Table 1. Bibliographic information obtained from certain genera with probiotic potential in fish

Bacteria	Function	Description	Fish	Reference		
Aeromonas hydrophila	probiotic	antagonist	Oncorhynchus mykiss	Irianto A, Austin B (2002b). Use of probiotics to control furunculosis in rainbow trout,		
Aeromonas salmonicida	pathogen	etiological agent of septicemic disease	Oncorhynchus mykiss	- Oncorhynchus mykiss (Walbaum), J. Fish Dis. 25:1-10. doi: 10.1046/j.1365- 2761.2002.00375.x		
Rhodococcus qingshengii	probiotic	antagonist	Salevinus fontinalis	Boutin S, Bernatchez L, Audet C, Derôme N (2012). Antagonistic effect of indigenous skin bacteria of brook charr (Salvelinus fontinalis) against Flavobacterium columnare		
Flavobacterium psychrophilum	pathogen	systemic infectious agent	Salevinus fontinalis	skin bacteria of prook chart (sativeinus) joittinaits) against riavobacterium columnare and F.psychrophilum. Vet. Microbiol. 155: 355–361. doi: 10.1016/j.vetmic.2011.09.002		
Cetobacterium somerae	probiotic	vitamin B12 production	various	Tsuchiya C, Sakata T, Sugita H (2008). Novel ecological niche of Cetobacterium somera an anaerobic bacterium in the intestinal tracts of (1), 43–48.reshwater fish. Lett. Appl Microbiol. 46:43–48. doi:10.1111/j.1472-765X.007.02258.x		
Vibrio fluvialis	probiotic	Immune stimulation and improved survival after challenge with Aeromonas salmonicida	Oncorhynchus mykiss	Irianto A & Austin B (2002a). Use of probiotics to control furunculosis in rainbow tro Oncorhynchus mykiss (Walbaum). J Fish Dis 25: 333–342		
Lactococcus lactis CECT 539	probiotic	Immune stimulation	Scophthalmus maximus	Villamil L, Tafalla C, Figueras A, Novoa B (2002). Evaluation of immunomodulatory effects of lactic acid bacteria in turbot (<i>Scopithulmus maximus</i>). Clin Diagn Lab Immunol 9:1318–1323.		
Lactobacillus delbrueckii CECT 287	probiotic	Immune stimulation	Sparus aurata	Salinas I, Cuesta A, Esteban MA, Meseguer J (2005). Dietary administration of Lactobacillus delbriicekii and Bacillus subtilis, single or combined, on gilthead sea		
Bacillus subtilis CECT 35	probiotic	Immune stimulation	Sparus aurata	Lactoracturals actorized and bacturals storing, single of contoined, on griffical sea bream cellular innate immune responses. Fish Shellfish Immunol 19: 67–77.		
Aeromonas sobria GC2	probiotic	Immune stimulation and improved survival after challenge with <i>Lactococcus garvieae</i> and <i>Streptococcus iniae</i>	Oncorhynchus mykiss	Brunt J, Austin B (2005). Use of a probiotic to control lactococcosis and streptococc in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 28: 693–701.		
Lactobacillus rhamnosus ATCC 53103	probiotic	Immune stimulation and improved survival after challenge with <i>Edwardsiella tarda</i>	Oreochromis niloticus	Pirarat N, Kobayashi T, Katagiri T, Maita M, Endo M (2006). Protective effects mechanisms of a probiotic bacterium <i>Lactobacillus rhamnosus</i> against experin <i>Edwardsiella tarda</i> infection in tilapia (<i>Oreochromis niloticus</i>). Vet Immun Immunopathol, 113: 339–347.		
Carnobacterium inhibens	probiotic	antibacterial activity against fish pathogens	Salmo salar	Joborn A, Dorsch M, Olsson JC, Westerdahl A, Kjelleberg S (1999). Carnobacterium inhibens sp nov., isolated from the intestine of Atlantic salmon (Salmo salar). Int. J. Syst. Bacteriol. 49:1891–1898.		
Enterobacter amnigenus	probiotic	increased resistance toward Flavobacterium psychrophilum	Oncorhynchus mykiss	Irianto A, Austin B (2002b). Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 25:1-10. doi: 10.1046/j.1365- 2761.2002.00375.x		

Organisms	Reads				
Organishis	Wild	Cultivated			
Female	99,513	59,539			
Male	137,792	67,891			
Subtotal	237,305	127,430			
Total	364,735				

Table 2. Total reads by sex/origin and wild/cultivated

Sample	Chao1	S.D.	Obs. OTUs	S.D. (Obs.	P.D.	S.D. (P.D.)	Shannon	S.D.
AtropFF.5	250.20 "	(Chao1) 57.17	179 ^{fg}	OTUs) 53.77	6.09 19	(P.D.) 1.27	4.12 ^ĸ	(Shannon) 0.12
AtropFF.6	230.20 229.41 ⁹	56.92	179 154 °	49.37	6.36 ⁹	1.52	4.12 3.54	0.12
	229.41 241.60 ^h	56.92 46.18	154 185 ¹	49.37 51.61	9.16 ¹	1.52	3.54 4.46 ^m	0.11
AtropFF.7	241.60 75.65 [▷]	22.22	54 [°]	15.88	9.10 2.60 ^a	0.61	4.40 1.50 °	0.13
AtropFM.1	75.65 144.24 °		54 97 ⁴		∠.60 4.10 ^d	0.94	1.50 2.03 °	0.06
AtropFM.2		40.38		31.52				
AtropFM.3	101.88 ^d	29.58	69 ^a	21.85	2.54 ^a	0.51	2.52 ^r	0.07
AtropFM.4	210.05 ^f	50.58	146 ^f	46.20	5.94 ^f	1.38	3.24 ^h	0.11
AtropWF.1	92.24 °	29.32	60 ^e	20.20	4.79 °	1.20	1.18 ^b	0.06
AtropWF.2	456.85	110.76	296 *	98.54	13.52 *	3.52	5.43 "	0.17
AtropWF.3	262.49	61.28	186 '	56.11	7.64	1.67	4.43	0.13
AtropWM.4	49.84 ^ª	14.01	37 °	11.28	4.60 °	0.72	0.86 ^ª	0.06
AtropWM.6	216.94 ′	69.18	119 "	42.08	7.05 ^h	3.10	3.29	0.09
AtropWM.7	141.11 °	36.74	97 °	30.10	3.63 °	0.90	3.16 ⁹	0.08
AtropWM.8	94.20 ^{cd}	34.04	59 ^b	18.75	3.31 ^b	1.52	1.57 ^d	0.07
Kruskal-Wallis = p<0	0.01							
Sex/Origin	Chao1	S.D. (Chao1)	Obs. OTUs	S.D. (Obs. OTUs)	P.D.	S.D. (P.D.)	Shannon	S.D. (Shannon)
FF	465.74 ^ª	67.21	402 ^a	91.40	14.62 ^ª	2.47	4.22 ^ª	0.06
FM	374.76 ^b	66.59	302 ^b	79.96	9.57 ^b	2.04	3.24 ^b	0.05
WF	803.73 °	120.84	675 [°]	169.82	23.74 °	4.77	5.57 °	0.09
WM	447.04 ^d	88.21	339 ^d	98.71	15.49 ^d	4.50	4.05 ^d	0.05
Kruskal-Wallis = p<0	0.01							
Origin	Chao1	S.D. (Chao1)	Obs. OTUs	S.D. (Obs. OTUs)	P. D.	S.D. (P.D.)	Shannon	S.D. (Shannon)
Farm	543.24 ª	76.85	486 ^ª	105.77	16.29 ^ª	2.79	3.88 ^ª	0.07
Wild	1090.53 ^b	178.13	912 ^b	239.31	31.67 ^b	7.35	5.35 ^b	0.10
W of Mann-Whitney Multiple Range Test - Different letters	for Kruskal-Wallis (Bonferroni post-ho				FM	farmed o cultivate farmed o cultivat wildtype female	

Table 3. Alpha diversity analysis per sample, sex/origin and origin

Different letters = p <0.01
 Equal letters = p> 0.05

WF wildtype female WM wildtype male