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Abstract 

Many proteins are composed of several domains that pack together into a complex tertiary 

structure. Some multidomain proteins can be challenging for protein structure modeling, 

particularly those for which templates can be found for the domains but not for the entire 

sequence. In such cases, homology modeling can generate high quality models of the domains 

but not for the assembled protein. Small-angle X-ray scattering (SAXS) reports on the solution 

structural properties of proteins and has the potential for guiding homology modeling of 

multidomain proteins. In this work, we describe a novel multi-domain protein assembly 

modeling method, SAXSDom, that integrates experimental knowledge from SAXS profiles with 

probabilistic Input-Output Hidden Markov model (IOHMM). Four scoring functions to account 

for the energetic contribution of SAXS restraints for domain assembly were developed and tested. 

The method was evaluated on multi-domain proteins from two public datasets. Based on the 

results, the accuracy of domain assembly was improved for 40 out of 46 CASP multi-domain 

proteins in terms of RMSD and TM-score when SAXS information was used. Our method also 

achieved higher accuracy for at least 45 out of 73 multi-domain proteins according to RMSD and 

TM-score metrics in the AIDA dataset. The results demonstrate that SAXS data can provide 

useful information to improve the accuracy of domain-domain assembly. The source code and 

tool packages are available at http://github.com/multicom-toolbox/SAXSDom. 

 

KEYWORDS: Small-angle X-ray scattering, SAXS, protein structure, domain assembly, 
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1. Introduction 

Protein domains, as fundamental units of protein structure, have been extensively studied and 

commonly identified in most proteins, especially in large eukaryote proteins 1. During the 

process of evolution, domains are independently folded with particular functions, and arranged 

with different combinations to form various new proteins 2. Domains in a protein are generally 

connected by intrinsically flexible and unstructured linkers 3 while sometimes one domain is 

inserted into intra of another domain 4. Domain linkers have been shown as an essential role in 

maintaining domain-domain interaction, protein stability and domain-domain orientation 5-6. 

Understanding the domain arrangement is central to interpreting the structure, function and 

evolution of the multi-domain proteins 7. Thus, domain identification is generally an important 

first step in computational protein three-dimensional structure prediction 8-9. With the wide 

application of experimental techniques such as X-ray crystallography and NMR spectroscopy, 

the number of determined protein structures is exponentially growing and provides a valuable 

resource for bioinformatics research 10. Consequently, the computational protein structure 

prediction from sequences has advanced greatly in the last decades 9, 11-17. Most computational 

methods start with parsing sequences into domains and perform either comparative (homology) 

structure modeling 9, 18 or de novo structure prediction 8, 19 on individual domains. The predicted 

structures of domains are subsequently assembled into full-length structural model in terms of 

free energies 11, 20. In the de novo structure prediction, different free energy functions are 

frequently taken into account when the optimization approaches are applied to fold a protein 

structure into native-like state that has lowest energy 11, 19-21. Several potential functions have 

been widely considered, such as Van der Waals, hydrophobic effects, electrostatic interactions, 

hydrogen bonding propensity, and backbone interaction potential 11. The changes of free energy 

during the conformation sampling were generally captured by different optimization approaches, 

such as Monte Carlo simulation 11, simulated annealing 19 and gradient descent 20. The 

integration of energy functions with optimization techniques facilitates yielding native-like 

conformation. Despite showing the effectiveness, it remains to be challenging and difficult in 

sampling large conformational space for ab initio protein structure prediction, especially for 

those proteins with large protein size, or presence of multi-domains for which templates can be 

found for the domains but not for the entire sequence. Therefore, different kinds of experimental 

information were investigated to assist the computational modeling by introducing additional 

energies 22-24. 

Unlike the high-resolution structure determination, the small-angle X-ray scattering (SAXS) 

technique can detect low-resolution structural information (i.e. 12-20 Angstrom) in solution 

without crystal formation and can be efficiently and rapidly determined with lower costs 25-26. 

Many advances have been made in the use of SAXS information for structural analysis in recent 

years, including processing and analyzing SAXS data 27-29, and the applications that integrate 

SAXS information with computational approaches in protein structure modeling 30-33. Compared 

with the accurate determination of atomic coordinates using X-ray or NMR, SAXS provides the 

statistics of all the electron pair distance for a protein in solution. Consequently, we can derive 

distance distribution of all pair atoms, mass size and shape of proteins from SAXS data. Thus, it 

is promising to use SAXS data in the protein structure modeling as a prior experimental restraint, 
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especially useful for the study of domain-domain interaction and protein-protein docking 23. In 

the recent Critical Assessment of Protein Structure Prediction (CASP) competition, SAXS 

information was incorporated into the data-assisted category that aimed to assess the potential of 

integrating SAXS data with protein structure prediction methods for protein folding 24. Most 

CASP12 approaches utilized SAXS as additional driving restraints, which include (1) 𝜒 score 

that measures the fitness of scattering curves between the experimental SAXS intensities and 

computed intensities from the model; (2) pair distance distribution (𝑃(𝑟)) that quantitates the 

histogram matching of atom pair distance; (3) Radius of Gyration (𝑅𝑔 ) that restraints the 

structural size. Even though the SAXS data holds great promise for accurate structural folding, it 

is still challenging to leverage the different types of experimental knowledge in the application of 

computational modeling. 

In this work, we investigated whether incorporating the restraints from SAXS data can improve 

the multi-domain assembly. We developed a novel framework that systematically integrates the 

probabilistic approach with SAXS data to assist in structure folding and multi-domain assembly. 

Our method applies probabilistic Input-Output Hidden Markov model and Monte Carlo sampling 

to simulate the domain-domain orientation with enforced energies derived from SAXS data, so 

that it can generate near-native structures that have low free energy and close SAXS profile 

match. In addition, we examined the correlation between the several SAXS scoring functions and 

structural qualities (i.e. RMSD) on the CASP proteins, which shows the effectiveness of SAXS 

data in the structural analysis. Our method shows a significant improvement in domain assembly 

and structure folding after incorporating SAXS information as additional energies to the 

physical-based force field, and demonstrate its promising use of SAXS data in computational 

protein structure modeling.  

2. Method 

2.1. Benchmark sets 

To assess how well each SAXS energy correlates with structural qualities (i.e. RMSD) 34, we 

collected predicted structural models generated for protein targets that were tested in the 8th, 9th, 

10th, 11th Critical Assessments of Structure Prediction (CASP) experiments 35. The proteins 

whose experimental structures were available were selected for preliminary analysis. The dataset 

contains 112,050 models corresponding to 428 single-domain and multi-domain proteins. The 

detailed statistics for this dataset is provided in Table S1.  

In addition, we evaluated our proposed method on the two types of datasets to validate the 

effectiveness of SAXS data in protein multi-domain assembly. The first dataset contains multi-

domain proteins from CASP8-12 whose experimental structures are available to date. The 

domain definition (i.e. number of domains and the domain boundaries) of each protein was 

determined by CASP assessors 36. Since our method requires the continuous domains as input, 

the domains with chain-break (i.e. distance of adjacent Ca-Ca atoms is larger than 4 Å) were 

removed from the dataset. Finally, we collected 51 CASP multi-domain proteins for the domain 

assembly analysis. The length of domain linkers among 51 proteins ranges from 5 to 21. We 

randomly selected 5 targets to determine the weights for the SAXS energy terms in the energy 

function. The remaining 46 targets were used to compare the performance of different SAXS 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/559617doi: bioRxiv preprint 

https://doi.org/10.1101/559617
http://creativecommons.org/licenses/by-nc-nd/4.0/


scoring functions for domain assembly. The structures of individual domains for all 51 CASP 

targets were directly derived from their native protein structures and were further used in domain 

assembly.  

The second dataset is a collection of two-domain proteins curated in the AIDA domain assembly 

method 21. The number of domains in each protein was determined by DomainParser 37. Unlike 

using the native domain structures for assembly in the CASP dataset, we first used MULTICOM 

tertiary structure system 38 to predict the structures of individual domains of proteins from their 

homology templates. The domains whose predicted structures have TM-score > 0.9 against their 

native structures were selected for domain assembly. Finally, MULTICOM successfully 

predicted high-quality models for domains of 73 proteins in the AIDA dataset. The length of 

domain linkers in 73 proteins ranges from 5 to 15. The predicted structures were used for domain 

assembly analysis. 

2.2. Domain-Domain orientation driven by united-residue model and probabilistic 

sampling  

Given individual domain structures for a protein sequence, our method first converts the 

polypeptide chains of domains into united-residue representation as described in the UNRES 

model 19, 39. In the united-residue model, the backbone of the polypeptide chain is constituted by 

a sequence of alpha-carbon atoms linked by virtual bonds, and the conformation of the protein 

chain is determined by virtual-bond length (𝑏𝑐𝛼𝑖
), virtual-bond angles (𝜃𝑖), virtual bond dihedral 

angles (𝜏𝑖) among adjacent backbone alpha-carbon atoms. In addition, the united side-chains are 

attached to the alpha-carbon atoms where two side-chain angles (𝛿𝑖  and 𝛾𝑖) and virtual-bond 

length (𝑏𝑠𝑐𝑖
) determine the location of side-chain with respect to the alpha-carbon atoms in the 

backbone. The six variables parameterize the geometry of alpha-carbon (𝐶𝛼𝑖) and side-chain 

(𝑆𝐶𝑖) at ith residue of a polypeptide chain in the conformation space. We used Input-Output 

Hidden Markov Model (IOHMM) that was pre-trained in our previous work 19 to sample the 

virtual-bond lengths and virtual-bond torsion angles given amino acids and predicted secondary 

structure in the linker regions. Each cycle of Monte Carlo sampling generates one acceptant 

movement for domain-domain orientation using simulated annealing algorithm. It is worth 

noting that the structural conformation of individual domains keeps unchanged during sampling, 

so that the conformation of linker regions can be conditionally resampled given the known prior 

structural information of domains based on the probabilistic model, which can predict more 

accurate local structural preferences of linkers than random sampling and potentially reduce the 

number of local movements in the conformational space. 

Our method implements the domain assembly based on the following steps. Given the full-length 

sequence of a protein, our method first predicts its 8-class secondary structure using SSpro 40, 

and samples the united-residue conformation for the entire polypeptide chain using IOHMM 

model for structure initialization. After the conformation is initialized, the torsion angles and 

virtual-bond lengths of alpha-carbon and its side-chain atoms at each position of residues in the 

full-length polypeptide chain are updated according to their geometry in the predetermined 

domain structures. The regions whose structure information are not provided in the provided 

domain structures are considered as linkers that anchors domains together. The conformation of 
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linker regions is then sampled using IOHMM model and orients the domain structures using 

simulated annealing algorithm to generated structure models with lowest structural energy, as 

depicted in the Figure 1. Therefore, our method can be applied to assemble any number of 

domains for multi-domain proteins. 

2.3. Integrating physics-based force field with SAXS restraints for domain-domain 

assembly 

Our method adopts the same energy configuration using united-residue physics-based force field 

that was defined in our previous work 19 to represent the energy of a united-residue peptide chain. 

The physics energy includes the mean free energy of hydrophobic (hydrophilic) interactions 

between side chains ( 𝐸𝑠𝑐𝑖𝑠𝑐𝑗
), excluded-volume potential of side-chain and peptide group 

interaction ( 𝐸𝑠𝑐𝑖𝑝𝑗
) and the backbone peptide group interaction to represent the average 

electrostatic interactions(𝐸𝑝𝑖𝑝𝑗
) for any pair residues in the 𝑖𝑡ℎand 𝑗𝑡ℎ positions in the polypeptide 

chain, as represented in Equation (1) 

𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑠 =  𝑤𝑠𝑐 ∗ ∑ ∑ 𝐸𝑠𝑐𝑖𝑠𝑐𝑗𝑖<𝑗𝑗 + 𝑤𝑠𝑐∙𝑝 ∗ ∑ ∑ 𝐸𝑠𝑐𝑖∙𝑝𝑗𝑖≠𝑗𝑗  + 𝑤𝑒𝑙 ∗ ∑ ∑ 𝐸𝑝𝑖∙𝑝𝑗𝑖<𝑗−1𝑗                            (1) 

Unlike our earlier approach that generated chain conformation based on stepwise sampling of 

foldon units, our method only samples the conformation of the linker regions and keeps the 

geometry of domain structures fixed. Therefore, the physics-based force field of intra-domain 

interactions is stable during conformation sampling, and the energy of chain conformation is 

only affected by the interactions of all inter-domain residues (i.e. interaction interface) and all 

linker residues, where the physics energy can be further represented as: 

 𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑠 =  𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑠
(𝑖𝑛𝑡𝑟𝑎−𝑑𝑜𝑚𝑎𝑖𝑛)

 + 𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑠
(𝑖𝑛𝑡𝑒𝑟−𝑑𝑜𝑚𝑎𝑖𝑛)

 +  𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑠
(𝑙𝑖𝑛𝑘𝑒𝑟)

,                      (2) 

It is worth noting that the energy of hydrophobic (hydrophilic) interactions between side chains 

of linker residues plays an important role in the protein folding and domain-domain movement 41. 

Studies showed that the average residue hydrophobicity (hydrophilicity) is largely influenced by 

the size of linkers, where longer linkers are more hydrophilic and exposed so that they induced 

larger domain motions in the conformation space. Inversely, smaller linkers showed more 

hydrophobic which may significantly restrain the domain-domain movement 6.  

In order to assist the domain-domain orientation using knowledge-based information, we 

introduced additional energy terms corresponding to the SAXS restraints for the total energy 

calculation, defined as: 

𝐸𝑠𝑎𝑥𝑠 =  𝐸𝑠𝑎𝑥𝑠∙𝐼𝑛𝑡𝐹𝑖𝑡 +  𝐸𝑠𝑎𝑥𝑠∙𝜒 + 𝐸𝑠𝑎𝑥𝑠∙𝑃𝑟 + 𝐸𝑠𝑎𝑥𝑠∙𝑅𝑔
,               (3) 

where 𝐸𝑠𝑎𝑥𝑠∙𝐼𝑛𝑡𝐹𝑖𝑡  represents the normalized fitness between the experimental SAXS intensity 

and computed intensity from the models, which is defined as: 

𝐸𝑠𝑎𝑥𝑠∙𝐼𝑛𝑡𝐹𝑖𝑡 =  𝑤𝑠𝑎𝑥𝑠∙𝐼𝑛𝑡𝐹𝑖𝑡 ∗  
∑ |𝐼𝑒𝑥𝑝(𝑞𝑖)−𝐼𝑚𝑜𝑑𝑒𝑙(𝑞𝑖) |𝑁

𝑖=1

∑ |𝐼𝑒𝑥𝑝(𝑞𝑖)|𝑁
𝑖=1

 ,            (4) 
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where 𝐼𝑒𝑥𝑝(𝑞)  and 𝐼𝑚𝑜𝑑𝑒𝑙(𝑞)  correspond to the experimental SAXS intensities derived from 

SAXS profile and estimated intensities from decoys, respectively. We employ the same strategy 

as FoXS 28, 42 proposed to calculate best fitted intensity profile 𝐼𝑚𝑜𝑑𝑒𝑙(𝑞) by minimizing the  𝜒 

function as follows: 

𝜒 =  √
1

𝑁
∑ (

𝐼𝑒𝑥𝑝(𝑞𝑖)−𝑐𝐼𝑚𝑜𝑑𝑒𝑙(𝑞𝑖)

𝜎(𝑞𝑖)
)2  𝑁

𝑖=1  ,              (5) 

where 𝜎(𝑞) is the experimental error of the measured SAXS profile. 𝑁 is the number of points in 

the SAXS profile, and 𝑐 is the scale factor which is determined by performing the linear least-

squares minimization to derive minimum value of 𝜒. Therefore, our method also included 𝜒 as 

additional score term to account for the energic contribution of SAXS profile matching degree, 

which is defined as: 

𝐸𝑠𝑎𝑥𝑠∙𝜒 =  𝑤𝑠𝑎𝑥𝑠∙𝜒 ∗ √
1

𝑁
∑ (

𝐼𝑒𝑥𝑝(𝑞𝑖)−𝑐𝐼𝑚𝑜𝑑𝑒𝑙(𝑞𝑖)

𝜎(𝑞𝑖)
)2  𝑁

𝑖=1            (6) 

𝐸𝑠𝑎𝑥𝑠∙𝑃𝑟  represents the Kullback-Leibler divergence between the pairwise atom-atom distance 

distribution function 𝑃(𝑟)  derived from SAXS profile and the pair distance distribution 

computed from the model, which is defined as: 

𝐸𝑠𝑎𝑥𝑠∙𝑃𝑟 =   𝑊𝑠𝑎𝑥𝑠∙𝑃𝑟 ∗ ∑ 𝑃𝑟𝑚𝑜𝑑𝑒𝑙(𝑟𝑖) ∗ 𝑙𝑜𝑔
𝑃𝑟𝑚𝑜𝑑𝑒𝑙(𝑟𝑖)

𝑃𝑟𝑒𝑥𝑝(𝑟𝑖)
𝑁
𝑖=1              (7) 

Compared to intensity profiles, 𝑃(𝑟) provides more intuitive information about the shape and 

size molecules. It is straightforward to derive maximum distance (𝑑𝑚𝑎𝑥) and estimated 𝑃(𝑟) 

based on the inverse Fourier transformation of Debye formula given SAXS intensity profiles 29, 

43. The pair distance distribution of the protein structure is directly calculated from its atomic 

coordinates. The last energy term 𝐸𝑠𝑎𝑥𝑠∙𝑅𝑔 represents the radius of gyration restraints, defined as    

𝐸𝑠𝑎𝑥𝑠∙𝑅𝑔
=   𝑊𝑠𝑎𝑥𝑠∙𝑅𝑔

∗  
|𝑅𝐺𝑒𝑥𝑝− 𝑅𝐺𝑚𝑜𝑑𝑒𝑙|

|𝑅𝐺𝑒𝑥𝑝|
,               (8) 

which measures the agreement between radius of gyrations estimated from SAXS data and 

calculated radius of gyration from protein model. The SAXS-related information (i.e. SAXS 

intensity, pair distance distribution and radius of gyration) described above was derived via 

algorithms as implemented in Integrated Modeling Platform (IMP) package  44 for SAXS energy 

calculation. 

We adopted the same weight configuration for physics-based force field energy terms listed in 

Eq (1) as our previous method 19, where  𝑤𝑠𝑐 = 1.00000, 𝑤𝑠𝑐∙𝑝 = 2.73684, and 𝑤𝑒𝑙 = 0.06833. 

For the SAXS energy terms described in the Eq (3), we set 𝑤𝜒 = 10.0, 𝑤𝑠𝑎𝑥𝑠∙𝑓𝑖𝑡 = 700.0 , 

𝑤𝑠𝑎𝑥𝑠∙𝑃𝑟 = 700.0, and 𝑤𝑠𝑎𝑥𝑠∙𝑅𝑔
= 700.0 after experimenting with several weights on the small 

training proteins. 

Therefore, the energy for the multi-domain polypeptide chain used in our method is defined as: 

𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑠
(𝑖𝑛𝑡𝑟𝑎−𝑑𝑜𝑚𝑎𝑖𝑛)

 + 𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑠
(𝑖𝑛𝑡𝑒𝑟−𝑑𝑜𝑚𝑎𝑖𝑛)

 + 𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑠
(𝑙𝑖𝑛𝑘𝑒𝑟)

+ 𝐸𝑠𝑎𝑥𝑠,         (9) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/559617doi: bioRxiv preprint 

https://doi.org/10.1101/559617
http://creativecommons.org/licenses/by-nc-nd/4.0/


In addition to the four SAXS-related scoring functions as defined in Equation (4,6,7,8), we also 

implemented additional 10 SAXS-based score functions to account for the matching degree 

between experimental SAXS profiles and computed profiles from models, as shown in Table S1. 

Since the physics-based energies are calculated from the united-residue models, however, the 

SAXS energies calculation requires the full-atom representation with at least Ca-trace included. 

We reconstruct the Ca-trace and side-chain from the united-reside protein representation by 

using PULCHRA 45 to generate full-atom protein models for SAXS energy calculation. In order 

to speed up SAXS fitting and computation, the functions of FoXS 42, PULCHRA 45 and IMP 44 

have been built in our system instead of calling them as external programs during sampling. 

We used the Monte Carlo simulation with simulated annealing algorithm for energy 

minimization to search the lowest-energy assembled multi-domain conformation. Since only 

linker regions are resampled during domain-domain orientation, the sampling space is 

significantly reduced. The number of Monte Carlo cycles for each linker is set to the number of 

residues in linker times 100.  Given an assembled protein decoy in each cycle, the total energy 

including physical interaction energies and SAXS fitting energies is calculated and compared to 

the energy of previous conformation. The domain movement is accepted or rejected according to 

the probability proportional to α = min(1, 𝑒
−Δ𝐸

𝑡 ), where the Δ𝐸 represents the energy change for 

each domain movement, and t is the temperature of simulated annealing. 

 

Figure 1. Parameterization of conformation in linker regions and overall shape match with SAXS data.  
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3. Results 

3.1. Evaluation of different SAXS profile matching score functions 

In this study, we first examined the correlation between different score functions derived from 

SAXS profile with the structural quality of a given protein model. Total 14 score functions were 

considered to account for the SAXS profile matching degree between the computed intensities 

derived from the model and SAXS intensities from the experimental data, as shown in Table S2. 

Since Root Mean Square Deviation (RMSD) aims to measure the distance variation between Cα 

atoms of superimposed protein structures and has been commonly used to validate if the multiple 

domains have been correctly assembled (e.g. RMSD < 3 Å) 21, 46, we evaluated the correlation 

(i.e. Pearson correlation coefficient) between the 14 SAXS-based scoring functions and RMSD 

metric on the predicted server models of 428 proteins from CASP8 to CASP11. Given a 

predicted model and its native structure, the profile I(q) was derived using FoXS program 42, and 

pair distance distribution function P(r) was obtained using inverse Fourier transformation from 

the intensity profile I(q) by GNOM 47. The intensity profile estimated from the experimentally 

determined structure was considered as theoretical profile for the protein. For each predicted 

model, we generated SAXS intensity profiles I(q) from both full-atom and Cα-atom protein 

structure and then calculated the SAXS matching scores according to the 14 score functions as 

defined in Table S2. The structural quality of each predicted model was evaluated according to 

RMSD metric by superimposing the predicted structure with its native structure. The Pearson 

correlation coefficient (PCC) between the RMSD and each of 14 SAXS scores of all predicted 

models for each protein was calculated and the averaged correlation of 428 proteins was 

summarized in the Table S2 and Table S3 in terms of full-atom and Cα-atom SAXS profile.  As 

shown in the table, the divergence of pair distance distribution function P(r) (score 2), agreement 

of radius of gyration (score 3), and normalized fitness between computed and experimental 

SAXS intensities (score 5) showed the highest correlation with RMSD, with 0.6, 0.7, 0.59 for 

full-atom SAXS profile and 0.58, 0.66, 0.52 for Cα -atom SAXS profile respectively. The 

analysis demonstrates that the three score functions derived from Cα-atom SAXS profile doesn’t 

affect the correlation largely compared to the full-atom SAXS profile. This is also useful for Cα-

trace backbone modeling because full-atom reconstruction is not required to generate SAXS 

profile to measure the fitness of computed and experimental intensities during the simulation, 

which facilitates the speed of model sampling and exploration of larger conformation space.  

Since χ function is the most common metric for comparison of scattering curves for SAXS, we 

also included it for analysis even though χ score (score 1) achieved relatively low correlation 

with 0.47 for full-atom and 0.38 for Cα-atom SAXS profile as shown in Table S2 and S3. 

Therefore, in this work, we considered four score functions as SAXS energies as defined in 

Equation (4, 6, 7, 8). The correlation between the four SAXS scores and RMSD on CASP dataset 

is visualized in Figure 2. 
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Figure 2. Pearson correlation coefficient of the structural quality (RMSD) against the SAXS score 

functions derived from (a) Full-atom and (b) Ca Atom of protein structure. Analysis was done based on 

the predicted models from CASP8-11. 

 

3.2. Performance of SAXSDom in CASP multi-domain proteins using native domain 

structures 

In order to validate the improvement of domain assembly after incorporating the information of 

SAXS data, we first developed a baseline approach, SAXSDom-abinitio, which used the basic 

united-residue physical based force field energies as defined in the Equation 1. We then 

developed 5 approaches that adopted different SAXS energy terms as defined in Equation (3, 4, 

6, 7, 8), which were labeled as SAXSDom( 𝐸𝑠𝑎𝑥𝑠∙𝜒 ), SAXSDom( 𝐸𝑠𝑎𝑥𝑠∙𝐼𝑛𝑡𝐹𝑖𝑡 ), 

SAXSDom(𝐸𝑠𝑎𝑥𝑠∙𝑃𝑟), SAXSDom(𝐸𝑠𝑎𝑥𝑠∙𝑅𝑔) and SAXSDom(𝐸𝑠𝑎𝑥𝑠). All SAXSDom methods were 

employed to assemble domains for 46 CASP multi-domain proteins and each method generated 

50 full-length decoys for each protein.  For each protein, the initial structure of each domain was 

directly derived from its native structure, and the secondary structure of full-length protein 

sequence was predicted by SCRATCH 48. The theoretical SAXS intensity profile was calculated 

by FoXS from its native structure. After 50 decoys were generated, we used model quality 

assessment method Qprob 49 to rank the assembled models. Each method was evaluated based on 

the averaged TM-score and RMSD of top one, best of top five, best of top 50 models for all 46 

proteins. The results for six methods are reported in the Table 1. When top one, best of top five 

and best of 50 models were evaluated, the averaged TM-score and RMSD of assembled models 

which were generated by different SAXS scoring functions were significantly improved 

compared to the performance of ab initio approach SAXSDom-abinitio. The P-value for the 
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difference between the SAXS-based method and ab initio modeling according to TM-score and 

RMSD was reported in Table S4. For instance, the method SAXSDom(𝐸𝑠𝑎𝑥𝑠), which combines 

all four SAXS energy terms during conformation sampling, outperforms the method SAXSDom-

abinitio by 9.97%, 11.98%, 11.37% of TM-score and 38.54%, 46.18%, 46.74% of RMSD for top 

one, best of five, and best of 50 models respectively. Figure 3 shows the performance of five 

SAXSDom methods with different SAXS energies and SAXSDom-abinitio method evaluated on 

the best of 50 assembled models based on the RMSD, TM-score, and SAXS 𝜒 score. According 

to the evaluation, as shown in Figure 3(A), the method SAXSDom(𝐸𝑠𝑎𝑥𝑠 ) outperforms the 

SAXSDom-abinitio in 40 out of 46 proteins in terms of RMSD and TM-score. We also evaluated 

the distribution of SAXS 𝜒 scores for all generated models. As expected, the SAXS 𝜒 scores of 

assembled models using SAXS information were lower than that of models built by ab initio 

sampling. As shown in the plot, the distribution of SAXSDom(𝐸𝑠𝑎𝑥𝑠) consistently shifted to 

lower SAXS 𝜒 score compared with SAXSDom-abinitio. Figure 3 (B), (C), (D) and (E) show 

the performance of domain assembly using four individual SAXS energy terms and their 

comparison with performance of ab initio sampling. The results clearly show that incorporating 

SAXS information as additional energies for conformational sampling can improve the accuracy 

of the domain assembly and protein folding. The results of method comparison evaluated on the 

top one and best of five assembled models are shown in Figure S1 and S2. 

 

 

ScoreFunction 
Top one Best-of-Five Best-of-50 

TM-score RMSD TM-score RMSD TM-score RMSD 

SAXSDom-

abinitio 
0.7265 8.4127 0.7580 6.4692 0.7959 4.4317 

SAXSDom 

(𝐸𝑠𝑎𝑥𝑠∙𝜒) 
0.8117 5.0931 0.8518 3.4906 0.8775 2.6021 

SAXSDom 

(𝐸𝑠𝑎𝑥𝑠∙𝐼𝑛𝑡𝐹𝑖𝑡) 
0.7568 6.7671 0.8246 3.9591 0.8652 2.7355 

SAXSDom 

(𝐸𝑠𝑎𝑥𝑠∙𝑃𝑟) 
0.8022 5.2716 0.8480 3.4606 0.8857 2.2904 

SAXSDom 

(𝐸𝑠𝑎𝑥𝑠∙𝑅𝑔) 
0.7727 6.1951 0.8123 4.1972 0.8457 3.0301 

SAXSDom 

(𝐸𝑠𝑎𝑥𝑠) 
0.7989 5.1704 0.8488 3.4815 0.8864 2.3605 

 

Table 1. Summary of the domain assembly performance using ab initio modeling and different SAXS-

related score functions on the 46 proteins in CASP dataset  
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Figure 3. Comparison of five SAXSDom methods with SAXSDom-abinitio method on the best of 50 

assembled models. (A) SAXSDom ( 𝐸𝑠𝑎𝑥𝑠 ) versus SAXSDom-abinitio (Left plot: TM_scores of 

SAXSDom (𝐸𝑠𝑎𝑥𝑠), models versus TM_scores of SAXSDom-abinitio models; Middle plot: RMSD of the 

models of the two methods; Right plot: Distribution of χ score of all assembled models for 46 proteins by 

two methods). (B) SAXSDom (𝐸𝑠𝑎𝑥𝑠∙𝜒) versus SAXSDom-abinitio. (C) SAXSDom (𝐸𝑠𝑎𝑥𝑠∙𝑃𝑟) versus 

SAXSDom-abinitio. (D) SAXSDom (𝐸𝑠𝑎𝑥𝑠∙𝑅𝑔) versus SAXSDom-abinitio. (E) SAXSDom (𝐸𝑠𝑎𝑥𝑠∙𝐼𝑛𝑡𝐹𝑖𝑡) 

versus SAXSDom-abinitio. 
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3.3. Performance of SAXSDom in AIDA multi-domain proteins using predicted domain 

structures 

We also assessed the performance of SAXSDom using 73 multi-domain proteins which were 

originally curated by ab initio domain assembly approach AIDA 21. In our work, the domain 

structures for these 73 proteins were predicted by MULTICOM tertiary structure prediction 

method and then further assembled using our model protocol. SAXSDom then generated 50 

assembled decoys using the reference SAXS intensities derived from the native structures of full-

length proteins and applied Qprob to re-rank the models. The same protocol was applied to 

SAXSDom-abinitio to generate 50 decoys for the 73 proteins. The accuracy of top ranked 

models (i.e. top 1, best of five, best of 50 models) were subsequently evaluated according to TM-

score and RMSD. We also compared our methods with another two state-of-art structure 

modeling approaches, Modeller 20 and AIDA 21. For each protein, Modeller and AIDA also 

generated 50 decoys which were ranked according to their default energies. The qualities of top 

ranked models generated by Modeller and AIDA were also evaluated and compared to our 

methods. Table 2 reports the averaged TM-score and RMSD of top ranked models (i.e. top 1, 

best of five, best of 50 models) generated by four methods. As shown in the table, AIDA 

achieved relatively better performance in domain assembly compared to other three methods. 

The main difference between AIDA method and our approach is that AIDA represents the 

protein structure as backbone geometry defined by all backbone atoms and the energy potentials 

are derived from the main-chain atoms and side-chain, while SAXSDom adopted united-residue 

representation that describes the structures as a sequence of alpha-carbon (Ca) atoms with 

attached united side-chain and the energy is a basic implementation of united-residue physics 

based force field. However, SAXSDom still outperforms SAXSDom-abinitio and Modeller in 

terms of all metrics with statistically significance adopted by one-sample paired t-test, which also 

demonstrated the improvement by incorporating the SAXS restraints in domain assembly. 

Figure 4 shows the performance of SAXSDom with SAXSDom-abinitio, AIDA and Modeller 

evaluated on the best of 50 assembled models based on the RMSD, TM-score, and SAXS 𝜒 

scores. According to the evaluation, as shown in Figure 4(A), the method SAXSDom 

outperforms the SAXSDom-abinitio in 50 out of 73 proteins in terms of RMSD and 45 out of 73 

proteins in terms of TM-score. Figure 4(B) shows the performance of SAXSDom and AIDA 

that AIDA method was able to assemble domains with slightly better qualities according to 

RMSD, while, SAXSDom can generate assembled decoys that were better matched to the SAXS 

profile. Figure 4(C) shows that SAXSDom can generate significantly better models with lower 

SAXS 𝜒 scores compared to that of Modeller. The results of method comparison evaluated on 

the top one and best of five assembled models were also shown in Figure S3 and S4. 
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Method 
Top 1 Best-of-Five Best-of-50 P-value 

TM-

score 
RMSD 

TM-

score 

RMS

D 

TM-

score 
RMSD 

TM-

score 
RMSD 

AIDA 0.716 9.135 0.767 6.444 0.810 4.438 1.00E+00 0.9999 

Modeller 0.620 16.207 0.622 15.349 0.621 14.953 2.20E-16 2.20E-16 

SAXSDom-

abinitio 
0.705 9.005 0.724 6.917 0.742 5.811 5.60E-08 1.98E-08 

SAXSDom 0.722 7.658 0.750 5.987 0.767 5.012     

Table 2. Summary of the domain assembly performance using for domain assembly methods on the 73 

proteins in AIDA dataset  

 

 

Figure 4. Comparison of SAXSDom with SAXSDom-abinitio, AIDA and Modeller on the best of 50 

assembled model. (A) SAXSDom versus SAXSDom-abinitio (Left plot: TM_scores of SAXSDom 

models versus TM_scores of SAXSDom-abinitio models; Middle plot: RMSD of the models of the two 

methods; Right plot: Distribution of χ scores of all assembled models for 46 proteins by two methods). (B) 

SAXSDom versus AIDA. (C) SAXSDom versus Modeller.  
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In Figure 5, we presented four representative targets in the AIDA dataset that SAXSDom 

generated accurate models compared to the modeling methods without using SAXS information. 

In Figure 5(A), the crystal structure of signal recognition particle receptor from E.coli - 1ftsA 

(chain A of 1FTS) contains one 𝛼-helix domain (residues 1-82) linked by another 𝛼-helix+𝛽-

sheet+𝛼-helix domain (residues 92-295) with linker length consisting of 9 residues. SAXSDom 

successfully folded the domains into correct orientation using SAXS information and the 

assembled domains were largely overlaid with the envelope of the protein structure even though 

the variation of linker region is relatively large. The predicted assembly model has RMSD= 

2.776, TMscore=0.876 against the native structure, and 𝜒  score=2.774 with matching to the 

SAXS profile. Figure 6 shows the comparison of predicted models by SAXSDom and three 

modeling methods. Figure 6(A) shows that the correct orientation of domains predicted by 

SAXSDom results in a better matching to the SAXS data than other methods in the both pair 

distance distribution and scattering curves. Figure 6(B) shows that the first 𝛼-helix domain was 

oriented to correct position in the full-length structure with slight bias. The residue-specific 

distance errors between the native structure and the models predicted by four methods are shown 

in Figure 6(C). The case shows that the accuracy of domain assembly was improved by 

incorporating SAXS energies in the SAXSDom compared to ab initio method SAXSDom-

abinitio.  

Figure 5(B) shows the predicted domain assembly for ErmC’ protein (PDB entry 1QAM). The 

structure consists of two domains, an N-terminal 𝛼-helix+𝛽-sheet+𝛼-helix domain (residues 1-

171) and a C-terminal 𝛼-helix domain (residues 176-235). The predicted assembly model has 

RMSD= 2.994, TMscore=0.8084 to the native structure, and 𝜒 score=1.558 to the SAXS profile. 

The domain linker contains 4 residues and is folded into similar shape as that in the native 

structure. Domain assembly for protein 3po2A also achieved good performance, as shown in 

Figure 5(C), and the domains are folded to native-like orientation with RMSD=3.391, 

TMscore=0.8067 and 𝜒 score=1.672.  

Figure 5(D) presents the predicted assembly for protein 2bjiA. The full-length structure of 2bjiA 

is folded as a penda-layered 𝛼-helix+𝛽-sheet+𝛼-helix+𝛽-sheet+𝛼-helix sandwich, and the linker 

connects the first N-terminal 𝛼-helix+𝛽-sheet domain (residues 1-144) with second C-terminal -

helix+𝛽-sheet+𝛼-helix domain (residues 152-257). SAXSDom successfully generated a well-

folded model that domains were oriented to a native-like state with RMSD=2.713, 

TMscore=0.8646 and 𝜒 score=0.702. The detailed results of different domain assembly methods 

for proteins qamA, 3po2A, and 2bjiA are visualized in Figure S5, S6 and S7.  
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Figure 5. The predicted assembly models and shape envelops of five two-domain proteins. The predicted 

model (colored) and the native structure (green) is superimposed. The domain linker (yellow) and 

domains (purple, red) are highlighted in the predicted model. (A) The signal recognition particle receptor 

from E.coli - 1ftsA (chain A of 1FTS), linker length = 9, RMSD=2.776, TMscore=0.876, 𝜒 score=2.774. 

(B) A structure of the rRNA methyltransferase ErmC’ - 1qamA (chain A of 1QAM), linker length = 4, 

RMSD=2.944, TMscore=0.808, 𝜒 score=1.558. (C) A structure of from Bacteroides ovatus – 3p02A 

(chain A of 3P02), linker length = 4, RMSD=3.391, TMscore=0.8067, 𝜒 score=1.672. (D) Myo-inositol 

monophosphatase enzyme – 2bji (chain A of 2BJI), linker length = 7, RMSD=2.713, TMscore=0.8646, 𝜒 

score=0.702.  
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Figure 6.  Comparison of predicted models for protein 1ftsA (chain A of 1FTS) by SAXSDom, AIDA 

and Modeller. (A) Fittings of SAXS profiles between the theoretical SAXS data and computed SAXS 

data of predicted models. The fitting curves of native data (blue) and SAXSDom model (red) are 

highlighted as thick lines while the curves of other three methods are represented as thick lines. (B)  The 

assembled full-length model with quality measurements. (C) Residue-specific distance error between the 

predicted models and the native structure. 

 

4. Conclusion and Future work 

In this work, we developed a data-assisted ab initio domain assembly method, SAXSDom, by 

integrating the probabilistic approach for backbone conformation sampling with SAXS-assisted 

restraints in domain assembly. Our method designed and evaluated several SAXS-related score 

functions for structure modeling by extracting useful restraints from theoretical SAXS data in 

different aspects, including fitness of SAXS intensities, the divergence of pair-atom distance 

distribution, and agreement of radius of gyration derived from the SAXS data and the model. 

Our results show that incorporating the restraints from SAXS data into de novo conformational 

sampling method can improve the protein domain assembly. SAXSDom generates more accurate 

domain assembly for 40 out of 46 CASP multi-domain proteins, when models generated with 

and without SAXS information are evaluated using RMSD and TMscore. On the AIDA dataset, 

SAXSDom achieved higher accuracy for at least 45 out of 73 multi-domain proteins. We believe 

that our method can be further improved in several ways: (1) adopting new physical energies 

derived from full-atom structures such as van der Waals hard sphere repulsion, residue 
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environment, residue pair, radius of gyration as introduced in Rosetta 11; (2) extending the 

continuous domain assembly with discontinuous domain assembly for those proteins with 

inserted domains; (3) designing more advanced SAXS scoring functions to guide the structure 

folding. 
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