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Idiosyncratic tendency to choose one alternative over others in the absence of 

an identified reason is a common observation in two-alternative forced-choice 

experiments. It is tempting to account for it as resulting from the (unknown) 

participant-specific history and thus treat it as a measurement noise. Here we 

quantify idiosyncratic choice biases in a perceptual discrimination task and a 

motor task. We report substantial and significant biases in both cases that 

cannot be accounted for by the experimental context. Then, we present 

theoretical evidence that even in idealized experiments, in which the settings are 

symmetric, idiosyncratic choice bias is expected to emerge from the dynamics 

of competing neuronal networks. We thus argue that idiosyncratic choice bias 

reflects the microscopic dynamics of choice and therefore is virtually inevitable 

in any comparison or decision task.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/284877doi: bioRxiv preprint 

https://doi.org/10.1101/284877
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Decision making is the cognitive process of choosing an action among a set of 

alternatives. Decision making is often studied in experiments, composed of trials, each 

associated with a single decision. While a decision in a trial is primarily determined by 

the relevant features of the alternatives in that trial, biases are commonly observed1. 

Of specific relevance to this work are participant-specific tendencies to prefer one 

alternative over the other(s). Such biases, which we term idiosyncratic choice biases 

(ICBs) have been described as early as half a century ago in perceptual 

discrimination2–4 and operant learning tasks5–7. 

In discrimination tasks, the ICBs interfere with the estimate of perceptual noise. In 

operant learning experiments these biases mask the learning behavior. That is why 

such biases are typically considered as nuisance. When analyzing choice behavior, 

these biases are often accounted for by adding an ad-hoc participant-specific bias 

parameter3 or by counterbalancing the choices to average them out.  

Many factors can contribute to ICBs. For example, in perceptual discrimination tasks, 

a stimulus in a given trial is often perceived as being more similar to the stimuli 

presented in previous trials8–10. Similarly, participants tend to choose those actions that 

were previously more often rewarded11,12. Finally, participants may exhibit a preference 

towards an alternative because the corresponding motor action requires the least 

effort. Heterogeneity between the participants along any of these factors is sufficient 

to generate ICBs. One may thus expect that these biases would be diminished if these 

factors are controlled for in the experimental design or are factored out in the analysis. 

In contrast to this expectation, here we argue that even in an idealized gedanken 

experiment, in which symmetry between subjects in all the above factors is kept, 

substantial ICBs are expected. These ICBs that cannot be accounted for by the 

experimental context are the subject of this study. 

We quantify ICBs in a perceptual discrimination task and in a novel sensory-motor task, 

in which sequential and operant factors are controlled for. We then analyze the ICBs 

in the framework of a Drift Diffusion Model (DDM) and show that they are primarily the 

result of biased drift rates. Finally, we show analytically and numerically that ICBs 

naturally emerge from the intrinsic stochasticity of the dynamics of competing 

populations of spiking neurons. Our work thus suggests that ICBs are inevitable unless 

they are actively suppressed, e.g. by the reward schedule. 
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Results 

ICBs in the bisection discrimination task 

We quantified ICBs in the bisection discrimination task depicted in Fig. 1a (inset). In 

each trial, a vertical transected line was presented on the screen and participants were 

instructed to indicate the offset direction of the transecting line (see Materials and 

Methods). Fig. 1a depicts the fraction of an ‘Up’ response, 𝑝  as a function of the 

offset for three participants. As expected, the probability of a correct response 

increased with the magnitude of the offset 𝛥𝐿 𝐿⁄ ≡ (𝐿 − 𝐿 ) (𝐿 + 𝐿 )⁄ , where 𝐿  and 

𝐿  denote the lengths of the Up and Down segments of the vertical line. However, the 

responses differed between the three participants: the blue psychometric curve is 

shifted to the right of the black curve, whereas the red curve is shifted to its left.  

We considered the choices of the participants in 20 “impossible” trials (1/6 of the trials), 

in which the line was transected at its midpoint (𝛥𝐿 = 0). The participant whose 

psychometric curve is plotted in black in Fig. 1a responded ‘Up’ in 11/20 impossible 

trials, which is statistically indistinguishable from chance (p=0.82, two-sided Binomial 

test). By contrast, the two other participants (red and blue in Fig. 1a) exhibited 

significant choice biases, responding ‘Up’ in 18/20 and 1/20 of the trials, respectively 

(p<0.001, two-sided Binomial test). Overall, 48% of the participants (n=100) exhibited 

a significant choice bias (24% significant ‘Up’, p < 0.05, two-sided Binomial test; 24% 

significant ‘Down’, p < 0.05, two-sided Binomial test). These ICBs were not restricted 

to the impossible trials. Rather, they were also observed in the possible trials albeit to 

a lesser degree. Biases in the possible and impossible trials were highly correlated 

(Fig. S1; two-sided Pearson’s 𝜌=0.63, p<10-12). At the population level, we could not 

detect a global bias. The fraction of ‘Up’ choices in the impossible trials across all 

participants was 0.505, which is not significantly different from chance (95% CI 0.45-

0.56, bootstrap). 

To quantify the heterogeneity of these ICBs across the population, we computed for 

each participant the difference between the fraction of ‘Up’ and ‘Down’ responses in 

the impossible trials. This measure quantifies the bias because it vanishes for unbiased 

choices (ICB = 0 for 𝑝 = 0.5) and its magnitude is maximal if choices are 

deterministic (ICB = −1 for 𝑝 = 0; ICB = 1 for 𝑝 = 1). The distribution of ICBs 
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across the participants is depicted in Fig. 1b. Its width is a measure of idiosyncrasy of 

these biases across the participants. We found that the variance of the distribution is 

significantly larger than expected by chance (p<10-6, one-sided bootstrap test, 

Bernoulli process). These results further establish the existence of ICBs in the vertical 

bisection task.  

As mentioned in the Introduction, operant effects can contribute to ICBs. To minimize 

the contribution of feedback to the ICBs, participants received only sparse feedback 

every 30 trials on their accumulated performance until that point. Another potential 

contributor to ICBs is a propensity to repeat in a trial the actions taken in the previous 

trials. To minimize sequential effects, the impossible trials were always preceded by 

three irrelevant trials (see Materials and Methods). Indeed, the probability that a 

participant would repeat in an impossible trial the action she took in the previous 

(possible) trial was 0.50 ± 0.01 (average over participants ± SEM) (see also Fig. S2).  

We then analyzed the ICBs in the framework of the DDM. According to the DDM, noisy 

evidence in favor of each alternative is integrated over the course of the trial. The 

difference of these evidence, a quantity known as the decision variable, is computed 

and a decision is reached once this variable reaches one of two decision thresholds. 

The DDM has been extensively used to explain both behavioral and neurophysiological 

data13–18. In this framework, ICBs in the impossible trials can emerge via two 

mechanisms. In the first mechanism, the bias results from the initial condition of the 

decision variable being not equidistant from the two thresholds. In the second 

mechanism, the bias results from a drift bias of the decision variable, which is unrelated 

to the veridical evidence19–22.  

We investigated which of these two mechanisms best accounts for the ICBs which we 

observed experimentally. To that end, we fit choices and reaction-times of participants 

in the impossible trials to four versions of the DDM. The goodness of each fit was 

assessed using the Deviance Information Criterion (DIC; Materials and Methods). The 

first model was a baseline DDM with symmetric, i.e., equidistant initial condition and 

no drift bias. By construction, there are no ICBs in this model and it was only used as 

a baseline for comparison with the other three models. To dissect the relative 

contributions of the drift and initial condition to the ICBs, we added to this baseline 

DDM (1) idiosyncratic drift rates ('drift bias' DDM), (2) idiosyncratic initial conditions ('IC 
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bias' DDM) or (3) both idiosyncratic drift rates and idiosyncratic initial conditions 

('IC+drift bias' DDM). The DICs of all three models were compared to the DIC of the 

baseline model. As depicted in Fig. 1c, all three models did better than the baseline 

model. The 'drift bias' DDM (green) did substantially better than the 'IC bias' DDM 

(purple). These results suggest that in the framework of the DDM, bias in initial 

condition contributes less to the observed ICBs than the bias in the drift rate. We further 

dissected the relative contributions of the drift and IC to the ICBs in the 'IC+drift' DDM 

(black), which did better than the other models (Fig. 1c). To that goal, we computed for 

each participant the ICB expected from the DDM with parameters extracted from the 

'IC+drift' DDM. As shown in Fig. 1d (black Xs), the expected and observed ICBs are in 

good agreement. They are also in good agreement when instead of the extracted initial 

conditions, symmetric ones are used (green circles). This indicates that asymmetry in 

the initial conditions does not play an important role in the generation of the ICBs. 

Indeed, when using the extracted initial conditions but unbiased drift we failed to 

account for the ICBs (purple squares).   
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Figure 1: ICBs in the vertical bisection task. a, Psychometric curves of three participants: the 

observed fraction of responding 'Up', 𝑝 , vs. the sensory offset 𝛥𝐿 𝐿⁄ . Error bars denote the 

standard error of the mean (SEM). Curves are best-fit logistic functions. Inset, a schematic 

illustration of the stimulus in a single trial. b, Distribution of ICBs (ICB = 𝑝 − 𝑝 ) of all 

participants (𝑛 = 100). The ICBs of the three participants in (b) are denoted in the histogram 

by arrows of corresponding colors. c, Model comparison using DIC (Materials and Methods). 

The DIC of the 'IC bias' DDM (purple), 'drift bias' DDM (green) and 'IC+drift bias' DDM (black) 

were measured relative to the baseline DDM, ΔDIC = DICmodel − DICbaseline. Error bars are SEM, 

based on three repetitions of the fitting procedures. Results indicate that the ‘IC+drift’ DDM 

accounts for the data slightly better than the 'drift bias' DDM and much better than the 'IC bias' 

DDM. d, Relative contributions of the drift-bias and IC-bias to the ICBs in the 'IC+drift bias' 

DDM. Each symbol depicts a single participant. Abscissa: the observed 𝑝  in the impossible 

trials. Ordinate: expected 𝑝 , based on average posteriors of each participant in the biased 

‘IC+drift’ DDM (Eq. 6 in Materials and Methods). Black Xs: both initial conditions and drifts 

were taken from the ‘IC+drift’ DDM. Green circles: Drifts were taken from the ‘IC+drift’ DDM 

with symmetric initial conditions (𝑧 = 0.5 in Eq. 6). Purple squares: Initial conditions were taken 

from the ‘IC+drift’ DDM assuming no drift (𝐴 = 0 in Eq. 6). Gray line is the diagonal. Slopes of 

best-fit orthogonal regressions are: black Xs, 0.96; green circles, 0.93; purple squares, 0.04.  

ICB in the motor task 

Next, we constructed a novel motor task, in which ICBs are unlikely to emerge from 

idiosyncratic sensory asymmetries. In each trial, two adjacent colored dots were 
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displayed on a white circular background (Inset in Fig. 2a, see also Fig. S3a). 

Participants were instructed to drag, as fast as possible, these two dots into a central 

region indicated by a larger black disk. To ensure that the participants would make two 

temporally-separated reaching movements, we introduced a 1.1 sec delay after the 

completion of the dragging of the first colored dot (Materials and Methods). The task 

was presented to the participants as a motor-speed task, in which faster movements 

are more rewarded (see Materials and Methods). However, the behavioral parameter 

that we were interested in was the order in which participants chose to execute the two 

dragging movements. In that sense, this paradigm is a symmetric, binary, implicit, 

decision-making task. In this task, choice bias manifests as a particular preference in 

the order in which the two dots are dragged. Each participant was presented with 10 

pairs of dots, each pair differing in colors and locations. Each of these pairs was 

presented 20 times in a pseudorandom order. The ICB of a participant for a given pair 

of dots was defined as the difference between the fraction of trials in which the 

clockwise (CW) and counterclockwise (CCW) dot was dragged first (ICB = 𝑝 − 𝑝 ). 

This allowed us to measure 10 different ICBs (one for each pair) for each participant.  

Figure 2a depicts the distribution of choice biases across the participants for a 

particular pair of dots (inset). At the population level, we could not detect a global bias. 

The fraction of clock-wise choices across all participants was 0.55, which is not 

significantly different from chance (95% CI 0.40-0.70, bootstrap). Nevertheless, 65% 

of the participants exhibited significant ICB for this pair (35% significant preference 

towards choosing first the clock-wise dot and 30% significant preference in favor of 

choosing first the counter-clockwise dot; p < 0.05 two-sided Binomial test). Consistent 

with that, the variance of the distribution of preferences in that pair was significantly 

larger than expected by the population-average preference (p<10-6, one-sided 

bootstrap test, Bernoulli process). Variance of the distributions of preferences that is 

significantly larger than expected by the population-average preference was observed 

in all ten pairs (Fig. S3b).  

We then analyzed the ICBs using the DDM framework. As in the bisection task, the 

‘drift bias’ model (green) did substantially better than the ‘IC bias’ model (purple) for all 

ten pairs, indicating a smaller contribution to behavior of the biased initial conditions 

relative to the contribution of biased drift rates. The DIC of the 'IC+drift bias' DDM 
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(black) was comparable to the DIC of the 'drift bias' DDM (Fig. 2c). In half of the pairs, 

the DIC of the 'IC+drift bias' DDM model was the lowest, whereas in the other half, the 

DIC of the 'drift bias' DDM was the lowest. We further dissected the contributions of 

drift biases and initial conditions to the observed ICBs using the 'IC+drift bias' DDM 

(Fig. 2d). As in the bisection task, we found that drift bias, rather than asymmetry in 

the initial conditions, is the dominant contributor to ICBs in the motor task.  

 

Figure 2: ICBs in the motor task. ICB = 𝑝 − 𝑝  where 𝑝  and 𝑝 , are the probabilities 

of choosing first the clockwise and the counter clockwise dot. a, The distribution of ICBs of all 

participants (𝑛 = 20) for the pair of dots in the inset. b, The distribution of ICBs for all 10 pairs 

of dots in the experiment (color-coded as in Fig. S3b). c, Model comparison using DIC, as Fig. 

1c. Model fits were performed separately on each pair of dots. Bars and error bars denote the 

average and SEM, 𝛥DIC, over the 10 pairs of dots. d, Same as Fig. 1d, demonstrating that the 

ICBs in the motor task are dominated by the drift-biases. Slopes of best-fit orthogonal 

regressions are: black Xs, 0.98; green circles, 0.99; purple squares, -0.01.  

 

ICBs in the Poisson network model  

What underlies participant-to-participant differences in drift rates in the bisection and 

motor tasks? To address this question, we constructed a simple neuronal network 

model of decision making and used it to study behavior in the bisection task. It 

consists of two populations of neurons representing ‘Up’ and ‘Down’ choices, 

denoted by ‘U’ and ‘D’ (Fig. 3a, left). Each population is made of 𝑁 2⁄  independent 

Poisson neurons, such that the spike train of each neuron in a trial is an independent 

homogeneous Poisson process. The firing rates of the neurons depend on the offset 

in the input (𝛥𝐿) such that the firing rates of the U neurons increase with 𝛥𝐿, whereas 
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that of the D neurons decrease with 𝛥𝐿 (Fig. 3a, right). In addition, each neuron 

receives an offset-independent input, which captures the heterogeneity in the firing 

rates of the neurons within each population (see Eq. 1 in Materials and Methods). 

Specifically, the firing rates of the neurons are drawn from log-normal distributions, 

whose parameters depend on the offset (orange and pink distributions in Fig. 3a). In 

the absence of an offset (𝛥𝐿 = 0), the firing rate distributions of the two populations 

are the same (blue distribution in Fig. 3a, right). Both the Poisson-like firing of action 

potentials23 and the log-normal distribution of firing rates24,25 are hallmarks of cortical 

dynamics.  

In this model, decision depends on the cumulative number of spikes, 𝑛 (𝑡) and 𝑛 (𝑡), 

emitted by populations U and D up to time 𝑡 in a trial. A decision is made at time 𝑡∗, at 

which the absolute value of the difference in the numbers of spikes, |𝛥𝑛(𝑡∗)| =

|𝑛 (𝑡) − 𝑛 (𝑡)|, reaches a given threshold, 𝜃, for the first time. The decision is ‘Up’ if 

𝛥𝑛(𝑡∗) = 𝜃, whereas it is ‘Down’ if 𝛥𝑛(𝑡∗) = −𝜃 (Fig. 3b).  

 

Figure 3: The Poisson network model. a, Schematic illustration of the network. It consists of 2 

populations of independent Poisson neurons (Center), receiving stimulus-selective input 

(Bottom). Direction of triangle denotes selectivity to the visual offset, 𝛥𝐿, as in Fig. 1. The 

neurons emit spikes, which are accumulated (Top). Right, the stimulus-dependent distribution 

of firing rates. In the absence of offset (𝛥𝐿 = 0), the rate of ‘U’ and ‘D’ neurons are drawn from 

the same distribution (blue curve). When the upper segment of the line is the longer (𝛥𝐿 > 0), 

neurons in population ‘U’ increase their firing rates (pink curve), whereas neurons in population 

‘D’ decrease their firing rates (orange curve). Note that the lognormal distribution of rates is 

equivalent to normal distribution of log-rates. b, Example trial. The absolute value of the 

difference in spike counts is accumulated over time, until the threshold is reached. The decision 

corresponds to the ‘winning’ population, which here is ‘D’. 
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The psychometric curve of an example network is depicted in Fig. 4a (center; black). 

Because of the dependence of the firing rate distributions on 𝛥𝐿, the larger 𝛥𝐿 the more 

likely it is that the network would choose 'Up'. However, the outcome of this decision 

process is not deterministic. Because spiking is stochastic, 𝛥𝑛(𝑡) occasionally reaches 

the threshold that is incongruent with the stimulus, resulting in an error. More generally, 

because of this stochasticity, the psychometric curve is a smooth sigmoidal function of 

𝛥𝐿 rather than a step function. Note that in the black psychometric curve of Fig. 4a 

(center), the network’s perceptual decision in the “impossible trials” is approximately at 

chance level. Thus, this particular network does not exhibit a substantial ICB. 

The black psychometric curve in Fig. 4a (center) was obtained for a particular 

realization of the network. The red and blue lines in Fig. 4a (center) depict the 

psychometric curves of two other realizations of the network. Despite the fact that the 

three networks were constructed in the same way, i.e., by randomly drawing the firing 

rates of the neurons from the same distributions, the red and blue curves are 

horizontally shifted relative to the black psychometric curve. Thus, in contrast to the 

"black" network, the "red" and "blue" networks exhibit ICBs in favor and against 

responding ‘Up’. The distribution of the ICBs across networks is depicted in Fig. 4b 

(center). It demonstrates that a wide distribution of ICBs naturally emerges in this 

decision network model. 

It is possible to mathematically prove that for a large network, the behavior of this 

Poisson network model is equivalent to that of a DDM with a biased drift (Materials and 

Methods). The accumulation of the difference in the spike counts can be mapped to 

the accumulation of noisy evidence in the DDM; trial-to-trial variability results from the 

stochasticity in the neuronal firing; the drift bias stems from the heterogeneity in the 

firing rates in the two populations. In what follows, we provide an intuitive explanation 

for the emergence of ICBs in the Poisson network model.  

A wide distribution of ICBs in a network consisting of a small number of neurons is 

easy to understand. Let us consider the impossible trials in a network composed of 

only two Poisson neurons (Eq. 1 in Materials and Methods), each representing one 

choice (‘Up’ or ‘Down’). The firing rates of the two neurons are independently drawn 

from the same lognormal distribution. However, the actual firing rates of these two 

neurons will, in general, differ in any given network. In some realizations of the network 
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the firing rate of the 'U' neuron will be higher than that of the 'D' neuron, whereas in 

others, it will be lower. Choice is determined by the first threshold-reaching of the 

accumulated difference in the number of spikes fired by the neurons. It will more often 

be congruent with the neuron whose firing rate is higher. However, because the firing 

of spikes in the model is stochastic, the decision in a minority of trials decision will be 

incongruent with that neuron. This argument implies that this two-neuron network 

exhibits an ICB, which results from the interplay between the Poisson noise and the 

heterogeneity in the firing rates of the two neurons. The spiking stochasticity decreases 

the bias, whereas the firing-rate heterogeneity increases it.  

It is thus clear why ICB is natural in such small decision-making networks. However, it 

is not immediately clear why ICBs are observed in Fig. 4a, in which the number of 

neurons in the network is large (𝑁 = 200,000). In this case, the difference between the 

population averaged firing rates of the U and D neurons is vanishingly small. This is 

because in large networks, this difference is of the order of 1 √𝑁⁄ , where 𝑁 is the 

number of neurons. Since the competition between the two populations, which 

underlies the decision making, is a macroscopic process, one may expect that only 

average properties of the two populations would affect its outcome. Thus, 

heterogeneity in the firing rates should not play a significant role in the decision process 

in large networks. One should note, however, that the sensitivity of the decision-making 

process to the firing rate heterogeneity increases in proportion to √𝑁. This is because 

the spike times are independent between neurons and thus the fluctuations in spike 

count decrease with 𝑁. As a result, the larger the network, the more sensitive it is to 

the firing rate heterogeneity. Because the sensitivity to the heterogeneity increases in 

proportion to √𝑁 while the heterogeneity itself is proportional to 1 √𝑁⁄ , the effect of the 

heterogeneity in firing rates on behavior is independent of 𝑁 (in the limit of large 𝑁). 

Thus, even if 𝑁 is very large, the distribution of ICBs is wide (Materials and Methods).  

Unlike network size, the decision threshold has a large effect on the magnitude of the 

ICB. This is depicted in Figs. 4a, where the psychometric curves of three networks, 

only differing in the value of the decision threshold, are plotted. The larger the 

threshold, the steeper is the psychometric curves. This is because the time it takes the 

network to reach a decision increases with the threshold (Fig. 4c). Thus, a larger 

threshold results in the integration of spikes over longer durations before a decision is 
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made. Therefore, the decision outcome is less sensitive to the Poisson noise. On the 

other hand, the network heterogeneity is independent of decision time. Because the 

magnitude of the ICB is determined by the interplay of the Poisson noise and networks 

heterogeneity, the larger the threshold is, the broader will be the distribution of ICBs 

(Fig. 4b; see also eq. (5) and Fig. S4c-d).  

 

Figure 4: ICBs in the Poisson network model. Left, center and right correspond to network 

behaviors with low, intermediate and high thresholds (See Materials and Methods). a, The 

psychometric curves of three networks. Each color corresponds to a different network and the 

same color in different panels corresponds to the psychometric curves of the same network 

with different thresholds (Eq. 2 in Materials and Methods). b, ICB distributions (Eq. 3 in 

Materials and Methods). The ICBs of the three networks in (a) are denoted in the histogram by 

arrows of corresponding colors. c, Distribution of reaction times (RTs) (Eq. 4 in Materials and 

Methods). Number of neurons in the network is 𝑁 = 200,000,  𝜃∗ = 0.65 ∙ √𝑁. 

ICB in the recurrent spiking network  

Our analysis of the Poisson model suggests that decision making networks exhibit 

ICBs if (1) the constituting neurons fire irregularly (e.g., Poisson), (2) the neuronal firing 
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rates are heterogeneous (e.g., log-normally distributed) and (3) decision is based on 

competition (e.g., threshold crossing of the difference in spike counts). In the Poisson 

model, these three ingredients are introduced ad hoc. Here we investigate a spiking 

network model in which these features are emergent properties of the network 

dynamics. 

This model builds on previous studies that have shown that recurrent networks of 

excitatory and inhibitory neurons connected by numerous and strong synapses readily 

operate in a regime in which excitation is dynamically balanced by inhibition26. Two 

hallmarks of this regime are (1) Poisson-like temporal variability of spike timing (Fig. 

5b and S5) and (2) approximately log-normally distribution of firing rates (Fig. 5c). 

These features emerge from the intrinsic deterministic dynamics of the network (even 

when the neurons are identical and receive the same external input)27,28. Similar to 

previous models of decision making29,30, competition between the alternative actions 

in our model is mediated by inhibition.  

Our model consists of 32,000 excitatory and 8,000 inhibitory Leaky Integrate and Fire 

(LIF) neurons (Fig. 5a; see Materials and Methods). All neurons receive a feedforward 

input, which is selective to the stimulus. For half of the neurons ('U' neurons), this input 

linearly increases with 𝛥𝐿, whereas for the other half, ('D' neurons), it is a decreasing 

function of 𝛥𝐿 (Fig. 5a, bottom). When the two segments are of equal length 

(impossible trials), the 'U' and 'D' neurons receive the same feedforward input. All 

neurons are recurrently connected by strong synapses in a random and non-specific 

manner, i.e., independent of the selectivity properties of the pre- and post-synaptic 

neurons. The competition between the 'U' and the 'D' neurons is mediated by an 

additional set of inhibitory connections, which are functionally specific, less numerous 

but stronger than the unspecific ones (Fig. 5a center; black, specific; gray, non-

specific). To investigate the dynamics of this model we performed numerical 

simulations (See Materials and Methods).  

Figure 5d depicts the spike times of 3,200 excitatory neurons in one 'impossible' trial. 

Before the stimulus is presented (𝑡 < 0), the activities of the 'U' and 'D' neurons are 

similar (Fig. 5d). In response to the sensory stimulus (𝑡 = 0), the neurons in both 

populations increase their firing rates. Because of the competition induced by the 

specific inhibitory connectivity, population 'D' inhibits population 'U' and as a result 
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population 'U' disinhibits the excitatory neurons in population 'D'. In our model, the 

decision occurs once the relative difference in the average firing rates of the excitatory 

neurons of the 'U' and the 'D' populations exceeds a threshold. After the decision is 

made, the feedforward stimulus-dependent input ceases and the network activity 

reverts to its baseline levels (Fig. 5d; see also Materials and Methods).   

 

Figure 5: The recurrent spiking network model. a, Schematic illustration of the network 

architecture. The network consists of recurrently connected excitatory (red) and inhibitory 

(blue) LIF neurons receiving stimulus-selective feed-forward input (bottom). Direction of 

triangle indicates the selectivity. b, Spontaneous activity of example excitatory (red) and 

inhibitory (blue) neurons in the network. c, Distribution of the spontaneous firing rates of the 

32,000 excitatory neurons in the network. d, Raster plot (10% of the excitatory neurons, top) 

and the average firing rates (bottom) of the excitatory 'U' (purple) and 'D' (green) neurons in 

response to a stimulus (gray region). The decision is made when the relative difference 

between the firing rates of the excitatory neurons of the two populations crosses the decision 

threshold (after which the feed-forward input ceases). 

Fig. 6a (center, black) depicts the psychometric curve of the specific network simulated 

in Fig. 5d. When the magnitude of 𝛥𝐿 is large, the perceptual decision of the network 

is almost always correct; as 𝛥𝐿 decreases, the error rate increases. Considering the 

“impossible trials” (𝛥𝐿 = 0), the network’s perceptual decision is approximately at 

chance level. However, different realizations of the connectivity matrix yield 

psychometric curves, which are laterally shifted (red and blue curves in Fig. 6a). In 

contrast to the "black" network, the "red" and "blue" networks exhibit substantial ICBs.   
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To estimate the distribution of ICBs in our recurrent network model, we simulated 200 

networks, which only differed in their realizations of the connectivity matrix. We 

computed the ICB of each network from its choices in 500 “impossible” trials. The 

center panel in Fig. 6b depicts the distribution of these ICBs across the 200 networks. 

It is significantly wider than expected by chance (p<10-6, one-sided bootstrap test, fair 

Bernoulli process).  

The level of competition in our model is determined by the strength of the functionally 

specific inhibition, 𝑔 (see Materials and Methods). Figure 6b depicts the distribution of 

ICBs for three values of 𝑔. As 𝑔 increases, the width of the distribution decreases and 

its shape changes from concave to convex. The distribution of decision times also 

varies with 𝑔. The larger 𝑔 the faster is the average decision time (Fig. 6c). When the 

recurrent network model is analyzed in the framework of the ‘drift bias’ DDM, 

decreasing the specific inhibition 𝑔 manifests primarily as an increase in the decision 

threshold (Fig. S6).      
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Figure 6: ICBs in the recurrent spiking network model. The strength of the selective inhibition 

is: Left, 𝑔 = 3.4; Center, 𝑔 = 3.0; Right, 𝑔 = 2.7. a, The psychometric curves. Each color 

corresponds to a different network and the same color in different panels corresponds to the 

psychometric curves of the same network but with a different 𝑔. Each point is an average over 

500 trials. Error bars correspond to SEM. b, Distribution of ICBs for 200 networks. Arrows 

correspond to the specific psychometric curves in (a) (same color coded). c, Distribution of 

reaction times (RTs).  

It is instructive to analyze the recurrent network model in the framework of the DDM, 

as we did for the experimental data. Fitting the DDM to the recurrent network 

simulations, we found that a ‘drift bias’ DDM better explains the network dynamics than 

‘IC bias’ DDM (Fig. S7a). Moreover, when the relative contribution of the drift bias and 

IC bias are tested in the ‘IC+drift bias’ DDM, the contribution of drift bias dominates the 

emergent ICBs (Fig. S7b). These results are similar to those observed in the behavioral 

data (Figs. 1d and 2d). 
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The conditional bias function 

Responses in decision-making tasks can also be analyzed using the conditional bias 

function (CBF). This function quantifies the relationship between bias magnitude and 

reaction time within the responses of the decision-maker19. In the 'bias drift' DDM, the 

distributions of decision times for congruent and incongruent choices are equal17,31–33. 

Therefore, bias is independent of the decision time. By contrast, in the 'IC bias' DDM, 

the bias decreases with decision time19,20.   

We applied the CBF analysis to the impossible trials in our tasks. Figure 7a depicts the 

CBF of the responses in the spiking network model, averaged over the 200 networks 

of Fig. 6. We found that the magnitude of the choice bias decreases with reaction time. 

The larger 𝑔, the more negative is the slope of the CBF (Fig. 7a, inset). Because a 

dependence of the bias on reaction time is expected from asymmetric initial conditions 

in the DDM, we compared the CBF to that predicted from the fitted 'IC+drift bias' DDM. 

We found that the dependence of the bias on the reaction time in the recurrent model 

is not well-captured by the fitted 'IC+drift bias' DDM (Fig. 7b).  

We hypothesize that the discrepancy between the CBF of the recurrent network model 

and that of the corresponding 'IC+drift bias' DDM as resulting from a qualitative 

difference in the decision process in the DDM and the recurrent network. Competition 

in the recurrent network but not in the DDM results in an effective positive feedback. 

As a result, evidence accumulated in the beginning of the decision process has a larger 

effect on the responses than the evidence accumulated later in that process.  

This discrepancy prompted us to compute the CBF in our behavioral data. As shown 

in Fig. 7c, in both the bisection and motor tasks the dependence of the bias on the 

reaction time is stronger than expected from the fitted 'IC+drift bias' DDM. These 

results indicate that the recurrent network model captures additional features of the 

behavior, beyond the 'IC+drift bias' DDM. 
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Figure 7 Conditional bias functions. a, The recurrent network model. We numerically simulated 

the recurrent network model in the impossible trials. Responses of each network were divided 

into 5 quantiles (quintiles) according to the reaction time (RTs). Within each quintile, the 

fraction of choices congruent with the overall bias of the network, 𝑝 , was computed and 

averaged over the different networks (𝑛 = 200 networks, 500 trials per network). This analysis 

was performed independently for different values of 𝑔 (different colors; data for 𝑔 = 2.7, 3.0, 3.4 

are the same as in Fig. 6). Inset, the slopes of the different curves, defined as the change in 

𝑝  per percentile of reaction time, 𝑑𝑝 𝑑%⁄ . b, 'IC+drift bias' DDM fits to the recurrent 

networks. Same analysis as in (a) was performed on the fitted 'IC+drift bias' DDM to the 

networks' responses using 10,000 simulated responses for each network. c, Responses of 

human participants. Solid lines, the conditional bias function for the impossible trials in the 

bisection task (black) and the motor task (gray). Dashed lines, the corresponding conditional 

bias functions for the fitted 'IC+drift bias' DDMs, based on 2,000 simulated responses for each 

decision-maker. Error bars are SEM.  

Discussion 

We experimentally investigated human ICBs in a discrimination task and in a motor 

task. We analyzed the behavior of the participants in the framework of the DDM. We 

found that in this framework, idiosyncratic biases in the drift rate account for these 

ICBs. We proved mathematically in a particular model that ICBs due to idiosyncratic 

drift biases naturally emerge in a network characterized by (1) irregular firing of the 

neurons, (2) heterogeneity of their firing rates and (3) competition. Finally, we 

constructed a recurrent network model of spiking neurons, in which these three 

features are the result of the deterministic dynamics. We numerically simulated this 

network and demonstrated that it exhibits ICBs, whose features are similar to those 

observed experimentally. Taken together, our results show that ICBs naturally emerge 

from the intrinsic dynamics of decision-making neural circuits.  
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Bias in the DDM  

In the framework of the DDM, choice bias can emerge either from a drift-bias in the 

decision variable or from asymmetry in its initial condition19–22. There is an active area 

of research that maps different factors affecting choice bias to these two mechanisms. 

In perceptual tasks, stimuli affect responses via the drift rate13. Other factors such as 

decision cutoff19,21 and the bias induced by the action taken in the previous trial34 have 

both been primarily associated with biases in the drift rate. Arousal levels also affect 

the magnitude of choice biases through the drift rate35. By contrast, asymmetries in the 

prior distribution of stimuli or in the reward schedule predominantly manifests as an 

asymmetric initial condition19,21,22,36 (but see37). Heterogeneity among the participants 

along any of these factors is expected to result in ICBs. Our modeling work predicts 

the existence of additional, irreducible, ICBs. These ICBs cannot be explained by the 

experimental context and manifest as drift rate idiosyncrasies in the DDM. Our 

experimental work reports such ICBs in a discrimination task and a motor task. 

The temporal-scale of stochasticity  

In the two models that we have investigated, ICBs emerge from the interplay of two 

sources of stochasticity: (1) Stochasticity in the timing of action potentials; (2) 

Heterogeneity in the neuronal firing rates. Stochasticity in the timing of action potentials 

differs between trials and therefore we can refer to it as fast noise. By contrast, the 

second source of stochasticity is the same in all trials and therefore, we can refer to it 

as frozen noise. Cortical dynamics exhibits additional time-scales38. Incorporating 

additional time-scales to the models will not qualitatively affect the results, as long as 

the contributions of these additional sources of stochasticity are of the order of 1 √𝑁⁄  

(where 𝑁 is the number of neurons in the network).  

To identify the potential contribution of stochasticity at minutes’ time-scale, we tested 

whether ICBs differed between the first and second halves of our experiments. We did 

not observe changes in the ICBs in this time-scale that are statistically significant 

(vertical bisection + motor: two-sided permutation test identified significant, differences 

in only 17/300 of the pairs, 𝑝 < 0.05, not corrected for multiple comparisons). It will be 

interesting to quantify the dynamics of ICBs over longer time-scales.   
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The effect of correlations 

In the Poisson model, spikes are uncorrelated in time and between neurons. As a 

result, for sufficiently large networks, the magnitudes of both fast and frozen sources 

of stochasticity decrease as 1 √𝑁⁄ . Their ratio and hence the distribution of ICBs 

become independent of 𝑁 for sufficiently large networks. The two sources of 

stochasticity also satisfy these scalings in the recurrent network model. This is because 

the network operates in the balanced regime26,39. Noise correlations in the spike count 

of the neurons are therefore very weak40–42 and the firing rates are widely distributed 

and are uncorrelated between neurons27. In network exhibiting correlations in the 

neuronal activity41,42, averaging over neurons may not decrease the fast noise and the 

heterogeneities as 1 √𝑁⁄ . If the dependence of the two on 𝑁 is very different, one 

source of stochasticity could dominate, resulting in deterministic or unbiased choices.  

Alternative interpretation of the observed ICBs 

Idiosyncratic postures can affect visual stimuli or the effort associated with motor 

responses. One cannot rule out the possibility that such idiosyncrasies contributed to 

the ICBs in the bisection task, which was performed online. In the motor task, by 

contrast, all participants were dextral and the positions of the chair, screen and mouse 

pad were kept the same for all participants. Nevertheless, we cannot exclude the 

possibility that differences in participants' anatomy, e.g., their arm length, contributed 

to the ICBs.  

Reinforcers can affect choice preferences43–45. The specific history of stimuli also 

influences preferences in perceptual tasks9,46. Along these lines, it is natural to attribute 

ICBs to the specific histories of the participants during the experiment. We therefore 

designed our tasks to minimize operant and sequential effects. Nevertheless, we 

cannot exclude the possibility that the observed ICBs are the result of operant or 

sequential effects which occurred before the experiment. For example, considering the 

impossible trials in our bisection task, participants may prefer to press the Down key 

because they are accustomed to pressing taskbar icons that are located at the bottom 

of their computer monitor. Other participants may prefer the Up key because they are 

used to a taskbar located at the top of the screen. In such a view, ICBs in the vertical 
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bisection task can be attributed to idiosyncratic histories of computer usage prior to the 

experiment.  

All of the above effects can contribute to ICBs. However, we showed that these and 

similar explanations are not necessary. All that is required for ICBs are minute 

differences between the populations encoding the two alternatives. Such differences 

are almost inevitable in any 2-alternative task, in which the two alternatives are 

represented by different populations of neurons.  

Substantial ICBs were observed in genetically-identical flies that were reared in the 

same environment47. The results of that study suggest that biases can emerge from 

effects that are unpredictable from genetic, environmental or anatomical variables. 

This is in line with our study that showed that the random differences in the fine 

structure of connectivity between the neuronal populations involved in decision-making 

are sufficient to account for the ICBs. In conclusion, the occurrence of ICBs in a 

cortical-based decision task is thus almost inevitable. It would be therefore surprising 

to find a decision task that is devoid of the ICBs, unless they are actively suppressed, 

e.g., by penalizing them. 

Materials and Methods 

The perceptual discrimination task 

The study was approved by the Hebrew University Committee for the Use of Human 

Subjects in Research. Recruitment was based on the online labor market Amazon 

Mechanical Turk48. Data were collected from 100 participants (51 males, 49 females; 

91 dextrals, 7 sinistral, 2 ambidextrous; mean age = 39 years, min = 22 years, max = 

71 years). All participants were Mechanical Turk’s Masters, located in the United States 

of America. All participants reported normal or corrected to normal vision and no history 

of neurological disorders. The experiment was described as an academic survey of 

visual acuity. A base monetary compensation was given to all applied participants for 

the participation. In order to encourage good performance throughout the experiment, 

an additional bonus fee was given for every correct response and another bonus was 

guaranteed to 10% of participants with highest scores. 
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Procedure 

Participants were instructed to indicate the offset direction of the transecting line, out 

of two alternative responses. Possible responses were either ‘Left’ or ‘Right’, for the 

horizontal discrimination task, or ‘Up’ or ‘Down’, for the vertical discrimination task. 

Participants were asked to answer as quickly and accurately as possible.  

In each trial, a 200 pixel-long white line, transected by a perpendicular 20 pixel-long 

white line was presented on a black screen (Fig. 1a, inset). The stimuli were limited to 

a 400-pixel X 400-pixel square at the center of the screen. Window resolution was 

verified for each participant individually, to make sure that it did not exceed the centric 

box in which all stimuli were presented. The horizontal location of all vertical bisection 

lines and the vertical location of all horizontal bisection lines were centered. After 1 

sec, the stimulus was replaced by a decision screen composed of two arrows, 

appearing in opposite sides of the screen, and a middle 4-squares submit button. The 

participants indicated their decision by moving the initially centered cursor to one of 

the arrows, pressing it, and finalizing their decision by pressing the ‘submit’ button. No 

feedback was given regarding the correct response. The participants were, however, 

informed about the accumulated bonus fee every 30 trials. 

The experiment consisted of 240 trials, 120 horizontal and 120 vertical. Trials were 

ordered in 80 alternating blocks of 3 horizontal and 3 vertical transected lines. 

Unbeknown to the participants, there were 20 impossible horizontal and 20 impossible 

vertical trials (⅙ of the trials). To minimize sequential effects in the impossible vertical 

bisection trials, each impossible vertical bisection trial was preceded by three 

horizontal bisection trials. The order of the trials was pseudorandom but identical for 

all participants. For the possible trials, the deviation from the veridical midpoint was 

uniformly distributed between 5 and 10 pixels (|∆𝐿| 𝐿⁄  between 0.05 and 0.1, where 

𝛥𝐿 𝐿⁄ ≡ (𝐿 − 𝐿 ) (𝐿 + 𝐿 )⁄  and 𝐿  and 𝐿  denote the lengths of the Up and Down 

segments of the vertical line). with an equal number of offsets in each direction. 

Because it is well established that in the horizontal bisection task participants exhibit a 

global bias (attributed to pseudoneglect49), we focused on the vertical bisection trial in 

quantifying ICBs and performance. Mean performance in the possible vertical trials 

was 96.4% ± 4.6% (standard deviation), range 71% − 100%. No participants were 
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excluded from the analysis. In the DDM analysis we excluded trials, in which the 

reaction time was longer than 3 sec. This excluded 1% of the vertical bisection trials.  

To verify that the participants understood the instructions, they were required prior to 

the experiment to successfully complete a horizontal-bisection practice session and a 

vertical-bisection practice session. A session consisted of blocks of 4 easy trials 

(|∆𝐿| 𝐿⁄ = 0.2) with feedback and balanced polarity of ∆𝐿. The main experiment started 

after the participant completed one horizontal and one vertical block successfully. 

Responses in this practice session were not included in the analysis.  

The motor task 

The study was approved by the Hebrew University Committee for the Use of Human 

Subjects in Research. The experiment was described as an academic survey testing 

speed of motion. Data were collected from 20 participants (13 males, 7 females; all 

dextrals; mean age = 25 years, min = 19 years, max = 41 years) who were recruited 

using on-campus advertising. All participants reported normal or corrected to normal 

vision and no history of neurological disorders.  

Procedure  

In each trial, a pair of dots, equally distant from a central black disk, were presented 

on a background of a larger white disk (Figs. 2a and S3a). Participants were instructed 

to drag as quickly as possible the two dots into the black disk using the mouse cursor. 

Each trial started with a forced delay period of 0.75 sec. Then, the mouse cursor 

appeared in the center of the disc. The participant used the mouse to move the cursor 

to one of the dots. She then dragged the chosen dot to the central black disk by 

pressing the mouse and moving it. If accurate, a release of the dot on the central black 

disk resulted in a 1.1 sec “swallowing” of the dot animation, indicating a successful 

drag. The dragging time (measured from the time of clicking on the dot to the time of 

its release) appeared on the screen. It disappeared after a forced delay of 1.1 sec and 

the cursor reappeared in the center of the disk. The participant processed the second 

dot in the same way as the first dot. We used 10 different pairs of dots, each presented 

20 times. Each pair of dots was of equal distance from the center of the black disk, but 

of a different color and a different angular location (Fig. S3b). The order of presentation 
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was pseudorandom such that in every consecutive group of 10 trials all pairs appeared. 

Decision time in a trial is defined as the time elapsed from cursor appearance to the 

beginning of the dragging of the first dot. The positions of the chair, screen and mouse 

pad were fixed and identical for all participants in order to minimize heterogeneity 

between participants. 

A base monetary compensation was given to all participants for their participation. An 

additional bonus fee was given based on dragging times in order to encourage good 

performance throughout the experiment.  

In the DDM analysis we excluded trials, in which the reaction time was longer than 3 

sec. This excluded 2% of the motor trials.  

The Poisson model  

We consider two populations of neurons, denoted by ‘U’ and ‘D’, representing choice 

‘Up’ and ‘Down’ (Fig. 3a). Each population consists of 𝑁 2⁄  independent Poisson 

neurons. The stimulus-dependent feedforward inputs to neuron 𝑖 (𝑖 ∈ {1, … , 𝑁 2⁄ }) in 

population 𝛼 (𝛼 ∈ {𝑈, 𝐷}) is given by: 𝜇 = 𝑘 ⋅ 𝛥𝐿 𝐿⁄ + 𝑧 , where 𝑘 = −𝑘 = 𝑘 is a 

parameter and 𝑧  is stimulus- and trial-independent, independently drawn (once) from 

a zero-mean Gaussian distribution with variance 𝜎 , 〈𝑧 〉 = 0, 〈(𝑧 ) 〉 = 𝜎 , where 〈… 〉 

denotes average. The firing rate 𝜈 , different for each neuron, is  

 𝜈 = �̅� ⋅ 𝑒 ⋅  (1) 

where �̅� is a baseline firing rate and 𝛾 is the gain27. Due to the exponential transfer 

function and the normal distribution of inputs, the firing rates are log-normally 

distributed. In each trial, the cumulative number of spikes, 𝑛 (𝑡) and 𝑛 (𝑡), emitted by 

populations 'U' and 'D' up to time 𝑡 in a trial is counted (Fig. 3a). A decision is made 

when (𝑡∗) the absolute value of the difference in the numbers of spikes, |𝛥𝑛(𝑡∗)| =

|𝑛 (𝑡) − 𝑛 (𝑡)|, reaches a given threshold 𝜃 = √𝑁 ∙ 𝜃, where 𝜃 is a parameter. 

For 𝑁 ≫ 1 and neglecting the threshold effect, the difference in spike count at time 𝑡 is 

given by 𝛥𝑛(𝑡)~𝒩(𝛥𝜈 ∙ 𝑡, Σ𝜈 ∙ 𝑡), where 𝛥𝜈 = ∑ 𝜈 − ∑ 𝜈  and Σ𝜈 = ∑ 𝜈 + ∑ 𝜈 . 

Because 𝑁 ≫ 1, both 𝛥𝜈 and Σ𝜈 are normally distributed: 
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𝛥𝜈~𝒩 𝑁�̅�𝑒 sinh 𝛾𝑘 , 𝑁�̅� 𝑒 − 1 𝑒 cosh 2𝛾𝑘   

Σ𝜈~𝒩 𝑁�̅�𝑒 cosh 𝛾𝑘 , 𝑁�̅� 𝑒 − 1 𝑒 cosh 2𝛾𝑘 .   

Note that 𝛥𝑛 and 𝛥𝜈 are different stochastic processes: the stochasticity of 𝛥𝑛 stems 

from trial-by-trial variability, conditioned on the firing rates of the neurons. By contrast, 

the stochasticity of 𝛥𝜈 reflects heterogeneity in these firings rates across different 

realizations of the decision-making network.  

The standard deviation of the distribution of Σ𝜈 is of 𝑂 √𝑁 , whereas its mean is 𝑂(𝑁) 

even when 𝛥𝐿 → 0. Therefore, in the limit 𝑁 ≫ 1, Σ𝜈 ≈ 𝑁�̅�𝑒 cosh 𝛾𝑘 . By 

contrast, in the regime in which |𝛥𝐿 𝐿⁄ | = 𝑂 1 √𝑁⁄ , the mean and standard deviations 

of the distribution of 𝛥𝜈 are comparable, both are 𝑂 √𝑁 .  

The probability of an ‘Up’ decision is obtained by solving a first-passage problem, 

yielding  

𝑝 ≡ Pr(′Up′) = 1 + e √ ∙ ⁄ = 1 + e
√

∙

∙ ∙   (2)  

Substituting the dependence of 𝛥𝜈 on 𝛥𝐿 in Eq. (2) yields the psychometric curve. In 

particular, when the two networks are symmetric, 𝛥𝜈 = 𝑁�̅�𝑒 sinh 𝛾𝑘 ,  and 

𝑝 = 1 + e √ ∙
≈ 1 + e √ ∙ ∙ ∙   

More generally, when the two networks are only drawn from the same distribution, the 

psychometric curve will be horizontally shifted relative to the identical networks case.  

To compute the distribution of ICBs, we consider the case in which the external input 

is symmetric, 𝛥𝐿 = 0 and thus 𝛥𝜈~𝒩 0, 𝑁�̅� 𝑒 − 1 ∙ 𝑒 . After a change of 

variables,  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/284877doi: bioRxiv preprint 

https://doi.org/10.1101/284877
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Pr(𝑝) =
∙( )

∙ 𝑒

( ) ( )

  

Because ICB = 2𝑝 − 1,  

Pr(ICB) = ∙ 𝑒  (3) 

The corresponding distribution of decision times is computed by averaging the drift-

conditioned distribution of first-passage times over the distribution of 𝛥𝜈, yielding17,31,32: 

𝑓(𝑡) = �̅�𝑒
( )

exp

( )

   

 × ∑ 𝑚 sin exp −𝑡 𝑒  (4) 

Two points are worthwhile noting: 

(1) The neuronal gain parameter 𝛾 affects Pr(𝑝) through the term 𝑒 − 1 𝜃 . 

This implies that increasing the gain is effectively equivalent to increasing the 

threshold parameter 𝜃, and thus is likely to broaden the distribution of ICBs.  

(2) The assumption of a lognormal distribution of firing rates is not essential to our 

analysis. For a general distribution of firing rates, Eq. (3) becomes 

Pr(𝑝) =
√𝜋𝑝(1−𝑝)

∙ 𝑒− (log(𝑝)−log(1−𝑝))
2

  

and 

Pr(ICB) =
√𝜋( )

∙ 𝑒
−

2

 (5) 

where 𝜆 =
E[𝜈𝑖

𝛼]

√8∙𝜃∙ V 𝜈𝑖
𝛼

 and E[𝜈 ] and V[𝜈 ] are the mean and variance of the distribution 

of the firing rates in the impossible trials. 
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The parameters used in all simulations are �̅� = 1.26 Hz, 𝛾 = 1, 𝑘 = 0.133 and 𝜎 = 1. 

For 𝛥𝐿 = 0, the average and standard deviation firing rate are 2.1 Hz and 2.7 Hz. These 

numbers are compatible with experimental data in the cortex25,50. The dependence of 

the width of the ICB distributions on the model parameters are depicted in Fig. S4. 

The spiking network model 

The model is a recurrent network of 𝑁 leaky-integrate-and-fire (LIF) neurons, 𝑁 =

0.8𝑁 excitatory and 𝑁 = 0.2𝑁 inhibitory (the superscript denotes neuron type, 

excitatory or inhibitory).  

Single neuron dynamics: The sub-threshold dynamics of the membrane potential, 

𝑉 (𝑡), of neuron 𝑖 in population 𝛼 (𝑖 = 1, … , 𝑁 ;  𝛼 = 𝐸, 𝐼) follow: 

𝜏
𝑑𝑉 (𝑡)

𝑑𝑡
 = −(𝑉 (𝑡) − 𝑉  ) + 𝐼 , (𝑡) + 𝐼 , (𝑡) + 𝐼    

where 𝜏  is the neuron membrane time constant, 𝑉  is the reversal potential of the leak 

current. Inputs to the neuron are modeled as currents: 𝐼 , (𝑡) is the recurrent input 

into neuron (𝑖, 𝛼), due to its interactions with other neurons in the network, 𝐼 , (𝑡) is 

the feedforward input into that neuron elicited upon presentation of the stimulus, and 

𝐼  is a background feedforward input, independent of the stimulus, identical for all the 

neurons and constant in time. These subthreshold dynamics are supplemented by a 

reset condition: if at 𝑡 = 𝑡  the membrane potential of neuron (𝑖, 𝛼) reaches the 

threshold, 𝑉 (𝑡 ) = 𝑉 , the neuron fires an action potential and its voltage resets to 

𝑉 (𝑡 ) = 𝑉 . 

The feedforward input: Each population, excitatory or inhibitory, consists of two types 

of neurons, namely U- and D-selective. In the absence of stimulus, the feedforward 

input 𝐼 , (𝑡) = 0 for all the neurons. Upon presentation of a stimulus for which 𝛥𝐿 > 0, 

𝐼 , (𝑡) into U-selective neurons is stronger than 𝐼 , (𝑡) into D-selective neurons. The 

opposite is true when 𝛥𝐿 < 0. Specifically, we take: 

𝐼 , (𝑡) = 𝐼 + 𝜀 
∆𝐿

𝐿
𝐼   
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where 𝐼  and 𝐼  are constants and positive and 𝜀 characterizes the selectivity of the 

neuron: 𝜀 = +1  for 'U' neurons and  𝜀 = −1 for 'D' neurons. We denote the set of U-

selective (resp. D-selective) neurons in population 𝛼 = 𝐸, 𝐼 by 𝑈  (resp. 𝐷 ). Neuron 

(𝑖, 𝛼) ∈ 𝑈  if 𝑖 = 1 … 
 
 and  (𝑖, 𝛼) ∈ 𝐷  if 𝑖 =

 
+ 1 … 𝑁 .  

The recurrent input: The connectivity has two components. One is functionally specific 

and the other is not. The non-specific component is fully random (Erdös-Renyi graph) 

and does not depend of the selectivity of the pre- and post-synaptic neurons. The 

corresponding 𝑁 × 𝑁   connectivity matrix, 𝐂 , is such that 𝐶 ,
 

= 1 with probability 

𝐾/𝑁  and 𝐶 ,
 

= 0 otherwise, where 𝐾 is the average number of non-specific inputs 

that a neuron receives from neurons in population 𝛽. The strength of the non-specific 

connections depends solely on 𝛼, 𝛽 yielding: 𝐽 ,
 

= 𝐽
 

𝐶 ,
  where 𝐽 >0 (excitation) 

and 𝐽 <0 (inhibition).  

The competition between the 'U' and the 'D' selective neurons is mediated by an 

additional set of connections. These connections are specific and are much less 

numerous but stronger than the unspecific ones. The corresponding connectivity 

matrices, 𝐂 ,
 , are such that: 

1) 𝐶 ,
 = 0  i.e. we assume no specific excitation. 

2) 𝐶 ,
 = 0 if 𝑖 and 𝑗 have the same selectivity properties. 

3) 𝐶 ,
 = 1 with probability 2√𝐾/𝑁  if 𝑖 and 𝑗 have different selectivity properties. 

Therefore, each neuron (excitatory as well as inhibitory) receives, on average, √𝐾 

connections from inhibitory neurons whose selectivities are different from its own 

(compared with, on average, 𝐾 non-selective inhibitory connections).  

The strength of the specific connections depends solely on the neurons’ type 𝐽 ,
 =

𝐽 𝐶 ,
 ; 𝑔 = 𝐽 𝐽 ⁄ .  

The total current into neuron (𝑖, 𝛼) due to the recurrent interactions is 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/284877doi: bioRxiv preprint 

https://doi.org/10.1101/284877
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

𝐼 , (𝑡) = 𝐽 ,
 

+ 𝐽 ,
 

𝑆 (𝑡)

,

 

where 𝑆 (𝑡) are synaptic variables, which follow the dynamics 

𝜏
𝑑𝑆 (𝑡)

𝑑𝑡
= −𝑆 (𝑡) + δ(𝑡 − 𝑡 )

{ }

 

Here, 𝜏  is the synaptic time constant (assumed to be the same for all synapses) and 

the sum is over all spikes emitted at times 𝑡 < 𝑡.  

Decision-making and decision criterion: In response to the sensory stimulus, the 

activities of the U-selective and D-selective neurons change differently (Fig. 5d). We 

compute at every time step the population-averaged activity of all the excitatory 

neurons in the set 𝑎, (𝑎-selective), denoted by  𝜈  , 𝑎 ∈ {𝑈, 𝐷}, by convolving the spike 

times with an exponential filter with a time constant of 50 msec. Decision is based on 

the ratio:  
 

 
. If  

 

 
> 𝜙 , the decision provided by the network is that upper 

segment is longer than the lower one, whereas for  
 

 
> 𝜙 it is the opposite, where 

𝜙 > 0 is the decision threshold.  

The ability of the network to make a decision depends on the network parameters. In 

particular, it depends on the parameter 𝑔, which characterize the strength of the 

competition between 'U' and 'D' neurons, on the value chosen for the threshold 𝜙 as 

well as on the stimulus parameters, 𝐼 ̅  and 𝐼 ̅ . 

Numerical integration: The dynamics of the model circuit were numerically integrated 

using the Euler method supplemented with an interpolation estimate of the spike 

times51. In all simulations the integration time step was 0.1 msec. We verified the 

validity of the results by performing complementary simulations with smaller time steps.  

Model parameters: A systematic study of the dependence of the network dynamics on 

the parameters is beyond the scope of the present paper. The parameters used in all 

the simulations are: 𝑉 = −60mV; 𝜏 = 10msec; 𝑉 = 10mV; 𝑉 = −60mV; 𝐽 =

35mV ∙ ms, 𝐽 = 233.3mV ∙ ms,  𝐽 = −175mV ∙ ms , 𝐽 = −233.3mV ∙ ms, 𝐼 =
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840mV,  𝐼  = 560mV, 𝐼 = 840mV,  𝐼 = 560mV,  𝐼 = 140mV , 𝐼 = 140mV,  𝜏 =

3msec. The total number of neurons and average non-specific connectivity is 𝑁 =

40,000, 𝐾 = 400, 𝜙 = 0.4. The sole parameter we vary is 𝑔. 

The single-neuron parameters and the average number of inputs per neuron are as 

in41. The network size and fraction of inhibitory neurons are as in28. The strengths of 

EE connections, as well as the unstructured components of IE and II interactions 

are as in41.  

The background external inputs as well as the EI connection strength were chosen 

to obtain spontaneous and evoked firing rates that are comparable with the 

experimental data. The decision threshold was chosen so that decision occurs only 

when the differences in the firing rates of the two populations is comparable to the 

experimentally observed15. 

Relation to other spiking network models: In previous LIF network models of decision 

making30,52, the recurrent connectivity of the competing populations encoding for the 

decision outcome is all-to-all and symmetric. In contrast, the connectivity in our network 

is sparse and random. In these previous studies, irregular firing is due to extrinsic 

stochastic input. In our model it is generated by the intrinsic recurrent dynamics. 

Interestingly, it is reported in the Supplementary Methods of52 that in their model, "The 

random connectivity within the sensory circuit and across circuits (i.e. bottom-up and 

top-down) can cause that the network’s behavioral responses exhibit a bias towards 

one of the two choice options". We hypothesize that the mechanism underlying that 

bias can be understood using our framework.   

DDM analysis 

According to the DDM13–15,17,18,53–55, noisy evidence in favor of choosing each of the 

two alternatives is integrated over the course of the trial. The difference of these 

evidence, a quantity known as the decision variable, is then computed. Mathematically, 

𝑑𝑥 𝑑𝑡⁄ = 𝐴 + 𝜉,  where 𝑥 is the decision variable, 𝐴 is the drift rate, 𝑡 is time within the 

trial and 𝜉 denotes white noise such that E[𝜉(𝑡)] = 0 and E[𝜉(𝑡)𝜉(𝑡′)] = 𝛿(𝑡 − 𝑡′). In the 

free-response version of the DDM, which has proven useful for modeling choices even 

when the stimulus is presented for a fixed duration56–58, a decision is made once the 
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decision variable reaches one of two decision thresholds, 0 or 𝑎 > 0. The initial 

condition is set to 𝑥(𝑡 = 0) = 𝑧 ∙ 𝑎, where 0 < 𝑧 < 1. 

We focus on the impossible trials in which ∆𝐿 = 0. Evidence for 𝐴 ≠ 0 in those trials is 

interpreted as drift bias; evidence for 𝑧 ≠ 0.5 is interpreted as initial condition bias (IC 

bias). The two bias mechanisms exhibit distinct patterns of dependence of bias on 

reaction-times. The effect of ‘IC bias’ is mostly prominent early in the trial and it 

therefore predicts that faster decisions are more biased than slower ones. By contrast, 

‘drift bias’ affects evidence accumulation throughout the trial and the resulting bias 

affects both fast and slow decisions19,20. Therefore, it is possible to dissect the two 

mechanisms by incorporating the decision times in the analysis.   

We fit four different variants of the DDM to the behavioral data and simulations. (1) A 

baseline DDM with 𝐴 = 0 (because we consider only the impossible trials) and 𝑧 = 0.5. 

This model has a single parameter, the decision threshold, 𝑎. To fit the model to the 

data, a second parameter, which accounts for the component of the reaction-time that 

is independent of the decision process, 𝑇 , is added56,59,60. By construction, there are 

no ICBs in this model and it was used as a baseline for comparison with the other three 

models. (2) In the ‘IC bias’ DDM 𝐴 = 0, as in the baseline DDM. However, by contrast, 

𝑧 is estimated from the data, this is in addition to 𝑎 and 𝑇 . (3) In the ‘drift bias’ DDM, 

we assumed that 𝑧 = 0.5 and estimated 𝐴, 𝑎 and 𝑇 . (4) In the ‘IC+drift bias’ DDM, 

both 𝑧 and 𝐴 were estimated from the data, in addition to 𝑎 and 𝑇 . 

Hierarchical Bayesian estimation of the DDM parameters  

The dataset of the vertical bisection task includes 20 impossible trials performed by 

100 participants. The motor task includes 10 datasets (each pair of dots was 

considered a task and was analyzed separately). Each task was tested on 20 

participants, each performing 20 decisions. The recurrent network simulations included 

8 datasets, each corresponding to a different level of specific inhibition. Each of these 

dataset consisted of the responses made by 200 networks, each tested on 500 

impossible trials. 

We fit each of the four DDM variants to each of the datasets using the HDDM Python 

toolbox, which allows for the construction of Bayesian hierarchical DDMs61. HDDM 
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uses Bayesian Markov-chain Monte Carlo sampling for generating posterior 

distributions over both subject-level and group-level model parameters, rather than 

point estimates of only subject-level parameters. To accomplish this, HDDM uses 

informative prior distributions on the group-level parameters, that constrain the 

parameters to a plausible range given past experiments61,62. As a result, constraining 

the parameter estimates for individual subjects by group-level inference leads to a 

better recovery of the true parameters, especially with few trials per subject61.  

Our analysis required three minor modifications to the code: (1) In the unbiased and 

‘IC bias’ DDMs, we posit that 𝐴 = 0, which corresponds to an unbiased drift rate. This 

is because in the bisection task and the recurrent network simulations we only 

analyzed the case of ∆𝐿 = 0. This constraint was lifted in the ‘drift bias’ and ‘IC+drift 

bias’ DDMs, in which 𝐴 was a free parameter. (2) In the HDDM fitting procedure, the 

estimation of each of the model parameters is constrained by the informative priors 

relevant for the group level statistics of the sample’s parameter. Specifically, it is 

assumed that the mean drift rate is drawn from a normal distribution with a positive 

mean, 𝑚 = 2, conceivably because behavior is typically studied in possible trials, in 

which performance is above chance. Because in the impossible trials there is no a-

priori reason to assume that one action is more likely than the other, we modified the 

code such that 𝑚 = 0. Notably, comparable posteriors are obtained also when using 

𝑚 = 2 (not shown). (3) The assumptions regarding the width of the prior distribution of 

initial conditions can constrain the values of the estimated initial conditions in the 

HDDM fitting procedure, thus limiting the extent to which the initial conditions can 

capture the ICBs in the DDM. Therefore, we considered a wider prior distribution of 

initial conditions, by increasing the standard deviation of 𝜎  in61 from 0.05 to 5. Notably, 

when keeping the standard deviation of 𝜎  at 0.05, the contribution of initial conditions 

to the ICBs in the resultant fitted DDMs is even smaller (not shown). As is standard in 

the HDDM fitting procedure, we allowed 5% of responses to be considered 

'contaminants'59, i.e., trials which do not follow the DDM dynamics (e.g. due to 

attentional lapses). 

In order to estimate the posteriors, we ran 12 separate Markov chains with 40,000 

samples each. Of those, the first half was discarded as burn-in and to reduce sample 

autocorrelations, 4/5 of the remaining samples were discarded for thinning. This left 
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4,000 samples per chain. We computed the 𝑅 Gelman-Rubin statistic, to assess model 

convergence by comparing between-chain and within-chain variance of each posterior 

distribution. For all datasets and all models, the 𝑅 of all group-level posteriors (0.9998-

1.01) and that of the observer-level posterior (0.9998-1.035) indicated a proper 

convergence63,64. All chains were concatenated for further analyses, resulting in 

48,000 samples per model, from which each posterior was estimated. 

Model comparison using the DIC 

Using the HDDM Python toolbox61, we also computed the Deviance Information 

Criterion (DIC65) and used it to compare the different variants of the DDM. The DIC 

compares models by the goodness of fit, while penalizing for model complexity. The 

lower the DIC the better the model (see65). Because of the nondeterministic nature of 

hierarchical modeling, we also computed confidence intervals of the 𝛥DIC (DIC of the 

variant of the DDM relative to the DIC of the baseline, unbiased DDM). For the vertical 

bisection task and the numerical simulations of the recurrent network, the SEM of the 

𝛥DIC was estimated by repeating the fitting procedure and DIC analysis 3 times. For 

the motor datasets, the 𝛥DIC of each biased DDM variant was obtained separately for 

each pair of dots, and the SEM was then evaluated over all 10 pairs. 

Posterior-based simulations 

The quality of the DDM models can also be evaluated by comparing the behavior of 

the decision-maker to the behavior predicted by the estimated posteriors. Specifically, 

we simulated responses (choices and reaction time) using the posteriors obtained from 

the HDDM procedure for each dataset separately. For all datasets, the simulated 

probabilities of choice well-matched the observed ones for the ‘drift bias’ and for the 

‘IC+drift bias’ DDM variants but not for the ‘IC bias’ DDM (Fig. S8a). All models 

provided reasonable fits of the normalized distribution of reaction times to the data (Fig. 

S8b).  

Relative contributions of the IC bias and drift bias to the ICBs in the ‘IC+drift bias’ DDM 

Here we describe the procedures underlying Figs. 1d, 2d and S7. It is well-known that 

in the DDM17,31 
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Pr(′Up′) = +
( )

  (6) 

To dissect the relative contributions of the IC and drift biases to the ICBs, we computed 

the average parameters 𝐴, 𝑎 and 𝑧 from the estimated posteriors of each observer in 

the ‘IC+drift bias’ DDM. We then computed the predicted Pr(′Up′) in three conditions: 

all estimated parameters (black Xs), estimated initial conditions 𝑧 ∙ 𝑎 and 𝐴 = 0 (purple 

squares) and estimated product, 𝐴𝑎, of drift with the threshold, while assuming 𝑧 = 0.5 

(green circles).  

Relative contribution of idiosyncratic thresholds to the ICBs  

According to Eq. (6), the drift bias 𝐴 and the threshold 𝑎 contribute to the ICB via their 

product 𝐴𝑎. Importantly, while the drift parameter, 𝐴, can be positive or negative, the 

threshold parameter, 𝑎, is strictly positive. Therefore, the direction of the bias is 

necessarily determined by the drift 𝐴. Nevertheless, idiosyncrasies in 𝑎 can also 

contribute to the heterogeneity in the bias between the decision makers. We studied 

the relative contributions of these two parameters in the framework of the ‘drift bias’ 

DDM, in which the product 𝐴𝑎 is the sole contributor to the ICBs. For each decision 

maker we computed the posterior-averaged values of 𝑎 and 𝐴. We then used Eq. (6) 

to predict the ICBs assuming that all decision-makers are characterized by the same 

(average) threshold or the same (average) drift (|𝐴|). In all datasets we found that the 

contribution to the ICBs of heterogeneity in the thresholds is small relative to that of 

the drift (Fig. S9). 

The Poisson model is equivalent to the drift bias DDM 

Comparing equations (2) and (6), we note that for a = 2√𝑁 ∙ 𝜃, 𝐴 = 𝛥𝜈 Σ𝜈⁄  and 𝑧 = 0.5, 

Eq. (6) is equivalent to equation (2).  

Data availability 

The data and the relevant codes can be downloaded from TBD link. 
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