G. A. de Groot *et al.*, *De bijdrage van (wilde) bestuivers aan de opbrengst van appels en blauwe bessen: kwantificering van ecosysteemdiensten in Nederland* (Alterra, Wageningen-UR, 2015), (available at http://edepot.wur.nl/353774).
- 61. R. E. Mallinger, C. Gratton, Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. *J. Appl. Ecol.* **52**, 323–330 (2015).
- 62. M. P. D. Garratt *et al.*, The identity of crop pollinators helps target conservation for improved ecosystem services. *Biol. Conserv.* **169**, 128–135 (2014).
- 63. H. Taki, K. Okabe, S. Makino, Y. Yamaura, M. Sueyoshi, Contribution of small insects to pollination of common buckwheat, a distylous crop. *Ann. Appl. Biol.* **155**, 121–129 (2009).
- 64. H. Taki *et al.*, Effects of landscape metrics on *Apis* and non-*Apis* pollinators and seed set in common buckwheat. *Basic Appl. Ecol.* **11**, 594–602 (2010).
- 65. A. Holzschuh, J.-H. Dudenhöffer, T. Tscharntke, Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. *Biol. Conserv.* **153**, 101–107 (2012).
- V. Boreux, S. Krishnan, K. G. Cheppudira, J. Ghazoul, Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests. *Agric. Ecosyst. Environ.* 172, 42–48 (2013).
- 67. V. Boreux *et al.*, Agroforestry coffee production increased by native shade trees, irrigation, and liming. *Agron. Sustain. Dev.* **36** (2016), doi:10.1007/s13593-016-0377-7.
- 68. A. Classen *et al.*, Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. *Proc. R. Soc. B: Biol. Sci.* **281**, 20133148–20133148 (2014).
- 69. J. Hipólito, D. Boscolo, B. F. Viana, Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. *Agric. Ecosyst. Environ.* **256**, 218–225 (2018).
- S. Krishnan, C. G. Kushalappa, R. U. Shaanker, J. Ghazoul, Status of pollinators and their efficiency in coffee fruit set in a fragmented landscape mosaic in South India. *Basic Appl. Ecol.* 13, 277–285 (2012).
- S. Krishnan, K. G. Cheppudira, J. Ghazoul, "Pollinator services in coffee agroforests of the western Ghats" in *Agroforestry*, J. Dagar, V. Tewari, Eds. (Springer Singapore, Singapore, 2017), pp. 771–795.
- 72. M. Nesper, C. Kueffer, S. Krishnan, C. G. Kushalappa, J. Ghazoul, Shade tree diversity enhances coffee production and quality in agroforestry systems in the Western Ghats.

Agric. Ecosyst. & Environ. 247, 172–181 (2017).

- S. Cusser, J. L. Neff, S. Jha, Natural land cover drives pollinator abundance and richness, leading to reductions in pollen limitation in cotton agroecosystems. *Agric. Ecosyst. Environ.* 226, 33–42 (2016).
- 74. N. P. Chacoff, M. A. Aizen, Edge effects on flower-visiting insects in grapefruit plantations bordering premontane subtropical forest. *J. Appl. Ecol.* **43**, 18–27 (2006).
- 75. N. P. Chacoff, M. A. Aizen, V. Aschero, Proximity to forest edge does not affect crop production despite pollen limitation. *Proc. R. Soc. B: Biol. Sci.* **275**, 907–913 (2008).
- L. G. Carvalheiro, C. L. Seymour, R. Veldtman, S. W. Nicolson, Pollination services decline with distance from natural habitat even in biodiversity-rich areas. *J. Appl. Ecol.* 47, 810–820 (2010).
- L. G. Carvalheiro, C. L. Seymour, S. W. Nicolson, R. Veldtman, Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. *J. Appl. Ecol.* 49, 1373–1383 (2012).
- D. A. Stanley, D. Gunning, J. C. Stout, Pollinators and pollination of oilseed rape crops (*Brassica napus* L.) in Ireland: ecological and economic incentives for pollinator conservation. *J. Insect Conserv.* 17, 1181–1189 (2013).
- D. A. Stanley, J. C. Stout, Pollinator sharing between mass-flowering oilseed rape and coflowering wild plants: implications for wild plant pollination. *Plant Ecol.* 215, 315–325 (2014).
- 80. Y. Zou *et al.*, Wild pollinators enhance oilseed rape yield in small-holder farming systems in China. *BMC Ecol.* **17**, 1–7 (2017).
- 81. H. Connelly, K. Poveda, G. Loeb, Landscape simplification decreases wild bee pollination services to strawberry. *Agric. Ecosyst. Environ.* **211**, 51–56 (2015).
- 82. H. Grab, K. Poveda, B. Danforth, G. Loeb, Landscape context shifts the balance of costs and benefits from wildflower borders on multiple ecosystem services. *Proc. R. Soc. B: Biol. Sci.* **285**, 20181102 (2018).
- 83. R. I. A. Stewart *et al.*, Ecosystem services across the aquatic-terrestrial boundary: linking ponds to pollination. *Basic Appl. Ecol.* **18**, 13–20 (2016).
- 84. B. Ricci *et al.*, The influence of landscape on insect pest dynamics: a case study in southeastern France. *Landsc. Ecol.* **24**, 337–349 (2009).
- 85. M. Maalouly, P. Franck, J.-C. Bouvier, J.-F. Toubon, C. Lavigne, Codling moth parasitism is affected by semi-natural habitats and agricultural practices at orchard and landscape levels. *Agric. Ecosyst. & Environ.* **169**, 33–42 (2013).
- 86. B. Caballero-López *et al.*, Aphids and their natural enemies are differently affected by habitat features at local and landscape scales. *Biol. Control.* **63**, 222–229 (2012).
- G. Tamburini, S. De Simone, M. Sigura, F. Boscutti, L. Marini, Conservation tillage mitigates the negative effect of landscape simplification on biological control. *J. Appl. Ecol.* 53, 233–241 (2016).
- 88. G. Tamburini, S. De Simone, M. Sigura, F. Boscutti, L. Marini, Soil management shapes

ecosystem service provision and trade-offs in agricultural landscapes. *Proc. R. Soc. B: Biol. Sci.* **283**, 20161369 (2016).

- 89. G. Tamburini *et al.*, Conservation tillage reduces the negative impact of urbanisation on carabid communities. *Insect Conserv. Divers.* **9**, 438–445 (2016).
- 90. H. Taki, K. Maeto, K. Okabe, N. Haruyama, Influences of the seminatural and natural matrix surrounding crop fields on aphid presence and aphid predator abundance within a complex landscape. *Agric. Ecosyst. & Environ.* **179**, 87–93 (2013).
- 91. D. K. Letourneau, S. G. Bothwell Allen, J. O. Stireman III, Perennial habitat fragments, parasitoid diversity and parasitism in ephemeral crops. *J. Appl. Ecol.* **49**, 1405–1416 (2012).
- 92. B. Maas, Y. Clough, T. Tscharntke, Bats and birds increase crop yield in tropical agroforestry landscapes. *Ecol. Lett.* **16**, 1480–1487 (2013).
- 93. M. E. O. O'Rourke, K. Rienzo-Stack, A. G. Power, A multi-scale, landscape approach to predicting insect populations in agroecosystems. *Ecol. Appl.* **21**, 1782–1791 (2011).
- 94. M. Jonsson *et al.*, Agricultural intensification drives landscape-context effects on hostparasitoid interactions in agroecosystems. *J. Appl. Ecol.* **49**, 706–714 (2012).
- 95. M. Kishinevsky, T. Keasar, A. R. Harari, E. Chiel, A comparison of naturally growing vegetation vs. border-planted companion plants for sustaining parasitoids in pomegranate orchards. *Agric. Ecosyst. & Environ.* **246**, 117–123 (2017).
- 96. E. A. Martin, B. Seo, C.-R. Park, B. Reineking, I. Steffan-Dewenter, Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. *Ecol. Appl.* **26**, 448–462 (2016).
- K. Poveda, E. Martínez, M. F. Kersch-Becker, M. A. Bonilla, T. Tscharntke, Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. *J. Appl. Ecol.* 49, 513–522 (2012).
- M. B. Takada, A. Yoshioka, S. Takagi, S. Iwabuchi, I. Washitani, Multiple spatial scale factors affecting mirid bug abundance and damage level in organic rice paddies. *Biol. Control.* 60, 169–174 (2012).
- M. G. E. Mitchell, E. M. Bennett, A. Gonzalez, Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. *Agric. Ecosyst. Environ.* 192, 144–151 (2014).
- 100. F. Geiger *et al.*, Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. *Basic Appl. Ecol.* **11**, 97–105 (2010).
- 101. M. Plećaš *et al.*, Landscape composition and configuration influence cereal aphidparasitoid-hyperparasitoid interactions and biological control differentially across years. *Agric. Ecosyst. Environ.* **183**, 1–10 (2014).
- 102. M. Tschumi, M. Albrecht, M. H. Entling, K. Jacot, High effectiveness of tailored flower strips in reducing pests and crop plant damage. *Proc. R. Soc. Biol. Sci.* 282, 20151369 (2015).