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Abstract

Accurate anatomical localisation of specific white matter tracts and the quantification of their tract-specific mi-
crostructural damage in multiple sclerosis (MS) can contribute to a better understanding of symptomatology, disease
progression and intervention effects. Diffusion MRI-based tractography is being used increasingly to segment white
matter tracts as regions-of-interest for subsequent quantitative analysis. Since MS lesions can interrupt the tractogra-
phy algorithms tract reconstruction, clinical studies frequently resort to atlas-based approaches, which are convenient
but ignorant to individual variability in tract size and shape. Here, we revisit the problem of individual tractography
in MS, comparing tractography algorithms using: (i) The diffusion tensor framework; (ii) constrained spherical de-
convoution (CSD); and (iii) damped Richardson-Lucy (dRL) deconvolution. Firstly, using simulated and in vivo data
from 29 MS patients and 19 healthy controls, we show that the three tracking algorithms respond differentially to MS
pathology. While the tensor-based approach is unable to deal with crossing fibres, CSD produces spurious stream-
lines, in particular in tissue with high fibre loss and low diffusion anisotropy. With dRL, streamlines are increasingly
interrupted in pathological tissue. Secondly, we demonstrate that despite the effects of lesion on the fibre orientation
reconstruction algorithms, fibre tracking algorithms are still able to segment tracts that pass areas with high preva-
lence of lesions. Combining dRL-based tractography with an automated tract segmentation tool on data from 131 MS
patients, the cortico-spinal tracts and arcuate fasciculi were successfully reconstructed in more than 90% of individ-
uals. Comparing tract-specific microstructural parameters (fractional anisotropy, radial diffusivity and magnetisation
transfer ratio) in individually segmented tracts to those from a tract probability map, we showed that there is no sys-
tematic disease-related bias in the individually reconstructed tracts, suggesting that lesions and otherwise damaged
parts are not systematically omitted during tractography. Thirdly, we demonstrate modest anatomical correspondence
between the individual and tract probability-based approach, with a spatial overlap between 35 and 55%. Correlations
between tract-averaged microstructural parameters in individually segmented tracts and the probability-map approach
ranged between r = .52 (p < .001) for radial diffusivity in the right cortico-spinal tract and r = .97 (p < .001)
for magnetization transfer ratio in the arcuate fasciculi. Our results show that MS white matter lesions impact fibre
orientation reconstructions but this does not appear to hinder the ability to anatomically localise white matter tracts in
MS. Individual tract segmentation in MS is feasible on a large scale and could prove a powerful tool for investigating
diagnostic and prognostic markers.
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1. Introduction

Accurate quantification of white matter damage in mul-
tiple sclerosis (MS) is important for characterising disease
pathophysiology (Barkhof et al., 2009). While the hall-
mark of pathology in MS is focal demyelinating lesions,
correlations between the total volume of lesional tissue
and disability are low, presenting the so-called clinical-
radiological paradox (Barkhof, 1999, 2002). Disability
and prognosis may be better explained by the anatomical
location of lesions and of diffuse microstructural damage
outside of lesions (Charil et al., 2003; Kolind et al., 2012).
Accurate assignment of damage to specific anatomical
white matter tracts can provide a more accurate picture
of the disease (Lin et al., 2005), and is important for lon-
gitudinal studies that explore the effect of rehabilitation
and experimental interventions on white matter in rele-
vant tracts (Bonzano et al., 2014).

Anatomical localisation of white matter tracts in vivo
currently relies on diffusion-weighted MRI and fibre
tracking (Catani et al., 2002; Jeurissen and Leemans,
2017). The reconstruction of individual tracts is based
on combining prior anatomical knowledge of the tract lo-
cation with diffusion MRI-based evidence about fibre ori-
entations in the imaging voxels. Early tractography work
was performed by producing streamlines that follow the
principal eigenvector of the diffusion tensor (e.g. Basser
et al. (2000); Mori et al. (1999)), while more recent work
relies on the estimation of the fibre orientation distribu-
tion function (e.g. Tournier et al. (2004)). Tractogra-
phy can be combined with an extraction of tract-specific
microstructural metrics (Jones et al., 2005, 2006) to be
used for investigating individual differences or longitudi-
nal changes in tract-specific microstructure (e.g. Lin et al.
(2005); Metzler-Baddeley et al. (2011)).

Focal brain pathology, such as is present in MS, can
affect tractography. MS lesions are characterised by fi-
bre loss and consequent increase in extracellular water as-
sociated with tissue destruction, which is reflected in the
diffusion profile (Filippi et al., 2001). During tractogra-
phy, at each step of streamline reconstruction, angle and
amplitude criteria are in place to avoid spurious tracking.
Early tractography studies used fractional anisotropy (FA)
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as a criterion for streamline termination. As FA is signif-
icantly decreased in white matter lesions in MS (Filippi
et al., 2001), applying tractography to data from MS pa-
tient has been recognized as being problematic (Ciccarelli
et al., 2008; Inglese and Bester, 2010). In the absence of
a strategy to the problem of streamline termination (such
as employed by Lagana et al. (2011), Tench et al. (2002)
and Wang et al. (2018)), the reconstructed tracts may lack
anatomical accuracy, e.g. by premature termination of
tracking (Ozturk et al., 2010). For this reason few stud-
ies apply tractography in patients (other examples are Lin
et al. (2005); Reich et al. (2007, 2010)).

More recent advances in tractography algorithms do
not rely on the estimated fibre orientation from the dif-
fusion tensor (which yields one fibre orientation estimate
per voxel), but employ deconvolution approaches that
yield multiple fibre orientations per voxel (e.g. Tournier
et al. (2004)). This advanced approach could permit the
reconstruction of streamlines through MS lesions, given
that enough fibres are present to generate a peak in the
estimated fibre orientation distribution (FOD). However,
it is possible that due to the fibre loss in lesions, the peak
amplitudes may fall below the threshold normally used
for termination of tracking. On the other hand, lower-
ing the FOD amplitude threshold could lead to the tract
reconstruction following spurious peaks, such as those
arising from noise, since lesions are characterised by an
increased component of water with isotropic diffusion,
which can compromise orientation estimates (Dell’Acqua
et al., 2010). To our knowledge, tractography results ob-
tained with spherical deconvolution approaches in MS pa-
tients have not been systematically assessed.

Due to the challenges related to tractography in patho-
logical tissue, an alternative approach for obtaining tract-
specific measures in MS was suggested (Pagani et al.,
2005; Hua et al., 2008). First, tracts are reconstructed in
the native space of brains of healthy volunteers and then
normalised to a common reference space, where a tract-
probability map is created. Then, the data from patients
are aligned with the same common reference space. To
get a tract-specific measure of damage, the probabilistic
atlas is used to calculate a weighted average for the mi-
crostructural metric of interest.

While the probability-map based method has the ad-
vantage that individual tracts are only reconstructed in
healthy brains, there are also considerable short-comings.
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The approach relies on inter-subject co-registration of
the images by normalising them to a common reference
space. This normalisation is generally performed based
on structural images, e.g. T1-weighted images, on which
white matter appears homogeneous (Hua et al., 2008; Pa-
gani et al., 2005; Reich et al., 2010). The approach there-
fore implicitly assumes that white matter tract anatomy is
consistent across individuals and in states of health and
disease. However, this assumption is unlikely to hold.
Tract location and shape vary even between healthy indi-
viduals (Wassermann et al., 2012), and in MS white mat-
ter atrophy is well described (Ge et al., 2001) and could
affect some tracts more than others (Kezele et al., 2008).
Applying a probability mask may yield measures of mi-
crostructural damage that are likely to include information
from other tracts in the vicinity and may therefore not be
anatomically precise. This imprecision could be the ex-
planation for the low correlations between individual trac-
tography and probability-based measures that have previ-
ously been reported for some tracts (Reich et al., 2010).
Another explanation could be that the individual tractog-
raphy omits damaged parts of the tract, leading to not-
representative and biased estimates.

In this work, we reassess the feasibility of performing
individual tractography in patients. Using simulations as
well as in vivo data sets from patients, we compared the
effect of MS pathology on the performance of three trac-
tography algorithms: (i) DTI based tracking; (ii) Con-
strained spherical harmonic deconvolution (CSD)-based
tracking and (iii) damped Richardson-Lucy-based track-
ing. Then, we reconstruct cortico-spinal tracts (CST)
and arcuate fasciculi (Arc) in a large number of patients
to evaluate the practical implications of tracking through
white matter regions with a high prevalence of lesions.

2. Methods

2.1. Data acquisition

2.1.1. Simulated data
We simulated diffusion data for a sequence comparable

to our in vivo sequence (Section 2.1.3), with a conserva-
tive SNR estimate of 20:1 for non-diffusion weighted im-
ages (see Supplementary Section 1.1.2), using Camino’s
datasynth (Hall and Alexander, 2009). We simulated data

for a number of tissue substrates, all characterised by im-
permeable parallel cylinders with mean radius of 1 µm
and standard deviation of 0.7 µm. To assess the effect of
fibre loss and increased extracellular volume fraction, as
seen in lesion pathology, we simulated substrates that dif-
fered in their intracellular volume fractions, by varying
the number of cylinders placed in the substrate. We sim-
ulated substrates with a single fibre population and sub-
strates with two fibre populations crossing at 90 degrees.
Details on the implementation of the simulations are re-
ported in Supplementary Section 1.1.1.

2.1.2. Participants
In total, data from 135 right-handed MS patients, who

took part in a large-scale imaging project (Lipp et al.,
2017), contributed to this study. Diffusion data were avail-
able for 131 patients. A subset (29 patients) of the large
cohort had been age- and gender- matched to 19 healthy
controls, who underwent the same scanning protocol. For
all analyses, for which pathological tissue was compared
to healthy control tissue, only data from the two matched
groups were considered. For analyses regarding in vivo
tract segmentation, data from all 131 patients were con-
sidered. Data from the healthy controls were used for cre-
ating the tract probability maps as well as a shape model
that was used for automatic tract segmentation for the
larger cohort of patients, as described below.

The clinical and demographic characteristics of pa-
tients and controls are presented in Table 1.

2.1.3. MRI acquisition
In vivo MRI data were acquired on a 3T General Elec-

tric HDx MRI system (GE Medical Systems, Milwaukee,
WI) using an eight channel receive-only head RF coil (GE
Medical Devices). We acquired the following sequences:
a T2/proton-density weighted and a fluid-attenuated inver-
sion recovery (FLAIR) sequence for lesion identification
and segmentation, a T1-weighted sequence for identifica-
tion of T1-hypointense MS lesions and for registration,
and a twice-refocussed diffusion-weighted sequence (40
uniformly distributed directions (Jones et al., 1999), b =

1200 s/mm2), and a 3D MT sequence. Latter was used
to calculate an additional microstructural parameter inde-
pendent of the diffusion-weighted images. The acquisi-
tion parameters of all scan sequences are reported in Sup-
plementary Table 2.
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Table 1: Demographic and clinical characteristics of the cohorts investigated. Characteristics are provided for all multiple sclerosis patients
(MS), as well as the subgroup of patients matched to and healthy controls (HC). Unless otherwise indicated, descriptive statistics provided are means
and standard deviations. For statistical comparison between the two matched groups (p-values are reported), Chi-square tests were computed for
categorical variables, Kruskall-Wallis tests for skewed variables (9 hole peg test and timed 25 foot walk), and unpaired t-tests for the rest. P values
for group differences are provided. Acronyms: RR = Relapsing-remitting, P = progressive MS (includes primary and secondary progressive
patients), EDSS = Extended Disability Status Scale, MSIS-29 = Multiple Sclerosis Impact Scale 29 items, DMT = disease-modifying treatment,
BDI = Beck Depression Inventory, MFI S= Modified Fatigue Impact Scale, 9-HPT: 9 hole peg test, T25-FW: timed 25 foot walk, PASAT = Paced
Auditory Serial Addition Test (3 second version). Normalized brain and grey matter volume was calculated using SIENAX (Smith et al., 2002).

Variable All MS Subgroup MS HC p
N 131 29 19

Age (years) 44.5±9.4 39.2±11.3 40.5±11.0 .6954

Gender (F/M) 85/46 17/12 12/7 .7533

Education (years) 15.6±3.9 15.9±3.9 20.0±4.8 .0021

Disease duration (years) 12.4±7.5 7.6±4.3 -

Disease course (RR/P) 105/26 29/0 - -

EDSS (median/iqr) 4.0±1.5 4.0±2.0 -

MSIS-29 scale 65.6±29.5 48.3±16.9 -

DMT (Yes/No) 43/88 13/16 - -

Depression (BDI) 12.5±10.4 8.2±8.6 4.6±5.1 .1123

Fatigue (MFIS) 39.6±20.7 27.7±19.3 21.1±13.3 .2093

9-HPT (right) in sec. (across 2 trials) median/iqr 25.4±11.7 21.9±3.6 18.7±2.2 .0011

T25-FW in sec. (across 2 trials) median/iqr 85±9.8 5.3±1.4 4.3±0.9 .0071

PASAT 3s 39.9±14.0 44.5±12.2 51.0±6.4 .0379

Normalized GM volume (cm3) 594.4±63.2 613.1±47.9 645.8±39.9 .0176

Normalized brain volume (cm3) 1173.5±115.9 1196.4±109.5 1230.0±87.0 .2665

Lesion volume (cm3) 4.2±4.6 2.8±2.4 -
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2.2. Data analysis

2.2.1. Algorithms for resolving fibre orientation
We compared three algorithms for recovering fibre ori-

entational information. Firstly, as done in previous MS
work (Hua et al., 2008; Reich et al., 2010), fibre ori-
entation was estimated using the first eigenvector of the
diffusion tensor. Additionally, we employed two fibre
orientation distribution (FOD) deconvolution algorithms,
which have been developed to overcome some of the lim-
itations related to tensor-based tracking: a constrained
spherical deconvolution (CSD, Tournier et al. (2007)),
and a modified damped Richardson-Lucy algorithm (dRL,
Dell’Acqua et al. (2010)). Deconvolution methods work
by characterising a response function for a single fibre
orientation. This response function is then deconvolved
from the observed signal. The reason for considering both
CSD and dRL is that previous work (Parker et al., 2013b)
showed that while CSD performs better than dRL when
resolving crossing fibres in voxels with low FA, it also
more frequently produces spurious peaks and is more sen-
sitive to mis-calibrations of the FOD. Details on the im-
plementation of the two deconvolution algorithms are re-
ported in Supplementary Section 1.1.3

2.2.2. Analysis of simulated data
For each simulated voxel, we applied the three algo-

rithms. From the resulting estimated fibre orientation pro-
files, we tested whether peaks could be correctly identi-
fied: a) along the true underlying direction(s) along which
the cylinders had been placed; and b) along false direc-
tions (the direction(s) orthogonal to the long axis of the
simulated cylinders). For each substrate type and algo-
rithm, the proportion of simulated voxels in which the re-
constructed peak orientation closest to the simulated ori-
entation subtended an angle of less than 45 degrees and
reached the specified amplitude threshold (dRL: > 0.05,
CSD: > 0.1, tensor: FA > .2) was determined. Addi-
tionally, the orientation dispersion of the detected peaks
as a measure of algorithm precision was calculated using
Basser et al. (2000)’s coherence measure to an average
dyadic tensor which was calculated across all identified
peaks (Jones, 2003). The dispersion measure can take val-
ues between 0 (all peaks point in exactly the same direc-
tion) and 1 (the detected peaks are uniformly distributed
on the unit sphere).

2.2.3. In vivo lesion mapping and segmentation
Damage was quantified in three tissue-states, which

were expected to vary in their underlying microstructural
damage: normal appearing white matter, T2-weighted
white matter hyperintense lesional tissue without T1-
weighted hypointensity, and T1-weighted white mat-
ter hypointense lesional tissue with corresponding T2-
weighted hyperintensity, as reported elsewhere (Lipp
et al., submitted). Briefly, normal appearing white mat-
ter was defined as FSL FAST (Zhang et al., 2001) seg-
mented (80% thresholded) white matter at least 5 mm
away from lesions. We classified lesional voxels as T1-
weighted white matter hypointense if their signal inten-
sity lay at least 1.5 interquartile ranges below the lower
quartile of the distribution in normal appearing white
matter. All other lesional voxels were classified as T2-
weighted white matter hyperintense lesional tissue with-
out T1-weighted hypointensity. Further, we restricted
all three tissue classes to lesion-susceptible white matter
(white matter with > 5% lesion probability, as defined by
a lesion probability map derived from our data).

2.2.4. MT processing
The MTR was calculated voxel by voxel with the equa-

tion MTR=[(S0-SMT)/S0]x100, whereby S0 represents the
signal without the off-resonance pulse and SMT represents
the signal with the off-resonance pulse. The MTR im-
ages in native space were skull-stripped using FSL BET
and non-linearly registered to the respective skull-stripped
T1-weighted images using Elastix (Klein et al., 2010).

2.2.5. Diffusion preprocessing
The DTI data were preprocessed in ExploreDTI (v

4.8.3; Leemans et al. (2009)). Data were corrected
for head motion, distortions induced by eddy currents
and EPI-induced geometrical distortions by registering
each diffusion image to the corresponding T1-weighted
anatomical image (Irfanoglu et al., 2012) using Elastix
(Klein et al., 2010), with appropriate reorientation of the
diffusion encoding vectors (Leemans and Jones, 2009).
The anatomical image was first skull stripped and down-
sampled to 1.5mm in order to reduce computation times
during further processing of the diffusion data. RE-
STORE (Chang et al., 2005) was used to account for out-
liers.
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2.2.6. Tractography algorithm
Whole brain tractography was performed in native

space (for the subsample of 29 patients with all three al-
gorithms, and for the entire sample of 131 patients us-
ing dRL), using an adaptation of CSD-based streamline
tractography (Jeurissen et al., 2011; Tournier et al., 2004,
2007, 2008). Seed points were evenly distributed across
vertices of a 2mm isotropic grid and propagated in 1mm
steps with streamline length constraints of 20 - 500mm.
The diffusion tensor / fODF peaks were resolved at each
new location (Jeurissen et al., 2011). In the case of
CSD/dRL-based tracking, tracking was terminated if the
fODF threshold fell below the defined threshold or the
direction of streamline changed through an angle greater
than 45◦ between successive steps. In the case of tensor-
based tracking, instead of an FOD amplitude threshold,
an FA threshold of .2 was used. The same procedure was
then repeated by tracking in the opposite direction from
the initial seed-points.

2.2.7. Individual tract segmentation
For the purpose of this paper, the CST and arcuate fas-

ciculi were segmented. The CST originates from motor
and premotor cortices and runs to midbrain and medulla,
passing the corona radiata and internal capsule (Al Masri,
2011), whose periventricular spaces are common spots for
lesions (Kincses, 2010). The arcuate fasciculi connect the
perisylvian cortex of the frontal, parietal, and temporal
lobes (Catani and Thiebaut de Schotten, 2008).

Three-dimensional tractograms for specific white mat-
ter tracts were extracted from the whole-brain tractograms
by applying multiple way-point of interest gates (Catani
et al., 2002), drawn on color-coded fibre orientation maps
(Pajevic and Pierpaoli, 1999). We applied tract recon-
struction protocols to the data from the matched 29 pa-
tients and 19 healthy controls. All tract segmentations
for a given tract were performed by the same operator
(CST: EP, Arcuate fasciculus: SG). The protocol followed
for segmentation is described in Supplementary Section
1.1.4. To assess inter-operator spatial agreement, another
operator (SP) dissected all tracts in the data from the first
five healthy controls, and spatial overlap Dice coefficient
scores were calculated (see also Dice (1945); Zijdenbos
et al. (1994); for details see Supplementary Section 1.1.5).

In the healthy control data, the approach of Parker et al.
(2013a) was used to construct a shape model for each tract

in each hemisphere from the manually segmented tracts.
The resulting models were then used to automatically ex-
tract the tracts of interest across all datasets (patients and
controls). All automatically segmented tracts were visu-
ally inspected and spurious streamlines were removed if
necessary. To validate the automated protocol, for each
of the 29 patients and 19 controls with both manually dis-
sected and automatically dissected tracts, we calculated
the spatial agreement between the two tract masks.

2.2.8. Tract probability maps

For both patients and controls tract probability maps
were computed, which indicate each voxel’s likelihood of
being part of an individual’s tract. Each tract was first
converted to a binary voxel-wise mask, indicating which
voxels a tract intersected. To exclude voxels with only
minimal streamlines, the 25% of voxels with lowest num-
ber of streamlines were ignored during this process. The
exported tracts of each participant were registered to MNI
space. This was done by first registering each partic-
ipant’s structural high-resolution T1-weighted image to
MNI space, using ANTs SyN (Avants et al., 2008) and
then applying the warp to the tract NIfTI file (which had
already been registered to the high resolution structural
scan as part of the pre-processing pipeline). From the bi-
nary tract masks in MNI space, we computed probability
maps for each tract and hemisphere. The probability maps
for controls were then used to employ the probability-map
based approach for obtaining tract-specific microstruc-
tural measures.

2.2.9. Extraction of microstructural damage within tracts

For individual tracts, we computed the microstructural
parameters (FA, RD, MTR) at each point along the indi-
vidual streamlines (Jones et al., 2005) by trilinear inter-
polation of the surrounding voxels. We then computed
probability-weighted averages (Reich et al., 2010) of the
tracts, after normalising the parameter maps to MNI space
(which was done by applying the warp obtained for the
T1-weighted image to the parameter maps). The two ap-
proaches are comparable in that voxels with higher tract
probability will contribute more strongly to the computed
average.
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2.2.10. Comparison between individual tracts and prob-
ability map-based approach

Firstly, we investigated the anatomical correspondence
between the two approaches. We calculated weighted
Dice coefficients between individual tract masks (in MNI
space) and tract probability maps as done in Hua et al.
(2008).

Secondly, we checked whether individually dissected
tracts are biased, by omitting damaged parts of the
tract. This was done by comparing tract-averaged mi-
crostructure of individually dissected tracts to averaged
microstructure from the group probability maps. If there
was a bias towards the healthy part, the individual mea-
sures should indicate less damage than the probability-
based measures.

3. Results

3.1. Comparison of the fibre orientation reconstruction
algorithms

3.1.1. Simulation results
Single fibre population. All three algorithms could suc-
cessfully reconstruct the peak of the simulated fibre ori-
entation in almost 100% of substrates with an intracellu-
lar volume fraction of at least 20%, which corresponded
to an FA value of around .5. The dispersion of success-
fully reconstructed true peaks consistently lay below .15
(Figure 1). In substrates with intracellular volume frac-
tion below 10%, all algorithms failed to resolve the peak
orientation reliably. Here, CSD-based peak detection re-
sulted in a significant number of false positive peaks (up
to 25%). On the other hand, the tensor-based approach
produced a maximum of 2% false positives. dRL pro-
duced less than 0.01% false positives, with the excep-
tion of substrates with a single fibre population and the
highest simulated fibre content (80% intracellular volume
fraction). Inspection of the discrete FOD suggests that
this is a truncation artifact of the harmonics that occurred
due to the lack of orientation dispersion in the closely
packed simulated cylinders. This is something that would
only occur in the simulation scenario, as the substrates
were simulated with perfectly parallel cylinders, which is
a simplification of the axonal arrangement in vivo, where
orientation dispersion occurs even in the most systemati-
cally packed regions (Mollink et al., 2017).

Crossing fibres. In simulated substrates with two fibre
populations crossing at 90 degrees, by definition, the
tensor-based approach only ever reconstructed one of the
two peaks. For both dRL and CSD, a minimum total in-
tracellular volume fraction of 40% was needed to consis-
tently detect both true peaks (Figure 1), corresponding to
a minimum of 20% per fibre population, which is con-
sistent with what we found in the single fibre population
scenario. In substrates with low fibre content, CSD again
produced false positives in up to 25% of the voxels, while
the false positive rate in the tensor or dRL implementa-
tion was negligible. In substrates with intracellular vol-
ume fraction above 10%, the dispersion for the truly de-
tected peaks again lay below .15, with the exception of
the tensor-based approach in the crossing fibre condition,
where the tensor could not reliably represent either of the
true fibre orientations.

3.1.2. In vivo results
For each algorithm investigated, we explored its per-

formance within various tissue types: healthy control tis-
sue, normal appearing white matter, white matter lesions
that only appear T2-hyperintense, and white matter le-
sions that also appear T1-hypointense.

The FA and FOD amplitude of continued streamlines in
T1-hypointense lesional tissue were slightly lower when
comparing to streamlines in lesional tissue without T1-
weighted hypointensity. However, overall there were no
strong and systematic differences between tissue types
(Table 2). On the other hand, with an increasing level of
pathology, an increasing number of premature streamline
terminations was observed due to the amplitude threshold
not being met. This was only the case for the tensor-based
approach and dRL (Table 2). In contrast, using CSD, with
an increase in pathology, more streamlines were termi-
nated due to the angle criterion. This indicates that while
CSD is equally likely to find peaks passing the ampli-
tude threshold in pathological tissue, these peaks are most
likely to be spurious.

Counterintuitively, all algorithms produced more
streamlines in lesions than in normal appearing white
matter, with no significant differences between the two
lesional tissue types. This result could be due to an in-
crease of spurious streamlines within lesions, but also due
to the preferential localisation of lesions in fibre-rich ar-
eas. To check whether the latter might be an explana-
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Figure 1: Comparison of the three fibre orientation reconstruction algorithms in simulated data. Simulated substrates varied in their intracel-
lular volume fraction (ICFV). The parallel cylinders in each substrate were aligned with the z-axis (single fibre population), or with the z- as well
as the y-axis (crossing fibre populations). A: For each approach (tensor-based, dRL and CSD), we calculated the percentage of all voxels within
each substrate type for which the ’true’ underlying fibre configuration peak(s) could be detected. As a control, we also calculated this percentage
for ’false’ peaks (orthogonal to the true peak(s)). In each case, the left-most plot shows the FA for each substrate type. B: Dispersion across all
detected peaks of a substrate type was calculated. Dispersion was high across wrongly detected peaks, while for substrates with higher intracellular
volume fraction, the true detected peaks by dRL and CSD consistently showed dispersion of < .15.
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tion for our results, we registered the voxel-wise ’number-
of-streamline’ maps from healthy controls to MNI space,
and performed voxel-wise correlations between the aver-
age number of streamlines and the lesion probability ob-
served in the patients. (This was done for voxels with at
least 5% lesion probability, which is the criterion we used
to restrict the normal appearing white matter ROI). There
were small, but significant correlations, indicating that ar-
eas with higher lesion probability in patients also have
higher streamline probability in controls (dRL: r = .10,
p < .0001, CSD: r = .26, p < .0001, tensor: r = .18,
p < .0001).

3.1.3. Considerations of other parameters
As the performance of CSD has been reported to be par-

ticularly good at higher b-values (Tournier et al., 2007),
we repeated the simulation analyses with b = 2000 s/mm2

by increasing the simulated gradient strength, while keep-
ing all other parameters the same. This led to an even
higher false positive rate for CSD (Supplementary Figure
2).

The FOD amplitude threshold that was employed for
CSD was based on previous work (Jeurissen et al., 2013).
Increasing the amplitude threshold from 0.1 to 0.3 elimi-
nated the spurious peaks in the simulated data at b = 1200
s/mm2, but did not affect the comparisons in vivo (Sup-
plementary Table 3).

3.2. Individual tract segmentation in MS
3.2.1. Evaluation of the tract segmentation methods

Average Dice coefficients of around 80% in healthy
controls demonstrate high spatial overlap between man-
ually segmented tracts from two independent operators,
indicating robust tract reconstruction protocols (Supple-
mentary Figure 3). To validate the segmentations obtained
from the automatic segmentation tool, we also quanti-
fied the spatial overlap between automatically segmented
tracts and the available manually segmented tracts. The
overlap was slightly lower than for the inter-rater analy-
sis, but still showed an average Dice coefficient of > 60%,
in both patients and healthy controls (Supplementary Fig-
ure 4). Correlations of tract-specific microstructural met-
rics extracted from manually vs automatically segmented
tracts were high, ranging from r = .85 (p < .001) to
r = .98 (p < .001) (Supplementary Table 4 and Supple-
mentary Figure 5).

3.2.2. Cortico-spinal tracts
Overlaying the tract probability map in patients with

the lesion probability map (Figure 2 top) confirms that
despite the high lesion probability in that region, the indi-
vidually segmented tracts run through these areas. In all
controls and more than 90% of the patients (123/131 for
the left and 130/131 for the right), both CSTs could be
reconstructed.

3.2.3. Arcuate fasciculi
As evident from overlapping tract and lesion probabil-

ity maps (Figure 2 bottom), the medial part of the arcu-
ate fasciculus runs is a common location for lesions. In
all controls and patients both arcuate fasciculi could be
reconstructed, with the exception of the left arcuate fas-
ciculus in 1 patient and the right arcuate fasciculus in 9
patients.

3.3. Testing for bias in the individually reconstructed
tracts

We extracted average microstructural parameters from
individually segmented tracts and from the tract-
probability maps that were computed in healthy control
data. Average FA and MTR were systematically higher,
and average RD was systematically lower in individually
reconstructed tracts than with the probability map-based
tracts (Table 3). However, the extent to which measures
from individual and probability-based tracts differed, was
similar in patients and controls, as shown by the non-
significant interaction terms (with the exception of MTR
in the right CST; Table 3). This indicates that while in-
dividually reconstructed tracts systematically differ from
the tract probability map, this is the case for both pa-
tients and controls, and therefore cannot be attributed to
the presence of MS lesions.

3.4. Anatomical correspondence between individually
segmented and probability-based tracts

We quantified the anatomical overlap between the in-
dividually dissected tracts and the group probability map
with a probability weighted overlap score (see Hua et al.
(2008)). In both patients and controls, spatial overlap var-
ied between tracts, with median scores of around 55% for
the CST and of around 35% for the arcuate fasciculus
(Figure 3). The individual variability suggested that for
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Table 2: Comparison of the three fibre orientation reconstruction algorithms in vivo. For each algorithm (tensor, dRL, CSD) and each tissue
type (Ctrl, NAWM, T2L, T1l), we calculated voxel-wise averages of the following parameters: the number of streamlines found in a voxel, the
average FA / FOD amplitude across all streamlines found in a voxel, the number streamline terminations due to the amplitude threshold in a voxel,
and the number streamline terminations due to the angle threshold in a voxel. The mean ± std of these measures across healthy controls (Ctrl;
N = 19) and patients (NAWM, T2L, T1L; N = 29) are reported. The values across different tissues types were statistically compared (unpaired
t-test between Ctrl vs NAWM tissue; paired t-tests for T2L vs NAWM, and T1L vs T2L) and t and p statistics are provided for each comparison.
Acronyms: Ctrl: Control tissue, NAWM: normal appearing white matter, T2L: T2-weighted white matter hyperintense lesional tissue without
T1-weighted hypointensity, T1L: T1-weighted white matter hypointense lesional tissue with corresponding T2-weighted hyperintensity.

Ctrl NAWM T2L T1L NAWM vs Ctrl T2L vs NAWM T1L vs T2L

Average number of streamlines per voxel
Tensor 32.31 ± 3.35 30.66 ± 4.23 33.48 ± 6.72 30.77 ± 9.52 t = -1.43, p = .16 t = 2.64, p = .01 t = -1.55, p = .13

dRL 38.14 ± 5.91 39.40 ± 5.09 42.68 ± 8.61 40.41 ± 11.25 t = 0.79, p = .44 t = 2.6, p = .02 t = -1.3, p = .20

CSD 63.37 ± 10.22 66.12 ± 8.77 70.70 ± 13.18 70.69 ± 18.86 t = 0.99, p = .33 t = 2.4, p = .02 t = -0.01, p = .996

Average peak amplitude (FOD amplitude / FA) of all streamlines per voxel
Tensor 0.71 ± 0.03 0.68 ± 0.03 0.67 ± 0.04 0.64 ± 0.06 t = -3.1, p = .003 t = -1.1, p = .29 t = -2.4, p = .03

dRL 0.22 ± 0.02 0.21 ± 0.02 0.21 ± 0.02 0.20 ± 0.03 t = -1.1, p = .29 t = -0.2, p = .99 t = -2.7, p = .01

CSD 0.42 ± 0.04 0.43 ± 0.05 0.43 ± 0.06 0.42 ± 0.06 t = 0.78, p = .44 t = 0.64, p = .53 t = -2.2 , p = .04

Average number of streamline terminations due to amplitude threshold
Tensor 0.32 ± 0.01 0.24 ± 0.04 0.51 ± 0.26 0.97 ± 0.47 t = -8.7, p <.0001 t = 5.8, p <.0001 t = 8.5, p <.0001

dRL 0.23 ± 0.01 0.25 ± 0.02 0.36 ± 0.11 0.70 ± 0.33 t = 5.9 , p <.0001 t = 5.2, p < .0001 t = 6.9, p <.0001

CSD 0.97 ± 0.03 0.87 ± 0.09 0.81 ± 0.19 0.80 ± 0.28 t = -4.7, p <.0001 t = -1.7, p = .10 t = -0.38 , p = .71

Average number of streamline terminations per voxel due to angle threshold
Tensor 0.10 ± 0.01 0.13 ± 0.02 0.16 ± 0.07 0.08 ± 0.07 t = 6.4, p <.0001 t = 2.0, p = .05 t = -6.4, p <.0001

dRL 0.58 ± 0.02 0.71 ± 0.08 0.74 ± 0.20 0.53 ± 0.23 t = 7.2, p < .0001 t = 0.86, p = .39 t = -5.3, p <.0001

CSD 1.37 ± 0.09 1.41 ± 0.12 1.76 ± 0.59 2.04 ± 0.76 t = 1.1, p = .26 t = 3.2, p < .01 t = 2.9, p = .0074

10

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/559708doi: bioRxiv preprint 

https://doi.org/10.1101/559708
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2: Tract probability. Tract probability maps for patients (red-yellow) are overlaid with lesion probability maps (blue-lightblue). Both are
thresholded between 5 and 50 %. Maps for the CST (top) and ARC (bottom) show that areas of high lesion probability overlap with the tracts. This
suggests that the investigated tracts go through areas with increased likelihood of lesions, potentially affecting the tracking. R indicates the right
hemisphere. Acronyms: CST: cortico-spinal tract, ARC: arcuate fasciculus.
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Table 3: Systematic differences between individually segmented and probability-based tracts. For each of the age- and gender-matched patients
(N = 29) and controls (N = 19), mean ± std microstructural metrics (FA, RD and MTR) were extracted from the probability-based (Prob.) as well
as for the individually dissected tract mask. To check for systematic differences between individual and probability-based approach, a paired t-test
was calculated for each tract, t and p statistics are reported. To test whether a systematic difference is likely the result of a bias towards the healthy
part of the tract in the individual dissections, the difference measure was compared between patients and controls (t and p values are reported for
this interaction.) Acronyms: l: left, r: right, CST: cortico-spinal tract, Arc: arcuate fasciculus.

MS HC
FA

Tract Prob Individual Prob vs Individual Prob Individual Prob vs Individual Interaction

CST l 0.42 ± 0.03 0.50 ± 0.04 t = -30.23, p < .01 0.42 ± 0.02 0.51 ± 0.02 t = -24.35, p < .01 t = -0.03, p = .98

CST r 0.42 ± 0.02 0.51 ± 0.03 t = -54.61, p < .01 0.43 ± 0.02 0.52 ± 0.02 t = -28.44, p < .01 t = 0.55, p = .58

Arc l 0.31 ± 0.02 0.41 ± 0.03 t = -74.10, p < .01 0.33 ± 0.02 0.43 ± 0.02 t = -47.95, p < .01 t = -0.66, p = .51

Arc r 0.32 ± 0.02 0.40 ± 0.03 t = -45.85, p < .01 0.34 ± 0.02 0.42 ± 0.03 t = -21.43, p < .01 t = -0.66, p = .51

RD (in 10-3 m2/s)
Tract Prob Individual Prob vs Individual Prob Individual Prob vs Individual Interaction

CST l 0.66 ± 0.05 0.59 ± 0.07 t = 13.35, p < .01 0.63 ± 0.04 0.55 ± 0.03 t = 10.29, p < .01 t = -0.33, p = .75

CST r 0.66 ± 0.05 0.58 ± 0.04 t = 18.78, p < .01 0.64 ± 0.04 0.55 ± 0.03 t = 12.49, p < .01 t = -1.47, p = .14

Arc l 0.71 ± 0.05 0.62 ± 0.06 t = 44.55, p < .01 0.66 ± 0.02 0.57 ± 0.03 t = 31.82, p < .01 t = 0.75, p = .46

Arc r 0.69 ± 0.05 0.61 ± 0.06 t = 30.85, p < .01 0.64 ± 0.02 0.57 ± 0.03 t = 21.80, p < .01 t = -0.05, p = .96

MTR
Tract Prob Individual Prob vs Individual Prob Individual Prob vs Individual Interaction

CST l 0.40 ± 0.01 0.42 ± 0.02 t = -23.46, p < .01 0.40 ± 0.01 0.42 ± 0.01 -16.07, p < .01 t = 0.92, p = .36

CST r 0.39 ± 0.01 0.42 ± 0.01 t = -38.89, p < .01 0.40 ± 0.01 0.43 ± 0.01 -22.42, p < .01 t = 2.49, p = .01

Arc l 0.39 ± 0.02 0.41 ± 0.02 t = -50.04, p < .01 0.40 ± 0.01 0.42 ± 0.01 -46.33, p < .01 t = 1.18, p = .24

Arc r 0.39 ± 0.02 0.41 ± 0.02 t = -34.77, p < .01 0.40 ± 0.02 0.42 ± 0.02 -24.59, p < .01 t = 1.92, p =.06
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some patients only 10% of voxels were shared between
individual tract mask and probability mask, while for oth-
ers it was 75%.

3.5. Correspondence in tract-specific microstructure of
individual and probability-based approach

We also assessed the agreement between tract-based es-
timates of microstructural damage between the individ-
ual and the probability-map approach. Correlations were
very high for the arcuate fasciculus, ranging from r = .87
(p < .001) to r = .97 (p < .001), and lower for CST,
ranging from r = .49 (p < .001) to r = .91 (p < .001).
Results were similar for patients and controls (Figure 4).

4. Discussion

In this work we revisited the challenges of tracking
through pathological tissue. We showed that the pres-
ence of MS lesions affects fibre orientation reconstruction
algorithms differentially: during tensor- and dRL-based
tracking, streamlines are more likely to stop, while CSD is
more likely to produce spurious streamlines. Even though
the CST and arcuate fasciculi run through regions that are
frequently affected by MS lesions, we were able to suc-
cessfully perform individual tract segmentation in a large
patient cohort. The segmented tracts did not show a sys-
tematic bias in the estimation of microstructural health,
when compared to a frequently employed approach based
on tract probability maps. While tract-averaged mi-
crostructural measures showed medium to high correla-
tions between the two approaches, the anatomical corre-
spondence was limited, highlighting the potential benefits
of individual tract reconstruction.

4.1. MS pathology affects fibre orientation reconstruction
algorithms differentially

To compare fibre orientation reconstruction algorithms
under controlled conditions, we simulated tissue sub-
strates that varied in the number of fibres they contained,
providing a simplified model of damage in MS. Lesions
are characterised by a variety of pathological processes,
with fibre loss likely being the change that is the most
significant for tractography. Fibre loss could lower the
amplitude of the FOD peaks, which are followed during
streamlining. At the same time, the associated increase

in extracellular water is likely to impact on the diffusion
profile, which could further complicate the identification
of peaks. Indeed, in our simulated substrates with intra-
cellular volume fractions below 10%, none of the algo-
rithms could reliably identify the true underlying fibre ori-
entations. With intracellular volume fractions above 10%,
all three algorithms were consistently successful, with the
exception of the tensor-based approach under crossing fi-
bre conditions due to its inherent constraint that it can
only ever reconstruct one peak. The main difference be-
tween CSD and dRL, in both the single and crossing fibre
scenarios, was the false positive rate. With the specified
FOD amplitude thresholds, only CSD, but not dRL, pro-
duced a substantial amount of spurious peaks in substrates
with lower fibre content and low FA. This could be a result
of a mismatch between responses in high-FA calibration
tissue and the target responses (Parker et al., 2013b).

The findings from the simulations were largely sup-
ported by in vivo data from MS lesions. DRL seemed
to be more conservative than CSD, with an increase in
streamline termination in lesions due to low FOD ampli-
tudes. Premature termination was most pronounced in
T1-hypointense lesions, presumably due to the particu-
larly high fibre loss found in this lesion type (Sahraian
et al., 2010). dRL has previously been shown to perform
worse in tissue with crossing fibres and low FA (Parker
et al., 2013b), which could be the reason for the increased
streamline terminations in lesion. Even though CSD may
be able to resolve fibres better under these conditions
(Parker et al., 2013b), our results suggest that it may be
more sensitive to the increased isotropic diffusion in le-
sions than dRL, producing false positive peaks and con-
sequently spurious streamlines. Even though CSD’s per-
formance at resolving crossing fibres has been reported
to be better for data obtained at high b-values (Jeurissen
et al., 2013), in our case, increasing the b-value during
the simulation led to an even higher false positive rate in
CSD. It is possible that the FOD threshold for peak detec-
tion, which we based on previous studies (Jeurissen et al.,
2013; Parker et al., 2013b) is not universally optimal for
all types of data, SNRs, diffusion-weightings etc. In our
case, increasing the FOD threshold from 0.1 to 0.3 re-
duced the false positives rate during the simulations, but
did not change the behaviour of the algorithm in vivo. It
is likely that optimal tractography parameters for simu-
lated data are not the same optimal parameters for in vivo

13

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/559708doi: bioRxiv preprint 

https://doi.org/10.1101/559708
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3: Anatomical overlap. An overlap score between the tract probability map and the individual tract mask (registered to MNI space) were
calculated. Each time, boxplots for patients (bright) and controls (dark) are presented for each tract. Mean ± std of the weighted Dice coefficients
(converted to %) are 45±14 (MS) and 55±13 (HC) for the left CST, 57±8 (MS) and 60±6 (HC) for the right CST, 45±8 (MS) and 36±8 (HC) for
the left arcuate fasciculus, and 32±9 (MS) and 35±8 (HC) for the right arcuate fasciculus. Acronyms: l: left, r: right, CST: cortico-spinal tract,
ARC: arcuate fasciculus.

data, as simulations are often simplified, e.g. in our case
the fibres in the simulated substrates lacked orientation
dispersion. Systematic and thorough parameter tuning in
pathological in vivo data could potentially help to opti-
mise the use of CSD in MS lesions, but was out of scope
of this study.

Choosing the algorithm for tract segmentation in vivo,
we considered two things. Firstly, dRL seems to be the
more conservative algorithm, which leads to streamline
termination in lesions with high fibre loss, potentially pro-
ducing tract reconstructions that at least partially omit le-
sions. CSD produces more streamlines in lesions, but
a considerable number of them may be spurious, which
also hinders the correct reconstruction of tracts that pass
through lesions. The second consideration was theoreti-
cal. In contrast to dRL, CSD requires the response func-
tion used for the deconvolution to be calibrated from vox-
els with single underlying fibre populations, which are
generally identified through their high FA. In MS, high
FA voxels are likely voxels with preserved white mat-
ter integrity. However, the single fibre response function
is then applied to the lesional tissue, which could lead
to problems with FOD reconstruction and tracking in le-
sional tissue. Estimating a separate ’pathological’ single

fibre response function from the average response in le-
sioned voxels is unlikely a sensible alternative, as lesional
tissue is highly heterogeneous. In comparison to CSD,
dRL is more robust to mis-calibrations of the single fibre
response function (Parker et al., 2013b). For this reason,
for the purpose of this paper, we performed the in vivo
whole-brain tractography in MS using dRL.

4.2. Fibre tracking in MS allows to reconstruct tracts that
go through areas with high lesion probability

Even though the CSTs and arcuate fasciculi pass
through white matter regions that are frequently affected
by lesions, we successfully segmented these tracts in in-
dividual brains from a large cohort of MS patients. A pre-
viously introduced automated tract extraction algorithm
made this a feasible endeavour (Parker et al., 2013a). Un-
like the automated approach using tract probability maps
(Reich et al., 2010), this method learns the shape and ap-
proximate location of a tract from training data and uses
the resulting model to identify and segment tracts from
whole-brain tractograms, obtained with the same tractog-
raphy pipeline as in the training data. We found that
the automated approach produces tracts that are realis-
tic with regard to their shapes and anatomical location
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Figure 4: Correlations between tract-specific microstructure from individually segmented and probability-based tracts. For each microstruc-
tural metric (FA, RD and MTR; rows) and tract (columns), the correlation between individual approach and probability-based approach is shown.
Data were collapsed across hemispheres for plotting. Pearson correlation coefficients are provided for each group and hemisphere separately. MS
data points are plotted in red, HC in blue. The line of best fit across all data points is shown. **p < .0001. Acronyms: CST: cortico-spinal tract,
ARC: arcuate fasciculus.
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and that show high spatial overlap with manually seg-
mented tracts. In all our spatial agreement analyses, for
some individuals the spatial overlap between tracts ob-
tained through different methods was low. This suggests
that even when standard manual segmentation protocols
are robust, the process is not completely objective and
there is still room for error when drawing anatomically-
defined waypoints. Our automatic segmentation method
provides a feasible tool for individual tract segmentation
in a large number of patients.

An obvious reason to be careful about individual tract
segmentation in MS, even when done in an automated
manner, is that if lesions or otherwise damaged parts
of the tract are left out by the tracking algorithm, then
there would be a systematic bias in tract-averaged mi-
crostructural parameters towards values from healthier
tissue. We found that individually segmented tracts show
higher FA, lower RD and higher MTR than when em-
ploying probability-based tract masks, suggesting the op-
posite, so more intact microstructure in individually seg-
mented tracts. This is not a surprising result, as the trac-
tography algorithm will preferentially produce stream-
lines in voxels with high white matter and fibre density. In
contrast, the probability-map approach considers all vox-
els in the probability map, independent on the underly-
ing white matter in an individual patient. However, im-
portantly, the reported systematic difference between in-
dividual and probability-map based tracts we found was
comparable between patients and controls. This finding
suggests that there is no additional disease-related bias in
the individual tract segmentations. While the simulation
and tissue comparison results suggest that the fibre ori-
entation reconstruction algorithms could further be opti-
mised for tracking through lesions, our tract segmentation
results suggest that dRL may be a promising method for
tractography in MS.

4.2.1. The anatomical correspondence of individual and
probability-based approach is modest

Previous studies have suggested using a probability-
based approach of investigating microstructure in specific
white matter tracts in MS. Here, we showed that the spa-
tial overlap between tract probability maps obtained from
healthy controls, and individually segmented tracts of in-
dividuals is modest, with averages ranging from 35% for
the right arcuate fasciculus to 60% for the right CST, with

similar results for patients and controls. The stronger
agreement for the CST suggests that there may be more
individual variability in tract shape and localisation in the
arcuate fasciculus. In both cases, the variability in indi-
vidual tracts is likely to be partially also a result of the nor-
malisation of individual brains to MNI space, which does
not necessarily align tracts within the homogeneously ap-
pearing white matter.

Other methodological factors are likely to play a
role as well. Even though the anatomical correspon-
dence between individual and probability-based approach
was lower than the correspondence between manual
and automatic segmentations and the correspondence be-
tween manual segmentations of different operators, lat-
ter methodological differences also affected the tract
anatomy. Without ground truth data available, it is dif-
ficult to conclude which methods give the most accurate
tract segmentations (Schilling et al., 2019).

4.2.2. The correlation of tract-specific microstructure in
individually segmented vs probability-based tracts
is high

Despite the difference in spatial location and systematic
difference in average microstructural parameters, the cor-
relation of the microstructural information between the in-
dividual and probability-map based approaches was high,
particularly for the arcuate fasciculus. Correlations be-
tween microstructural parameters from individually seg-
mented tracts vs atlas-based estimations have previously
been reported to be tract-dependent (Reich et al., 2010).
Some of our correlations were also lower, e.g. only 25%
between the two approaches were shared in RD measures
of the right CST. Low correlations for tensor-based mea-
sures, such as RD, could be influenced by their sensitivity
to the macroscopic tract shape and individual differences
in tract morphometry (De Santis et al., 2014). This hy-
pothesis is corroborated by the result that the correlation
between individual and probability-based approach in the
CST was highest for MTR, a microstructural metric that
does not show this sensitivity to tract morphometry.

Individual tract segmentation may not bring large ben-
efits compared to the probability-based approach, when
average microstructural parameters of a tract as a whole
are of interest. This can be the case for studies looking
at global effects within specific tracts (e.g. Bonzano et al.
(2014)). Here, averaging microstructural measures should
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be less noisy and provide more statistical power and spa-
tial accuracy than voxel-based approaches. However, the
advantage of individual tract segmentation is that it does
not limit the analysis to tract-specific average measures.
Other features of the tract can also be studied, such as tract
shape, tract-specific atrophy (Wang et al., 2018) or the
spatial variation along a tract (Jones et al., 2005; Yeatman
et al., 2012). Very precise anatomical - rather than prob-
abilistic assignment - of lesions to specific white matter
specific tracts could also open doors for clinical questions,
for example on how the appearance or disappearance of
lesions in specific tracts is associated with the presence
or resolution of specific symptoms or with potential sec-
ondary damage, such as pathology in the cortical regions
that are directly connected by a tract.

4.2.3. Limitations and future directions
Under the conditions of this study, CSD produced more

spurious peaks than the other algorithms. However, this
is not to say that the algorithm does not have benefits
which could aid tractography in MS patients. For exam-
ple, CSD has previously been shown to outperform dRL
when resolving crossing fibres under low FA conditions
(Parker et al., 2013b). We only assessed the performance
of the algorithms in the context of tractography, where not
all FOD peaks are reconstructed and considered simul-
taneously. Instead, at each point along the streamlining
process, the closest detected peak to the current stream-
line direction is followed, assuming that the tangent to
the streamline minimally subtends the best estimate of
fibre orientation. To mimic the tractography process in
our simulation, the 45 degree angle threshold employed
during streamlining was also employed when assessing
the proportion of successfully detected peaks. This is a
comparatively lenient threshold for assessing peak detec-
tion accuracy, with an additional measure of dispersion
confirming orientational agreement between the detected
peaks. While under these specific conditions, CSD pro-
duced a large number of false positives, at this point we
are not in a position to comment of the suitability of CSD
for other types of analyses, such as fixel-based analysis
(Raffelt et al., 2015).

We employed standard tractography protocols that have
been optimized in healthy tissue, and that are compatible
with clinically feasible diffusion MRI acquisitions. It is
likely that optimising tractography for MS could benefit

from fine-tuning of some of the parameters for patholog-
ical tissue, and also from data with higher angular res-
olution and multiple diffusion weightings. For example,
the sensitivity of CSD to the increase in isotropic diffu-
sion in lesions may be partly counteracted using multi-
shell - CSD, which considers several tissue compartments
(Jeurissen et al., 2014). Transitioning to multi-shell ac-
quisitions could allow the benefits of such advanced de-
convolution methods to be explored.

Simulations produced a simplified version of pathol-
ogy, and other factors such as permeability, could also
be considered to make the scenario more realistic (e.g.
Nedjati-Gilani et al. (2017)). Ideally, also fibre orienta-
tion dispersion is introduced, which is currently not possi-
ble with the Camino software package used in the current
study.

The probability-based approach depends on inter-
subject co-registration of the images by normalising them
to a common reference space. To do this, we chose T1-
weighted based co-registration, as this is most successful
for aligning pathological brains (Avants et al., 2008), and
to make our results comparable to previous studies (Reich
et al., 2010). However, in future studies, this normali-
sation step could be further improved, e.g. in the form
of multi-modal registration by white matter parameteric
maps, such as FA maps.

4.2.4. Conclusions
Accurate anatomical assignment of damage to specific

white matter tracts is of clinical interest. In MS research,
tractography-based anatomical segmentation in individual
patients is rarely performed, with probability-based ap-
proaches often being the method of choice to avoid poten-
tial effects of MS lesions on tractography algorithms. We
show that MS pathology indeed affects the fibre orienta-
tion reconstruction that is done during tractography, with
different algorithms being affected differently - lesions led
to an increase in streamline interruptions with dRL, and
an increased number of spurious streamlines with CSD.
Nevertheless, fiber tracking through MS lesions is pos-
sible, and can be used to even reconstruct tracts that go
through areas with high lesion probability. The result-
ing tracts do not seem to systematically omit lesional tis-
sue. A problem with tractography in general is that the
anatomical localisation of the tract does depend on the
specific method used to segment individual tracts. The
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anatomical overlap between individual tracts and tract
probability methods is quite low, however, this may not
be an issue if the aim of the research is to obtain tract-
averaged microstructural parameters. For studying tract
shapes, tract-specific atrophy and along-tract profiles, in-
dividually segmenting tracts is necessary. We showed that
this is feasible, even in large scale clinical studies. Further
improvements of the algorithms to maximize anatomical
accuracy could lead to powerful tools to investigate prog-
nostic and diagnostic markers.

4.3. Acknowledgements

The study was funded by a research grant of the MS
Society UK. DKJ is supported by a Wellcome Trust In-
vestigator Award (096646/Z/11/Z) and a Wellcome Trust
Strategic Award (104943/Z/14/Z). EP is funded by the
Wellcome Trust.

The authors would like to thank Matt Hall for his input
on the data simulations.

References

Al Masri, O., 2011. An essay on the human corticospinal
tract: History, development, anatomy, and connections.
Neuroanatomy 10, 1–4.

Avants, B.B., Epstein, C., Grossman, M., Gee, J.,
2008. Symmetric diffeomorphic image registration
with cross-correlation: Evaluating automated labeling
of elderly and neurodegenerative brain. Medical Image
Analysis 12, 26–41. doi:10.1016/j.media.2007.06.004.

Barkhof, F., 1999. MRI in multiple sclero-
sis: correlation with expanded disability status
scale (EDSS). Multiple Sclerosis 5, 283–286.
doi:10.1191/135245899678846221.

Barkhof, F., 2002. The clinico-radiological paradox in
multiple sclerosis revisited. Current Opinion in Neurol-
ogy 15, 239–245. doi:10.1097/00019052-200206000-
00003.

Barkhof, F., Calabresi, P., Miller, D., Reingold, S., 2009.
Imaging outcomes for neuroprotection and repair in
multiple sclerosis trials. Nature reviews. Neurology 5,
256–266.

Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Al-
droubi, A., 2000. In vivo fiber tractography using
DT-MRI data. Magnetic Resonance in Medicine
doi:10.1002/1522-2594(200010)44:4¡625::AID-
MRM17¿3.0.CO;2-O.

Bonzano, L., Tacchino, A., Brichetto, G., Roccatagliata,
L., Dessypris, A., Feraco, P., Lopes, M.L., Carvalho,
D., Battaglia, M.A., Mancardi, G.L., Bove, M., 2014.
Upper limb motor rehabilitation impacts white matter
microstructure in multiple sclerosis. NeuroImage 90,
107–116. doi:10.1016/j.neuroimage.2013.12.025.

Catani, M., Howard, R.J., Pajevic, S., Jones, D.K., 2002.
Virtual in Vivo Interactive Dissection of White Matter
Fasciculi in the Human Brain. NeuroImage 94, 77–94.
doi:10.1006/nimg.2002.1136.

Catani, M., Thiebaut de Schotten, M., 2008. A
diffusion tensor imaging tractography atlas for vir-
tual in vivo dissections. Cortex 44, 1105–1132.
doi:10.1016/j.cortex.2008.05.004.

18

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/559708doi: bioRxiv preprint 

https://doi.org/10.1101/559708
http://creativecommons.org/licenses/by-nc/4.0/


Chang, L.c., Jones, D.K., Pierpaoli, C., 2005. RE-
STORE: Robust Estimation of Tensors by Outlier Re-
jection. Magnetic Resonance in Medicine 53, 1088–
1095. doi:10.1002/mrm.20426.

Charil, A., Zijdenbos, A.P., Taylor, J., Boelman, C.,
Worsley, K.J., Evans, A.C., Dagher, A., 2003. Sta-
tistical mapping analysis of lesion location and neu-
rological disability in multiple sclerosis: application
to 452 patient data sets. NeuroImage 19, 532–544.
doi:10.1016/S1053-8119(03)00117-4.

Ciccarelli, O., Catani, M., Johansen-berg, H., Clark, C.,
Thompson, A., 2008. Diffusion-based tractography in
neurological disorders: concepts, applications, and fu-
ture developments. The Lancet Neurology 7, 715–727.

Cox, R.W., 1996. AFNI: software for analysis and vi-
sualization of functional magnetic resonance neuroim-
ages. Computers and biomedical research, an interna-
tional journal 29, 162–173.

De Santis, S., Drakesmith, M., Bells, S., Assaf, Y.,
Jones, D.K., 2014. Why diffusion tensor MRI does
well only some of the time: variance and covari-
ance of white matter tissue microstructure attributes
in the living human brain. NeuroImage 89, 35–44.
doi:10.1016/j.neuroimage.2013.12.003.

Dell’Acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons,
A., Scotti, G., Fazio, F., 2010. A modified damped
Richardson-Lucy algorithm to reduce isotropic back-
ground effects in spherical deconvolution. NeuroImage
doi:10.1016/j.neuroimage.2009.09.033.

Dice, L.R., 1945. Measures of the amount of ecologic
association between species. Ecology 26, 297–302.

Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F.,
Schoenberg, S.O., 2007. Measurement of signal-
to-noise ratios in MR images: Influence of multi-
channel coils, parallel imaging, and reconstruction
filters. Journal of Magnetic Resonance Imaging
doi:10.1002/jmri.20969.

Filippi, M., Cercignani, M., Inglese, M., Horsfield, M.A.,
Comi, G., 2001. Diffusion tensor magnetic resonance
imaging in multiple sclerosis. Neurology , 304–311.

Ge, Y., Rossman, R.I., Udupa, J.K., Babb, J.S., Kolson,
D.L., 2001. Brain atrophy in relapsing-remitting mul-
tiple sclerosis: Fractional volumetric analysis of gray
matter and white matter. Neuroradiology 220, 606–
610.

Gudbjartsson, H., Patz, S., 1995. The Rician Distribution
of Noisy MRI Data. MRM 34, 910–914.

Hall, M.G., Alexander, D.C., 2009. Convergence and
parameter choice for Monte-Carlo simulations of dif-
fusion MRI. IEEE Transactions on Medical Imaging
doi:10.1109/TMI.2009.2015756.

Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X.,
Reich, D.S., Calabresi, P.A., Pekar, J.J., van Zijl,
P.C.M., Mori, S., 2008. Tract probability maps
in stereotaxic spaces: Analyses of white matter
anatomy and tract-specific quantification. NeuroImage
39, 336–347. doi:10.1016/j.neuroimage.2007.07.053,
arXiv:NIHMS150003.

Inglese, M., Bester, M., 2010. Diffusion imaging in multi-
ple sclerosis: research and clinical implications. NMR
in Biomedicine 23, 865–872. doi:10.1002/nbm.1515.

Irfanoglu, M.O., Walker, L., Sarlls, J., Marenco, S., Pier-
paoli, C., 2012. Effects of image distortions originating
from susceptibility variations and concomitant fields on
diffusion MRI tractography results. NeuroImage 61,
275–288. doi:10.1016/j.neuroimage.2012.02.054.

Jeurissen, B., Leemans, A., 2017. Diffusion MRI fiber
tractography of the brain. NMR in Biomedicine , 1–
22doi:10.1002/nbm.3785.

Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.d.,
Sijbers, J., 2011. Probabilistic fiber tracking using
the residual bootstrap with constrained spherical de-
convolution. Human Brain Mapping 479, 461–479.
doi:10.1002/hbm.21032.

Jeurissen, B., Leemans, A., Tournier, J.d., Jones, D.K., Si-
jbers, J., 2013. Investigating the prevalence of complex
fiber configurations in white matter tissue with diffu-
sion magnetic resonance imaging. Human Brain Map-
ping 34, 2747–2766. doi:10.1002/hbm.22099.

19

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/559708doi: bioRxiv preprint 

https://doi.org/10.1101/559708
http://creativecommons.org/licenses/by-nc/4.0/


Jeurissen, B., Tournier, J.D., Dhollander, T., Con-
nelly, A., Sijbers, J., 2014. Multi-tissue con-
strained spherical deconvolution for improved analy-
sis of multi-shell diffusion MRI data. NeuroImage
doi:10.1016/j.neuroimage.2014.07.061.

Jones, D.K., 2003. Determining and visualizing un-
certainty in estimates of fiber orientation from diffu-
sion tensor MRI. Magnetic Resonance in Medicine
doi:10.1002/mrm.10331.

Jones, D.K., Catani, M., Pierpaoli, C., Reeves, S.J.C.,
Shergill, S.S., Sullivan, M.O., Golesworthy, P.,
Mcguire, P., Horsfield, M.A., Simmons, A., Williams,
S.C.R., Howard, R.J., 2006. Age effects on dif-
fusion tensor magnetic resonance imaging tractog-
raphy measures of frontal cortex connections in
schizophrenia. Human Brain Mapping 238, 230–238.
doi:10.1002/hbm.20179.

Jones, D.K., Horsfield, M.A., Simmons, A., 1999. Op-
timal strategies for measuring diffusion in anisotropic
systems by magnetic resonance imaging. Magnetic
Resonance in Medicine 525, 515–525.

Jones, D.K., Travis, A.R., Eden, G., Pierpaoli, C., Basser,
P.J., 2005. PASTA: Pointwise Assessment of Stream-
line Tractography Attributes. Magnetic Resonance in
Medicine 1467, 1462–1467. doi:10.1002/mrm.20484.

Kezele, I.B., Arnold, D.L., Collins, D.L., 2008. Atrophy
in white matter fiber tracts in multiple sclerosis is not
dependent on tract length or local white matter lesions.
Multiple Sclerosis 14, 779–785.

Kincses, Z., 2010. Lesion probability mapping
to explain clinical deficits and cognitive perfor-
mance in multiple sclerosis. Multiple Sclerosis
doi:10.1177/1352458510391342.

Klein, S., Staring, M., Murphy, K., Viergever, M.A.,
Pluim, J.P.W., 2010. elastix: A Toolbox for Intensity-
Based Medical Image Registration. IEEE Transactions
on Medical Imaging 29, 196–205.

Kolind, S., Matthews, L., Johansen-berg, H., Leite,
M.I., Williams, S.C.R., Deoni, S., Palace, J., 2012.
Myelin water imaging reflects clinical variability

in multiple sclerosis. NeuroImage 60, 263–270.
doi:10.1016/j.neuroimage.2011.11.070.

Lagana, M., Ceccarelli, A., Preti, M.G., Venturelli, C.,
Marcella, M., Sormani, M.P., Cavarretta, R., Baselli,
G., Cecconi, P., Caputo, D., Rovaris, M., 2011.
Atlas-based versus individual-based fiber tracking of
the corpus callosum in patients with multiple scle-
rosis: reliability and clinical correlations. Journal
of Neuroimaging 22, 355–364. doi:10.1111/j.1552-
6569.2011.00650.x.

Leemans, A., Jeurissen, B., Sijbers, J., Jones, D., 2009.
ExploreDTI: a graphical toolbox for processing , ana-
lyzing , and visualizing diffusion MR data. Proc Intl
Soc Mag Reson Med 17, 3537.

Leemans, A., Jones, D.K., 2009. The b-matrix must be
rotated when correcting for subject motion in dti data.
Magnetic Resonance in Medicine 1349, 1336–1349.
doi:10.1002/mrm.21890.

Lin, X., Tench, C.R., Morgan, P.S., Niepel, G., Constanti-
nescu, C.S., 2005. ’Importance sampling’ in MS : Use
of diffusion tensor tractography to quantify pathology
related to specific impairment. Journal of Neurological
Sciences 237, 13–19. doi:10.1016/j.jns.2005.04.019.

Lipp, I., Foster, C., Stickland, R., Tallantyre, E., DAvid-
son, A., Sgarlata, E., Patitucci, E., Robertson, N.,
Jones, D., Wise, R., Tomassini, V., 2017. Predicting
performance improvements with visuomotor training in
MS using a multi-modal clinical and neuroimaging ap-
proach. Multiple Sclerosis Journal 23, 12–13.

Lipp, I., Jones, D., Bells, S., Sgarlata, E., Foster, C., Stick-
land, R., Davidson, A., Tallantyre, E., Robertson, N.,
Wise, R., Tomassini, V., submitted. Comparing MRI
metrics to quantify white matter microstructural dam-
age in multiple sclerosis. Human Brain Mapping 0, 0.

Metzler-Baddeley, C., Jones, D.K., Belaroussi, B., Ag-
gleton, J.P., O’Sullivan, M.J., 2011. Frontotemporal
connections in episodic memory and aging: A diffu-
sion MRI tractography study. Journal of Neuroscience
31, 13236–13245. doi:10.1523/JNEUROSCI.2317-
11.2011.

20

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/559708doi: bioRxiv preprint 

https://doi.org/10.1101/559708
http://creativecommons.org/licenses/by-nc/4.0/


Mole, J.P., Subramanian, L., Bracht, T., Morris, H.,
Metzler-Baddeley, C., Linden, D.E., 2016. Increased
fractional anisotropy in the motor tracts of Parkinson’s
disease suggests compensatory neuroplasticity or selec-
tive neurodegeneration. European Radiology 26, 3327–
3335. doi:10.1007/s00330-015-4178-1.

Mollink, J., Kleinnijenhuis, M., Walsum, A.m.V.C.V.,
Jenkinson, M., Pallebage-gamarallage, M., Ansorge,
O., Jbabdi, S., Miller, K.L., 2017. Evaluat-
ing fibre orientation dispersion in white matter:
Comparison of diffusion MRI, histology and polar-
ized light imaging. NeuroImage 157, 561–574.
doi:10.1016/j.neuroimage.2017.06.001.

Mori, S., Crain, B.J., Chacko, V.P., Van Zijl,
P.C.M., 1999. Three-dimensional tracking of ax-
onal projections in the brain by magnetic resonance
imaging. Annals of Neurology doi:10.1002/1531-
8249(199902)45:2¡265::AID-ANA21¿3.0.CO;2-3.

Nedjati-Gilani, G.L., Schneider, T., Hall, M.G., Caw-
ley, N., Hill, I., Ciccarelli, O., Drobnjak, I., Wheeler-
Kingshott, C.A.M.G., Alexander, D.C., 2017. Machine
learning based compartment models with permeability
for white matter microstructure imaging. NeuroImage
doi:10.1016/j.neuroimage.2017.02.013.

Ozturk, A., Smith, S.A., Gordon-lipkin, E.M., Harrison,
D.M., Shiee, N., Pham, D.L., Caffo, B.S., Calabresi,
P.A., 2010. MRI of the corpus callosum in multiple
sclerosis: association with disability. Multiple Sclero-
sis 16, 166–177. doi:10.1177/1352458509353649.

Pagani, E., Filippi, M., Rocca, T.M.A., Horsfield, M.A.,
2005. A method for obtaining tract-specific diffusion
tensor MRI measurements in the presence of disease:
Application to patients with clinically isolated syn-
dromes suggestive of multiple sclerosis. NeuroImage
26, 258–265. doi:10.1016/j.neuroimage.2005.01.008.

Pajevic, S., Pierpaoli, C., 1999. Color schemes to rep-
resent the orientation of anisotropic tissues from dif-
fusion tensor data: Application to white matter fiber
tract mapping in the human brain. Magnetic Resonance
in Medicine 42, 526–540. doi:10.1002/(SICI)1522-
2594(199909)42:3¡526::AID-MRM15¿3.0.CO;2-J.

Parker, G., Marshall, D., Rosin, P., Drage, N., Jones, D.,
2013a. Fast and fully automated clustering of whole
brain tractography results using shape-space analysis
microstructure, in: ISMRM abstracts.

Parker, G.D., Marshall, D., Rosin, P.L., Drage, N.,
Richmond, S., Jones, D.K., 2013b. A pitfall in
the reconstruction of fibre ODFs using spherical de-
convolution of diffusion MRI data. NeuroImage
doi:10.1016/j.neuroimage.2012.10.022.

Raffelt, D.A., Smith, R.E., Ridgway, G.R., Tournier, J.d.,
Vaughan, D.N., Rose, S., Henderson, R., Connelly, A.,
2015. Connectivity-based fixel enhancement: Whole-
brain statistical analysis of diffusion MRI measures in
the presence of crossing fibres. NeuroImage 117, 40–
55. URL: 10.1016/j.neuroimage.2015.05.039,
doi:10.1016/j.neuroimage.2015.05.039.

Reich, D.S., Ozturk, A., Calabresi, P.A., Mori,
S., 2010. Automated vs conventional tractogra-
phy in multiple sclerosis: variability and correla-
tion with disability. NeuroImage 49, 3047–3056.
doi:10.1016/j.neuroimage.2009.11.043.

Reich, D.S., Smith, S.A., Zackowski, K.M., Gordon-
lipkin, E.M., Jones, C.K., Farrell, J.A.D., Mori, S., Zijl,
P.C.M.V., Calabresi, P.A., 2007. Multiparametric mag-
netic resonance imaging analysis of the corticospinal
tract in multiple sclerosis . NeuroImage 38, 271–279.
doi:10.1016/j.neuroimage.2007.07.049.

Rousselet, G.a., Pernet, C.R., 2012. Improv-
ing standards in brain-behavior correlation analy-
ses. Frontiers in human neuroscience 6, 119.
doi:10.3389/fnhum.2012.00119.

Sahraian, M., Radue, E., Haller, S., Kappos, L., 2010.
Black holes in multiple sclerosis: definition, evolution,
and clinical correlations. Acta Neurologica Scandinav-
ica 122, 1–8. doi:10.1111/j.1600-0404.2009.01221.x.

Schilling, K.G., Nath, V., Hansen, C., Parvathaneni,
P., Blaber, J., Gao, Y., Neher, P., Baran, D., Shi,
Y., Ocampo-pineda, M., Schiavi, S., Daducci, A.,
Girard, G., Barakovic, M., Pizzolato, M., Rafael-
patino, J., Romascano, D., Bates, A., Fischi, E., Thi-
ran, J.p., Canales-rodrı́guez, E.J., Huang, C., Zhu,

21

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/559708doi: bioRxiv preprint 

https://doi.org/10.1101/559708
http://creativecommons.org/licenses/by-nc/4.0/


H., Zhong, L., Cabeen, R., Toga, A.W., Rheault, F.,
Theaud, G., Houde, J.c., Sidhu, J., Chamberland, M.,
Westin, C.f., Dyrby, T.B., Verma, R., Rathi, Y., Ir-
fanoglu, M.O., Thomas, C., Pierpaoli, C., Descoteaux,
M., Anderson, A.W., Landman, B.A., 2019. Lim-
its to anatomical accuracy of diffusion tractography
using modern approaches. NeuroImage 185, 1–11.
doi:10.1016/j.neuroimage.2018.10.029.

Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J.,
Matthews, P.M., Federico, A., Stefano, N.D., 2002. Ac-
curate, robust, and automated longitudinal and cross-
cectional brain change analysis. NeuroImage 489, 479–
489. doi:10.1006/nimg.2002.1040.

Tench, C.R., Morgan, P.S., Wilson, M., Blumhardt, L.D.,
2002. White matter mapping using diffusion tensor
MRI. Magnetic Resonance in Medicine 47, 967–972.
doi:10.1002/mrm.10144.

Tournier, J., Calamante, F., Gadian, D.G., Connelly, A.,
2004. Direct estimation of the fiber orientation den-
sity function from diffusion-weighted MRI data using
spherical deconvolution. NeuroImage 23, 1176–1185.
doi:10.1016/j.neuroimage.2004.07.037.

Tournier, J., Yeh, C.h., Calamante, F., Cho, K.h., 2008.
Resolving crossing fibres using constrained spheri-
cal deconvolution: Validation using diffusion-weighted
imaging phantom data. Neuroimag Clin N Am 42,
617–625. doi:10.1016/j.neuroimage.2008.05.002.

Tournier, J.D., Calamante, F., Connelly, A., 2007. Ro-
bust determination of the fibre orientation distribu-
tion in diffusion MRI: Non-negativity constrained
super-resolved spherical deconvolution. NeuroImage
doi:10.1016/j.neuroimage.2007.02.016.

Wang, C., Klistorner, A., Ly, L., Barnett, M.H., 2018.
White matter tract-specific quantitative analysis in
multiple sclerosis: Comparison of optic radiation
reconstruction techniques. PLoS ONE 13, 1–19.
doi:10.1371/journal.pone.0191131.

Wassermann, D., Rathi, Y., Bouix, S., Kubicki, M., Kiki-
nis, R., Shenton, M., Westin, C.F., 2012. White mat-
ter bundle registration and population analysis based
on Gaussian processes. Inf Process Med Imaging 22,
320–332.

Yeatman, J.D., Dougherty, R.F., Myall, N.J., Wan-
dell, B.A., Feldman, H.M., 2012. Tract pro-
files of white matter properties: automating fiber-
tract quantification. PLoS ONE 7, e49790.
doi:10.1371/journal.pone.0049790.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of
Brain MR Images Through a Hidden Markov Random
Field Model and the Expectation-Maximization Algo-
rithm. IEEE Transactions on Medical Imaging 20, 45–
57.

Zijdenbos, A.P., Member, S., Dawant, B.M., Margolin,
R.A., Palmer, A.C., 1994. Morphometric Analysis of
White Matter Lesions in MR Images : Method and Val-
idation. IEEE Transactions on Medical Imaging 13.

Supplementary material

1.1.1. Supplementary methods: Data simulation param-
eters

We simulated diffusion data using Camino’s datasynth
(Hall and Alexander, 2009). We simulated data using
a virtual pulse sequence, comparable to the in vivo se-
quence (twice-refocussed spin echo (TRSE), TE = 94.5
ms, b-value = 1200s/mm2, δ1: 11.2 ms, onset δ1: 15.2
ms, δ2: 17.8 ms, onset δ2: 31.7 ms, δ3: 17.8 ms, onset
δ4: 75.3 ms, gradient amplitude: 40 mT), with 40 uni-
formly distributed gradient directions (Camino 40), with
6 non-diffusion weighted images at the beginning.

We simulated substrates with parallel cylinders, with
radius drawn from a gamma distribution with a shape pa-
rameter of 2 and scale parameter of 5 × 10−7, which cor-
responds to a mean radius of 1 µm and standard devia-
tion of 0.7 µm. The parameters used in the simulation
were: 500000 walkers (numbers of spins simulated), uni-
formely distributed across the substrate, cylinder perme-
ability 0, tmax = 5000. We simulated various substrates
(cubes of the length 50 × 10−5 m), that only differed in
their cylinder density (0 to 40000 cylinders placed in sub-
strate), yielding intracellular volume fractions of about 0
- 80%. For each substrate type, we simulated 20 differ-
ent substrates (by choosing different seed values), and for
each substrate we simulated 100 voxels that only differed
in their noise. The SNR chosen for simulation was 20:1,
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which was based of a conservative estimate derived from
our in vivo data (see below). In order to simulate crossing
fibres, we ran the exact same simulation, but rotating the
acquisition scheme around the x-axis by 90 degrees.

1.1.2. Supplementary methods: Estimation of SNR from
in vivo data

To estimate the SNR of our in vivo diffusion sequence,
we used the SNRmult approach described by Dietrich et al.
(2007). This relies on calculating the ratio between the
mean of the signal divided by the standard deviation of
the underlying (Gaussian) noise. To do this, the six non
diffusion-weighted images were taken as repeated acqui-
sitions. An SNR map was calculated for 29 MS patients,
followed by registration of each map to MNI space. We
averaged the SNR maps across participants. Thresholding
the SNR maps at 20 showed that this value was exceeded
across the whole brain, with the exception of the puta-
men. From this, we concluded that a SNR of 20 was a
conservative estimate. (Note that in the calculation, the
noise was assumed Gaussian, which is the case for SNR
> 3 (Gudbjartsson and Patz, 1995). However, the SNR
was estimated based on non-diffusion weighted images,
and the diffusion-weighted images have lower signal. To
check that the signal attenuation was not more than 1/7
(which would cause the SNR in the attenuated images to
fall below 20), we visualised in a few data sets the maxi-
mum signal attenuation, and in the vast majority of voxels
this was not the case.)

1.1.3. Supplementary methods: Fibre orientation algo-
rithm implementation

The diffusion tensor was derived by robust non-linear
least squares fitting (Chang et al., 2005), using Ex-
ploreDTI v.4.8.3.

The constrained spherical convolution (CSD) Tournier
et al. (2007) was implemented using in-house scripts. The
single fibre response function was calculated from voxels
with an FA > .8, as done in previous work (Tournier et al.,
2004). For the simulated data, the CSD response function
was estimated from voxels with FA > .8 in the single fibre
population data set. Spherical harmonics were resolved
up to the 6th order. During the tractography process, we
employed an FOD amplitude threshold of > 0.1 that has
been previously optimised (Jeurissen et al., 2013).

The modied damped Richardson-Lucy algorithm (dRL)
was implemented with a fibre response shape parameter
of α = 1.5x10 − 3mm2/s according to Dell’Acqua et al.
(2010) using in-house scripts. Note that we fitted har-
monics up to the 8th order to the discrete dRL estimates,
to increase computational efficiency, while allowing to
track along all potential directions rather than only along
the discretely estimated directions. The FOD amplitude
threshold was set to > 0.05 (Parker et al., 2013b).

1.1.4. Supplementary methods: Segmentation protocols:
CST. To segment the CSTs, AND gates were placed in
the primary motor cortex (identified on the T1-weighted
image) and in the brain stem (identified as the blue colour
of the pons in the anterior part of the brain stem in the
axial slice of a first eigenvector-colored FA image (Paje-
vic and Pierpaoli, 1999)). This protocol is comparable to
Mole et al. (2016). Left and right CST were segmented
separately.

Arcuate. Left and right arcuate fasciculi were segmented
separately. To do so, each time first a coronal slice of
a first eigenvector-colored FA image was identified, in
which the posterior commissure was visible. Then a
SEED gate was drawn in the arcuate fasciculus, identified
as a green triangle lateral to the corpus callosum. Addi-
tionally, an AND gate was drawn where the arcuate fas-
ciculus bends, identified as the blue / purple appearing
ipsilateral to the SEED gate on an axial slice at the height
of the posterior commissure.

1.1.5. Calculation of spatial agreement / Dice coefficient
We calculated spatial overlap Dice coefficient scores

(see also Zijdenbos et al. (1994)) as follows: First the
tracts were exported to binary NIfTI files, then the num-
ber of voxels for each operator’s tract and the number of
voxels overlapping in both operators’ tracts were counted
using the AFNI function 3DOverlap (Cox, 1996). Finally,
Dice coefficients were calculated using the equation:

2 × overlapping voxels
voxels in tract 1 + voxels in tract 2

, and converted to
%.
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Table 2: Scan parameters. All sequences were acquired at 3T. For each of the sequences, the main acquisition parameters are provided. Acronyms:
FLAIR = fluid-attenuated inversion recovery, FSPGR = fast spoiled gradient echo, SE = spin-echo, IR = inversion recovery, EPI = echo-planar
imaging, EFGRE = enhanced fast gradient echo, TE = echo time, TR = repetition time, TI = inversion time.

All at 3T T1-weighted PD/T2-weighted FLAIR (T2-
weighted)

DTI MT

Pulse sequence(s) FSPGR SE SE\IR SE\EPI EFGRE

Native resolution (mm3) 1.0x1.0x1.0 0.94x0.94x 4.5 0.86x0.86x4.5 1.8x1.8x2.4 0.94x0.94x1.9

Field of view (mm) 256 240 220 230 240

Matrix size 256x256x172 256x256 256x256 96x96x36 128x128x100

Slices none-3D 36 (3mm + 1.5mm
gap)

36 (3mm + 1.5mm
gap)

57 none-3D

Total acquisition time (min) 7.5 2 3 12.5 4.5

TE,TR (ms) 3.0,7.8 9.0/80.6,3000 122.3,9502 94.5,16000 1.8,26.7

TI (ms) 450 - 2250 - -

off-resonance pulse 450 degrees, 2kHz
off

Flip angle (degrees) 20 90 90 90 5

Table 3: Comparison of FOD threshold for CSD in vivo. As done before, for both CSD FOD thresholds (0.1 and 0.3) and each tissue type (Ctrl,
NAWM, T2L, T1l), we calculated voxel-wise averages of the following parameters: the number of streamlines found in a voxel, the average FA /

FOD amplitude across all streamlines found in a voxel, the number of streamlining processes stopped due to the amplitude threshold in a voxel, and
the number of streamlining processes stopped due to the angle threshold in a voxel. The mean ± std of these measures across healthy controls (Ctrl;
N = 19) and patients (NAWM, T2L, T1L; N = 29) are reported. The values across different tissues types were statistically compared (unpaired
t-test between Ctrl and NAWM tissue; paired t-tests for T2OL vs NAWM, and T1L vs T2OL).

Ctrl NAWM T2OL T1L NAWM vs Ctrl T2OL vs NAWM T1L vs T2OL
Average number of streamlines per voxel
CSD (0.1) 63.37 ± 10.22 66.12 ± 8.77 70.70 ± 13.18 70.69 ± 18.86 t = 0.99, p = .33 t = 2.4, p = .02 t = -0.01, p = .996

CSD (0.3) 63.36 ± 10.21 66.07 ± 8.75 70.68 ± 13.23 70.74 ± 18.72 t = 0.98, p = .33 t = 2.4, p = .02 t = -0.03, p = .98

Average peak amplitude (FOD amplitude / FA) of all streamlines per voxel
CSD (0.1) 0.42 ± 0.04 0.43 ± 0.05 0.43 ± 0.06 0.42 ± 0.06 t = 0.78, p = .44 t = 0.64, p = .53 t = -2.2, p = .04

CSD (0.3) 0.42 ± 0.04 0.43 ± 0.05 0.43 ± 0.06 0.42 ± 0.06 t = 0.78, p = .44 t = 0.63, p = .53 t = -2.2, p = .04

Average number of stopped streamlines per voxel due to amplitude threshold
CSD (0.1) 0.97 ± 0.03 0.87 ± 0.09 0.81 ± 0.19 0.80 ± 0.28 t = -4.7, p <.0001 t = -1.7, p = .10 t = -0.38, p = .71

CSD (0.3) 0.96 ± 0.03 0.87 ± 0.09 0.81 ± 0.19 0.80 ± 0.28 t = -4.7, p <.0001 t = -1.7, p = .10 t = -0.23, p = .82

Average number of stopped streamlines per voxel due to angle threshold
CSD (0.1) 1.37 ± 0.09 1.41 ± 0.12 1.76 ± 0.59 2.04 ± 0.76 t = 1.1, p = .26 t = 3.2, p < .01 t = 2.9, p = .01

CSD (0.3) 1.37 ± 0.08 1.41 ± 0.12 1.76 ± 0.59 2.07 ± 0.80 t = 1.3, p = .27 t = 3.2, p < .01 t = 2.8, p = .01
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Figure 2: Comparison of the three fibre orientation reconstruction algorithms in simulated data with b = 2000 s/mm2. Simulated substrates
varied in their intracellular volume fraction (ICFV). The true fibre orientation of the parallel cylinders in each substrate was along the z-axis (single
fibre population), or along the z- as well as the y-axis (crossing fibre populations). A: For each approach (tensor-based, dRL and CSD), we
calculated the percentage of all voxels within each substrate type for which the ’true’ underlying fibre configuration peak(s) could be detected. As a
control, we also calculated this percentage for ’false’ peaks (orthogonal to the true peak(s)). In each case, the left-most plot shows the FA for each
substrate type. B: Dispersion across all detected peaks of a substrate type was calculated.
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Figure 3: Inter-operator anatomical agreement. Spatial Dice coefficients were computed to quantify the overlap between segmented tracts from
two independent operators in %. This was done for tracts from five healthy controls. Each time, boxplots are presented for each tract. Acronyms:
l: left, r: right, CST: cortico-spinal tract, ARC: arcuate fasciculus.

Figure 4: Anatomical overlap between manually and automatically segmented tracts. Spatial Dice coefficients were computed to quantify
the overlap between manually and automatically segmented tracts in %. Each time, boxplots for patients (red) and controls (blue) are presented.
Outliers are indicated with black crosses Acronyms: l: left, r: right, CST: cortico-spinal tract, ARC: arcuate fasciculus.
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Table 4: Correlations between tract-specific average microstructural metrics for automated vs manual tract dissection. For each metric and
tract and each group separately, the sample size (N) and the Pearson correlation coefficient and the corresponding p-values are reported. From Figure
5 it is evident that some low correlations may be caused by outliers. For these correlations, bivariate outliers were excluded (based on (Rousselet
and Pernet, 2012)) and outlier-robust correlations and corresponding p-values are also reported. Note that correlations were not systematically
lower in patients, even though the tracts from the healthy controls were used to create the model for automated tractography. Acronyms: l: left, r:
right, CST: cortico-spinal tract, Arc: arcuate fasciculus, FA = fractional anisotropy, RD = radial diffusivity, MTR = magnetisation transfer ratio.

FA
N MS N HC MS MS robust HC HC robust

CST l 28 19 r =.63, p < .001 r =.96, p < .001 r =.86, p < .001 r =.86, p < .001

CST r 29 19 r =.51, p = 0.01 r =.85, p < .001 r =.91, p < .001 r =.91, p < .001

Arc l 29 19 r =.61, p < .001 r =.97, p < .001 r =.49, p = 0.03 r =.98, p < .001

Arc r 26 18 r =.56, p < .001 r =.94, p < .001 r =.68, p < .001 r =.88, p < .001

RD
N MS N HC MS MS robust HC HC robust

CST l 28 19 r =.51, p = .01 r =.95, p < .001 r =.91, p < .001 r =.93, p < .001

CST r 29 19 r =.52, p < .001 r =.89, p < .001 r =.86, p < .001 r =.91, p < .001

Arc l 29 19 r =.75, p < .001 r =.96, p < .001 r =.57. p = 0.01 r =.88, p < .001

Arc r 26 18 r =.76, p < .001 r =.98, p < .001 r =.72, p < .001 r =.96, p < .001

MTR
N MS N HC MS MS robust HC HC robust

CST l 28 19 r =.78, p < .001 r =.98, p < .001 r =.98, p < .001 r =.96, p < .001

CST r 29 19 r =.85, p < .001 r =.85, p < .001 r =.97, p < .001 r =.93, p < .001

Arc l 29 19 r =.66, p < .001 r =.99, p < .001 r =.92, p < .001 r =.85, p < .001

Arc r 26 18 r =.80, p < .001 r =.96, p < .001 r =.88, p < .001 r =.88, p < .001
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Figure 5: Correlations between tract-specific metrics for automated vs manual dissection. For each metric (rows) and tract (columns), the
scatterplot for the correlation between automated and manual approach is shown. MS patients are represented by red dots, and healthy controls by
blue dots. In each case, identified bivariate outliers are represented with the asterix symbol. Acronyms: l: left, r: right, CST: cortico-spinal tract,
ARC: arcuate fasciculus, FA = fractional anisotropy, RD = radial diffusivity (in 10-3 m2/s), MTR = magnetisation transfer ratio.
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