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Abstract. High-throughput sequencing technology has yielded reliable and ultra-fast sequencing 

for DNA and RNA. For tumor cells of cancer patients, when combining the results of DNA and 

RNA sequencing, one can identify potential neoantigens that stimulate the immune response of the 

T cell. However, when the somatic mutations are abundant, it is computationally challenging to 

efficiently prioritize the identified neoantigen candidates according to their ability of activating the 

T cell immuno-response. Numerous prioritization or prediction approaches have been proposed to 

address this issue but none of them considers the original DNA loci of the neoantigens from the 

perspective of 3D genome. Here we retrospect the DNA origins of the immune-positive and 

non-negative neoantigens in the context of 3D genome and discovered that 1) DNA loci of the 

immuno-positive neoantigens tend to cluster genome-wise; 2) DNA loci of the immuno-positive 

neoantigens tend to belong to active chromosomal compartment (compartment A) in some 
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chromosomes; 3). DNA loci of the immuno- positive neoantigens tend to locate at specific regions 

in the 3D genome. We believe that the 3D genome information will help to increase the precision 

of neoantigen prioritization and discovery and eventually benefit precision and personalized 

medicine in cancer immunotherapy. 
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1 Introduction 

In a variety of human malignancies, immunotherapies via boosting the endogenous T cell’s ability to 

destroying cancer cells have demonstrated therapeutic efficacy[1]. Based on clinical practices in a 

substantial fraction of patients, the inference of endogenous T cell with mounted cancer-killing ability 

is that the T cell receptor (TCR) is able to recognize peptide epitopes that are displayed on major 

histocompatibility complexes (MHCs) on the surface of the tumor cells. These cancer rejection 

epitopes may be derived from two origins: the first origin of potential cancer rejection antigens is 

formed by non-mutated proteins to which T cell tolerance is incomplete for instance, because of their 

restricted tissue expression pattern; the second origin of potential cancer rejection antigens is formed 

by peptides that cannot be found from the normal human genome, so-called neoantigens[1]. With the 

development of genome sequencing, it has been revealed that during cancer initiation and progression, 

tens to thousands of different somatic mutations are generated. Most of these mutations are passenger 

mutations, meaning there is no obvious growth advantage, and are often caused by genomic instability 

within the tumor cells. A limited number of cancer mutations are driver mutations which interfere with 

normal cell regulation and help to drive cancer growth and resistance to targeted therapies[2]. Both 

passenger mutations and driver mutations can be nonsynonymous that alter protein coding sequences, 

causing tumor to express abnormal proteins that cannot be found in normal cells. When cell metabolize, 

the proteins possessing abnormal sequences are cut into short peptides, namely epitopes, and are 

presented on the cell surface by the major histocompatibility complex (MHC, or human leukocyte 

antigen (HLA) in humans) which have a chance to be recognizable by T cell as foreign antigens[2]. 

According to the discoveries mentioned above, in theory therefore, if the potential neoantigens can 

be identified via sequencing technology, one can synthesize epitope peptides in vitro and validate their 

efficacy in vivo (cancer cell-line or in mouse model) before clinical practice[1, 2]. Indeed, cancers with 

a single dominant mutation can often be treated effectively by targeting the dominant driver mutation[2, 

3]. However, when the somatic mutations are abundant, which is the case in most cancer types, it is 

computationally challenging to efficiently prioritize the identified neoantigen candidates according to 

their ability to activate the T cell’s immuno-response[4]. Over the past few decades, numerous 

neoantigen prediction approaches have been proposed to address this issue[5-7]. These approaches can 

be classified into two major categories: the protein 3D structure-based approaches which consider the 

pMHC and TCR 3D conformation, and the protein sequence-based approaches which consider the 

amino acid sequence of protein antigens. For the protein 3D structure-based approaches, in some 

specific cases when high quality pMHC 3D structures are available, molecular dynamic (MD) methods 

are used to explore the contact affinity of pMHC-TCR complex[8-10], in most cases, however, the 

modelling or simulation by protein docking and threading has to be used due to the lack of high quality 
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pMHC 3D structures. Most approaches belong to the sequence-based category as there are much larger 

data sets for training and validation[11, 12] and because they are usually very efficient to set up[4, 13]. 

Early sequence-based methods relied on position-specific scoring matrices (PSSMs), such as 

BIMAS[14] and SYFPEITHI[15], in which the PSSMs are defined from experimentally confirmed 

peptide binders of a particular MHC allele[4]. Later, more advanced methods based on 

machine-learning techniques have been developed to capture and utilize the nonlinear nature of the 

pMHC-TCR interaction which indeed demonstrated better performance than the PSSM-based methods. 

Consensus methods that combine multiple tools to obtain more reliable predictions were also 

developed, such as CONSENSUS[16] and NetMHCcons[17], which demonstrated better performances; 

for these methods however, the performance gain is determined by the weighting scheme which cost 

increased computational power. When considering peptide binding, most methods did not consider the 

HLA allele variety, therefore, pan-specific methods, such as NetMHCpan[6, 7], are developed which 

allow the HLA type independent prioritization. 

As one of the widely adopted practices in neoantigen prioritization, NetMHCpan first trains a 

neural network based on multiple public datasets, then the affinity of a given peptide-MHC considering 

the polymorphic HLA types HLA-A, HLA-B or HLA-C is computed according to the trained neural 

network. NetMHCpan[7] and NetMHCIIpan[18] perform remarkably, even compared to allele-specific 

approaches[4, 19]. However, although several assessments and criteria were proposed in the past 

aiming at a more fair and effective comparison[19-21], there are no recent independent benchmark 

studies that can be used to recommend specific tools up until now. More importantly, however, to the 

best of our knowledge, none of the neoantigen prediction methods mentioned above consider the 

mutation DNA loci of the neoantigens in the perspective of 3D genome, which carries much richer 

information compared to the amino acid sequence alone[22]. In this work, we retrospect the DNA 

origin of the immune-positive and non-negative neoantigens in the context of the 3D genome and 

demonstrate some discoveries that worth paying attention to. 

2. Methods 

2.1 Data collection and curation 

All the peptide sequences and their corresponding immune effectiveness were collected from IEDB (T 

Cell Assay)[12] on May 27th 2018; the raw dataset contains 337248 peptide records. We narrowed 

down to Homo sapiens and MHC-I subtypes and then further restrain the AA length to be equals to 9 

with duplicated peptide merged. Finally, we obtained 3909 qualified records with 809 immuno-positive 

peptides and 3100 immuno-negative peptides that has mapping hits in the human hg19 reference 

genome. Note that for identical peptides with multiple immune experiments, we define positive rate > 

0.8 as immune-positive peptides and positive rate < 0.2 as immune-negative peptides. In detail, there 

are two steps in this procedure:  

Step I. Extracting the Homo sapiens peptide sequences and cleaning up the dataset from initial 

dataset. We used PANDAS library to create a data frame object for processing. Then we assigned the 

column name by importing a name dictionary. Then we filtered the dataset so that the only entries left 

have “homo sapiens” as their hostname, after which we transfer the dataset to a tsv file for the future 

procedures. Then, we further clean up the dataset by introducing two helper functions: 1. Letter_check 

takes in a string as the parameter and checks for letters that are not in the alphabet for a proper peptide 
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sequence. The function returns an indicator which value is set to true if the string is a legal peptide 

sequence. 2. Drop_legal takes a data frame, and iterate through and deletes the rows with illegal strings. 

With these helper functions, we can remove all the illegal entries in the dataset.  

Step II: Counting the number of sequences that have positive qualitative measure. The algorithm 

here takes advantage of the layout of the dataset. We keep counting until the last appearance of a 

certain sequence; add 1 to the counter of positivity if a positive qualitative measure is detected. For the 

last appearance of the sequence, we can either add 1 if its positive or we skip to the next step. The 

counter resets every time we finish counting positivity for a sequence and move on to the next one. We 

store the counted values into a dictionary that have sequence and MHC as its key. 

For the chromatin 3D conformation data, we used the Hi-C data of hESC and IMR90 cell lines 

generated by Bin Ren’s lab[23]. The contact frequencies and the subsequent chromatin 3D modeling 

are based on these Hi-C data. 

2.2 Mapping peptides to human genome 

To map the peptides to human genome (hg19), we wrote a pipeline to query the BLAST[24] web server 

and map the gene names to chromosomes and starting positions.  The algorithm first divided the 

dataset into 711 folds where each fold has 100 sequences for the BLAST server to process. To set up 

the BLAST search, we regulated the searching algorithm to search for Homo sapiens matches only with 

entrez ID keywords and used the PAM30 matrix to search for matches. We also adjusted the gap costs 

to regulate gap penalty. After the setup, we called BLAST iteratively and wrote the result onto a tsv file. 

For each match, we saved the accession and raw bit score for the first hit. After acquiring the 

accessions, we uploaded a list of refseq id to the DAVID tool[25] to obtain the gene names composed 

with gene symbols. The algorithm mapped gene names to chromosome positions, and we started with a 

dataset that records chromosome positions and gene names for numerous genes as our database. To 

save time during iterations, we created two dictionaries recording chromosome positions with gene 

names as keys, one from the dataset we produced from BLAST results and one from the database. We 

iterated through the dictionaries simultaneously. If we found a match for the keys, we recorded the 

chromosome positions on the result file. The final result is in the form of a tuple that contains peptides, 

HLA subtype, chromosome number, and chromosome position. 

2.3 Active and inactive compartment determination 

To determine the compartment activeness (compartment A: active, compartment B: inactive) of each 

chromosome bin, we used individual chromosome Hi-C contact maps. We first diagonal normalized 

each contact map by dividing the contact frequencies by their corresponding off-diagonal mean. Then 

we computed the Pearson correlation coefficient (PCC) matrices for each chromosome, and the 

compartment type was jointly determined by the sign of eigenvalue of the first eigenvector of the PCC 

matrices and the signal of the epigenetic marker H3k4me1. 

2.4 Chromatin 3D modeling 

We developed a new method for modeling 3D conformations of human genome using molecular 

dynamics (MD) based approach with resolution of 500kb (bin size) for hESC and IMR90 Hi-C data. In 
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this method, each bin was coarse-grained as one bead and intact genome was modeled as 23 polymer 

chains represented by bead-on-the-string structures. The spatial position of each bead is affected by two 

factors: (1) chromatin connectivity that constrains sequentially neighbor beads in close spatial 

proximity and (2) chromatin activity that ensures active regions are more likely to be located close to 

the center of cell nucleus. In this work, chromatin activity was estimated as compartment degree that 

can be directly calculated from Hi-C matrix with algorithm described in previous work[26]. Based on 

the relative values of compartment degrees, all the beads were assigned distances with different values 

to nuclear center and then the conformation of chromatin was optimized from random structures with 

molecular dynamics approach by applying bias potential to satisfy these distance constraints. For each 

cell linage, 300 conformation replicas were optimized from random ones to reduce possible bias for 

further analysis. 

3 Results 

3.1 Neoantigen proximity in individual chromosome (intra-chromosome) 

We generated all peptide pairs between immune-positive peptides and peptide pairs between 

immune-negative peptides. Then on each chromosome (intra-chromosome), we generate each pair’s 

contact frequency on hESC and IMR90 Hi-C data[23]. The results are shown in Figure 1a and Figure 

1b. Jointly from these results, we found that positive peptides’ corresponding DNA loci tend to be more 

proximate (p<0.05) than the negative ones on chromosome 1 (chr1), chr7, chr10, and chr12, while 

negative peptides’ corresponding DNA loci tend to be more proximate than the positive ones on 

chromosome chr2, chr5, chr8, chr11, and chr20. 

3.2 Neoantigen proximity in the whole genome (inter-chromosome) 

For the inter-chromosomal peptide pairs, both positive and negative, we also collect their contact 

frequency and calculate the average values. As shown in Figure 2, on both hESC and IMR90 Hi-C data, 

immune-positive peptide pairs are more proximate to each other comparing to immune-negative 

peptide pairs. The corresponding P-values are close to zero. 

3.3 Neoantigen distribution on active and inactive compartment 

For each chromosome, we compute the compartment type A/B (A: active; B: inactive) for each 

chromosomal region (bin), shown in Figure 3a and 3b. Then we assign positive and negative peptides 

with their corresponding A/B compartment type. We found that in certain chromosomes, 

immune-positive neoantigens tend to be located on compartment A, comparing to immune-negative 

neoantigens, as shown in Figure 3c. 
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Figure 1. Average contact frequency (CF) of immune-positive peptide pairs and immune-negative peptide pairs 

based on (a) hESC Hi-C data and (b) IMR90 Hi-C data. The star sign indicating p<0.05. 

 

Figure 2. Contact frequency distribution comparison between immune-positive peptide pair’s DNA loci, 

immune-negative peptide pairs’ DNA loci, and immune-positive-negative peptide pairs’ DNA loci, on (a) hESC 

Hi-C data and (b) IM4R90 Hi-C data. 
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Figure 3. Neoantigen distribution in active and inactive compartments. (a) Example of compartment A and 

compartment B submatrix on chromosome 1. (b) Example of compartment A/B values on chromosome 1. (c) 

Distribution of percentage of compartment A of immune-positive (red) and immune-negative peptides (blue). 

3.4 The radius position distribution of neoantigen 

We developed a novel molecular dynamic based approach to model the 3D conformation of the human 

genome, on both hESC and IMR90 Hi-C data. We then mapped the positive and negative peptides’ 

corresponding chromosomal loci on the constructed 3D genome and calculated their radius distance to 

the nucleus center, as shown in Figure 4a. We found that the immune-positive peptide’s corresponding 

loci tend to locate closer to the nuclear periphery, compared to the negative ones, as Figure 4b 

demonstrates. We then used the radius position as the immunogenicity predictor and found that 

combined with existing widely adopted methods such as netMHCPan and netMHC, the joint prediction, 

defined as ����� = ���	
���� × �
� or  ����� = ���	
�� × �

� can discriminate the immune-positive 

peptides from the immune-negative peptides. As shown in Figure 4c, the AUPR increased from 0.55 to 

0.64. The AUC of the ROC curves are also increased. 

4. Discussion 

In cancer immune therapy, neoantigen therapy is a rising and promising topic as it can be genuinely 

personalized and precise. However, when the somatic mutations are abundant, it is computationally 

hard to efficiently prioritize the identified neoantigen candidates according to their ability of activating 

the T cell immuno-response and numerous prioritization or prediction approaches have been proposed 

to address this issue. However, none of the existing approaches considers the original DNA loci of the 

neoantigens in the 3D genome perspective, to the best of our knowledge. In this work, we retrospect 

the DNA origin of the immune-positive and immune-negative neoantigens in the context of 3D genome 

and discovered that 1) Immuno-positive neoantigens’ corresponding DNA tend to cluster in some 

chromosomes (intra-chromosome) and tend to cluster genome-wise (inter-chromosome); 2) 

Immuno-active neoantigens’ corresponding DNA tend to belong to active chromosomal compartments 

(compartment A) in some chromosomes; 3) Immuno-active neoantigens’ corresponding DNA tend to 
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locate at specific regions in the 3D genome. We believe that the 3D genome information, combining 

advanced machine learning[27-29] and feature selection technologies[30-32], will help more precise 

neoantigen prioritization and discovery, and will eventually benefit precision medicine in cancer 

immunotherapy. 

 

 

Figure 4. The radius position distribution of neoantigen. (a) Positive and negative peptides’ corresponding 

chromosomal loci on 3D genome structure. (b) Radius position distribution of the positive peptides comparing to 

the negative peptides. (c) Precision-recall curve demonstrating the discriminative power of radius position in 

immunogenicity prediction. 
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