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Abstract

Background: HH-suite is a widely used open source
software suite for sensitive sequence similarity searches
and protein fold recognition. It is based on pairwise
alignment of profile Hidden Markov models (HMMs),
which represent multiple sequence alignments of
homologous sequences.

Results: We developed a single-instruction
multiple-data (SIMD) vectorized implementation of the
Viterbi algorithm for profile HMM alignment and
introduced various other speed-ups. This accelerated
HHsearch by a factor 4 and HHblits by a factor 2 over
the previous version 2.0.16. HHblits3 is ∼10× faster
than PSI-BLAST and ∼20× faster than HMMER3. Jobs
to perform HHsearch and HHblits searches with many
query profile HMMs can be parallelized over cores and
over servers in a cluster using OpenMP and message
passing interface (MPI). The free, open-source, GNU
GPL(v3)-licensed software is available at
https://github.com/soedinglab/hh-suite.

Conclusion: The added functionalities and increased
speed of HHsearch and HHblits should facilitate their
use in large-scale protein structure and function
prediction, e.g. in metagenomics and genomics projects.
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Introduction
A high sensitivity in sequence similarity searches increases
the chance of finding a homologous protein with an anno-
tated function or a known structure from which the func-
tion or structure of the query protein can be inferred [1].
Therefore, to find template proteins for comparative pro-
tein structure modeling and for deep functional annotation,
the most sensitive search tools such as HMMER [2, 3] and
HHblits [4] are often used [5–8].
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Instead of aligning single sequences with each other, these
tools enrich the query sequence using homologous sequences
into a multiple sequence alignment (MSA). From the fre-
quencies of amino acids in each column of the MSA, they
calculate a 20×length matrix of position-specific amino acid
substitution scores, called sequence profile.

A profile HMM contains, in addition to the position-
specific amino acid substitution scores, also position-specific
penalties for insertions and deletions relative to the query
sequence, which can be estimated from the frequencies of
insertions and deletions in the query MSA. The added in-
formation improves the sensitivity of profile HMM-based
methods like HHblits or HMMER3 over ones based on se-
quence profiles, such as PSI-BLAST [9].

A few search tools add information on the target side
by representing both the query and the target protein by
sequence profiles built from MSAs of homologous proteins
[10–13]. HHblits / HHsearch represent both the query and
the target proteins by profile HMMs. This makes them
among the most sensitive tools for sequence similarity
search and remote homology detection [4, 14].

In recent years, various sequence search tools have been
developed that are up to four orders of magnitude faster
than BLAST [15–18]. These tools address the need for faster
annotation of massive amounts of environmental sequences
being generated through metagenomics against the ever-
growing sequence databases. However, no homology can be
found for many of these sequences even with sensitive meth-
ods, such as BLAST or MMseqs2 [18]. HHblits can help to
annotate proteins beyond the twilight zone [19].

In this work, our goal was to accelerate and parallelize
various HH-suite algorithms with a focus on the most time-
critical tools, HHblits and HHsearch, to facilitate their use
on very large datasets. We applied data level paralleliza-
tion using Advanced Vector Extension 2 (AVX2) or Supple-
mental Streaming SIMD Extension 3 (SSSE3) instructions,
thread level parallelization using OpenMP, and paralleliza-
tion across computers using MPI. Most important was the
ample use of parallelization through SIMD arithmetic units
present in all modern Intel, AMD and IBM CPUs, with
which we achieved speed-ups per CPU core of a factor 2 to
4.

Methods
Overview of HH-suite

The HH-suite software suite contains search tools HHsearch
[14] and HHblits [4], HHmake to generate profile HMMs,
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and various utilities to build databases of MSAs or profile
HMMs, to reformat MSAs etc.

HHsearch searches a query profile HMM through a
database of target profile HMMs. The search first aligns
the query HMM with each of the target HMMs using the
Viterbi dynamic programming algorithm, which finds the
alignment with the maximum score. The E-value for the
target HMM is calculated from the Viterbi score [4]. Target
HMMs that reach sufficient significance to be reported are
realigned using the Maximum Accuracy algorithm (MAC)
[20]. This algorithm maximizes the expected number of cor-
rectly aligned pairs of residues minus a penalty between 0
and 1 (parameter mact). Values near 0 produce greedy, long,
nearly global alignments, values above 0.3 result in shorter,
local alignments.

HHblits is an accelerated version of HHsearch that is
fast enough to perform iterative searches through mil-
lions of profile HMMs, e.g. through the Uniclust pro-
file HMM databases, generated by clustering the UniProt
database into clusters of globally alignable sequences [21].
Analogously to PSI-BLAST and HMMER3, such iterative
searches can be used to build MSAs by starting from a single
query sequence. Sequences from matches to profile HMMs
below some E-value threshold (e.g. 10−3) are added to the
query MSA for the next search iteration.

HHblits has a two-stage prefilter that reduces the num-
ber of database HMMs to be aligned with the slow Viterbi
HMM-HMM alignment and MAC algorithms. For maxi-
mum speed, the target HMMs are represented in the pre-
filter as discretized sequences over a 219-letter alphabet in
which each letter represents one of 219 archetypical profile
columns. The two prefilter stages thus perform a profile-
to-sequence alignment, first ungapped then gapped, using
dynamic programming. Each stage filters away 95% to 99%
of target HMMs.

Overview of changes from HH-suite version 2.0.16 to 3
Vectorized Viterbi HMM-HMM alignment
Most of the speed-up was achieved by developing efficient
SIMD code and removing branches in the pairwise Viterbi
HMM alignment algorithm. The new implementation aligns
4 (using SSSE3) or 8 (using AVX2) target HMMs in parallel
to one query HMM.

Fast MAC HMM-HMM alignment
We accelerated the Forward-Backward algorithm that com-
putes posterior probabilities for all residue pairs (i, j) to be
aligned with each other. These probabilities are needed by
the MAC alignment algorithm. We improved the speed of
the Forward-Backward and MAC algorithms by removing
branches at the innermost loops and optimizing the order
of indices, which reduced the frequency of cache misses.

Memory reduction
We reduced the memory required during Viterbi HMM-
HMM alignment by a factor of 1.5 for SSSE3 and imple-
mented AVX2 with only a 1.3 times increase, despite the
need to keep scores for 4 (SSSE3) or 8 (AVX2) target pro-
file HMMs in memory instead of just one. This was done

by keeping only the current row of the 5 scoring matrices
in memory during the dynamic programming (subsection
Memory reduction for backtracing and cell-off matrices),
and by storing the 5 backtrace matrices, which previously
required one byte per matrix cell, in a single backtrace ma-
trix with one byte per cell (subsection From quadratic to
linear memory for scoring matrices). We also reduced the
memory consumption of the Forward-Backward and MAC
alignment algorithms by a factor of two, by moving from
storing posterior probabilities with type double to stor-
ing their logarithms using type float. In total, we reduced
the required memory by roughly a factor 1.75 (when using
SSSE3) or 1.16 (when using AVX2).

Accelerating sequence filtering and profile computation
For maximum sensitivity, HHmake, HHblits, and HHsearch
need to reduce the redundancy within the input MSA by
removing sequences that have a sequence identity to an-
other sequence in the MSA larger than a specified cutoff
(90% by default) [14]. The redundancy filtering takes time
O(NL2), where N is the number of MSA sequences and
L the number of columns. It can be a runtime bottleneck
for large MSAs, for example during iterative searches with
HHblits. A more detailed explanation is given in subsection
SIMD-based MSA redundancy filter.

Additionally, the calculation of the amino acid probabili-
ties in the profile HMM columns from an MSA can become
time-limiting. Its run time scales as O(NL2) because for
each column it takes a time ∼O(NL) to compute column-
specific sequence weights based on the subalignment con-
taining only the sequences that have no gap in that column.

We redesigned these two algorithms to use SIMD instruc-
tions and optimized memory access through reordering of
nested loops and array indices.

Secondary structure scoring
Search sensitivity could be slightly improved for remote ho-
mologs by modifying the weighting of the secondary struc-
ture alignment score with respect to profile column similar-
ity score. In HH-suite3, the secondary structure score can
contribute more than 20% of the total score. This increased
the sensitivity to detect remote homologs slightly without
negative impact on the high-precision.

New features, code refactoring, and bug fixes
HH-suite3 allows users to search a large number of query
sequences by parallelizing HHblits/HHsearch searches over
queries using OpenMP and MPI (hhblits omp and hhblits mpi,
and hhsearch omp). We removed the limit on the maxi-
mum number of sequences in the MSAs (option -maxseqs

<max>). We ported scripts in HH-suite from Perl to Python
and added support for the new PDB format mmCIF, which
we use to provide precomputed profile HMM and MSA
databases for the protein data bank (PDB) [22], Pfam [23],
SCOP [24], and clustered UniProt databases (Uniclust) [21].

We adopted a new format for HHblits databases in which
the column state sequences used for prefiltering (former
*.cs219 files) are stored in the ffindex format. (The ffindex
format was already used in version 2.0.16 for the a3m MSA
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files and the hhm profile HMM files). This resulted in a ∼4 s
saving for reading the prefilter database and improved scal-
ing of HHblits with the number of cores. We also integrated
our discriminative, sequence context-sensitive method to
calculate pseudocounts for the profile HMMs, which slightly
improves sensitivities for fold-level homologies [25].

To keep HH-suite sustainable and expandable in the
longer term, we extensively refactored code by improving
code reuse with the help of new classes with inheritance,
replacing POSIX threads (pthreads) with OpenMP par-
allelization, removing global variables, moving from make

to cmake, and moving the HH-suite project to GitHub
(https://github.com/soedinglab/hh-suite). We fixed vari-
ous bugs such as memory leaks and segmentation faults
occurring with newer compilers.

Supported platforms and hardware
HHblits is developed under Linux, tested under Linux and
macOS, and should run under any Unix-like operating sys-
tems. Intel and AMD CPUs that offer AVX2 or at least
SSSE3 instruction sets are supported (Intel CPUs: since
2006, AMD: since 2011). PowerPC CPUs with AltiVec vec-
tor extensions are also implemented.

Because we were unable to obtain funding for continued
support of HH-suite, user support is unfortunately limited
to bug fixes for the time being.

Paralellization by vectorization using SIMD instructions
All modern CPUs possess SIMD units, usually one per core,
for performing arithmetic, logical and other operations on
several data elements in parallel. In SSE2 and SSSE3, four
floating point operations are processed in a single clock cycle
in dedicated 128-bit wide registers. Since 2012, the AVX
standard allows to process eight floating point operations
per clock cycle in parallel, held in 256 bit AVX registers.
With the AVX2 extension came support for byte- word- and
integer-level operations, e.g. 32 single-byte numbers can be
added or multiplied in parallel (32× 1byte = 256bits). Intel
has supported AVX2 since 2013, AMD since 2015.

HHblits 2.0.16 already used SSE2 in its prefilter for gap-
less and gapped profile-to-sequence alignment processing 16
dynamic programming cells in parallel, but it did not sup-
port HMM-HMM alignment using vectorized code.

Abstraction layer for SIMD-based vector programming
Intrinsic functions allow to write SIMD parallelized algo-
rithms without using assembly instructions. However, they
are tied to one specific variant of SIMD instruction set
(such as AVX2), which makes them neither downwards
compatible nor future-proof. To be able to compile our al-
gorithms with different SIMD instruction set variants, we
implemented an abstraction layer, simd.h. In this layer,
the intrinsic functions are wrapped by preprocessor macros.
Porting our code to a new SIMD standard therefore merely
requires us to extend the abstraction layer to that new stan-
dard, whereas the algorithm remains unchanged.

The simd.h header supports SSSE3, AVX2 and AVX-512
instruction sets. David Miller has graciously extended the
simd.h abstraction layer to support the AltiVec vector ex-
tension of PowerPC CPUs. Algorithm 1 shows a function
that computes the scalar product of two vectors.

float scalarProdIntrinsics(float* m1, float* m2, int n) {
float prod = 0.0;
__m128 Z = _mm_setzero_ps();
for(int i = 0; i < n; i += 4) {

__m128 X = _mm_load_ps(&m1[i]);
__m128 Y = _mm_load_ps(&m2[i]);
X = _mm_mul_ps(X, Y);
Z = _mm_add_ps(X, Z);

}
for(int i = 0; i < 4; i++)

prod += _mm_extract_ps(Z, i);
return prod;

}

float scalarProdAbstracted(float* m1, float* m2, int n) {
float prod = 0.0;
simd_float Z = simdf32_setzero();
for(int i = 0; i < n; i += VECSIZE_FLOAT) {

simd_float X = simdf32_load(&m1[i]);
simd_float Y = simdf32_load(&m2[i]);
X = simdf32_mul(X, Y);
Z = simdf32_add(X, Z);

}
for(int i = 0; i < VECSIZE_FLOAT; i++)

prod += simdf32_extract(Z, i);
return prod;

}

Algorithm 1: Example C code for SIMD abstraction layer

Vectorized Viterbi HMM-HMM alignments
The Viterbi algorithm for aligning profile HMMs
The Viterbi algorithm is a dynamic programming algorithm
that generalizes the Smith-Waterman alignment [26]. We
use it in HH-suite to compute the best-scoring alignment be-
tween two profile HMMs. MSA columns with less than 50%
gaps (default value) are modeled by match states in HH-
suite, all other columns are modeled as insertion states. By
traversing through the states of a profile HMM, the HMM
can “emit” sequences. A match state (M) emits amino acids
according to the 20 probabilities of amino acids estimated
from their fraction in the MSA column, plus some pseudo-
counts. Insert states (I) emit amino acids according to a
standard amino acid background distribution, while delete
states (D) do not emit any amino acids.

The alignment score between two HMMs in HH-suite is
the sum over all co-emitted sequences of the log odds scores
for the probability for the two aligned HMMs to co-emit
this sequence divided by the probability of the sequence
under the background model. Since M and I states emit
amino acids and D states do not, M and I in one HMM
can only be aligned with M or I states in the other HMM.
Conversely, a D state can only be aligned with a D state
or with a Gap G (1). The co-emission score can be written
as the sum of the similarity scores of the aligned profile
columns, in other words the match-match (MM) pair states,
minus the position-specific penalties for indels: delete-open,
delete-extend, insert-open and insert-extend.

We denote the alignment pair states as MM, MI, IM, II,
DD, DG, and GD. Figure 1 shows an example of two aligned
profile HMMs. In the third column HMM q emits a residue
from its M state and HMM p emits a residue from the I
state. The pair state for this alignment column is MI. In
column six of the alignment HMM q does not emit anything
since it passes through the D state. HMM p does not emit
anything either since it has a gap in the alignment. The
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Figure 1 HMM-HMM alignment of query and target. The alignment
is represented as red path through both HMMs. The corresponding
pair state sequence is MM, MM, MI, MM, MM, DG, MM.

corresponding pair state is DG. For simplicity and better
speed, we exclude pair states II and DD, and we only allow
transitions between a pair state and itself and between pair
state MM and pair states MI, IM, DG, or GD.

To calculate the alignment score, we need five dynamic
programming matrices SXY, one for each pair state XY ∈
{MM, MI, IM, DG, GD}. They contain the score of the best
partial alignment which ends in column i of q and column
j of p in pair state XY. These five matrices are calculated
recursively.

SMM (i, j) = Saa

(
qpi , t

p
j

)
+ Sss

(
qssi , t

ss
j

)
+ (1)

max



0
SMM (i−1, j−1) + log (qi−1(M,M) tj−1(M,M))
SMI (i−1, j−1) + log (qi−1(M,M) tj−1(I,M))
SII (i−1, j−1) + log (qi−1(I,M) tj−1(M,M))
SDG (i−1, j−1) + log (qi−1(D,M) tj−1(M,M))
SGD (i−1, j−1) + log (qi−1 (M,M) tj−1(D,M))

SMI (i, j) = max

{
SMM (i−1, j) + log (qi−1(M,M) tj(D,D))
SMI (i−1, j) + log (qi−1(M,M) tj(I,I))

(2)

SDG (i, j) = max

{
SMM (i−1, j) + log (qi−1(D,M))
SDG (i−1, j) + log (qi−1(D,D))

(3)

Saa

(
qpi , t

p
j

)
= log

20∑
a=1

qpi (a) tpj (a)

fa
(4)

Vector qpi contains the 20 amino acid probabilities of q at
position i, tpj are the amino acid probabilities t at j, and
fa denotes the background frequency of amino acid a. The

t4_m

t1_
1

t4_1

HMM database

...

t4

t1
t2
t3

tn

HMMQuery

Figure 2 SIMD parallelization over target profile HMMs. Batches of
4 or 8 database profile HMMs are aligned together by the vectorized
Viterbi algorithm. Each cell (i, j) in the dynamic programming
matrix is processed in parallel for 4 or 8 target HMMs.

score Saa measures the similarity of amino acid distributions
in the two columns i and j. Sss can optionally be added to
Saa. It measures the similarity of the secondary structure
states of query and target HMM at i and j [14].

Vectorizations of Smith-Waterman sequence alignment
Much effort has gone into improving the performance of
the dynamic programming based Smith-Waterman algo-
rithm. While substantial accelerations using general pur-
pose graphics processing units (GPGPUs) and field pro-
grammable gated arrays (FPGAs) were demonstrated [27–
30], the need for a powerful GPGPU and the lack of of a
single standard (e.g. Nvidia’s proprietary CUDA versus the
OpenCL standard) have been impediments. SIMD imple-
mentations using the SSSE3 and AVX2 standards with on-
CPU SIMD vector units have demonstrated similar speed-
ups as GPGPU implementations and have become widely
used [2, 3, 31–34].

To speed up the dynamic programming (DP), the values
of several cells in the DP matrix are held in a single SIMD
register and are computed jointly in parallel. Because the
value in cell (i, j) depends on those in cells (i − 1, j − 1),
(i − 1, j), and (i, j − 1), the cells to be computed at the
same time must only depend on cells that have already been
computed, not on the cells to be computed at the same time.

Four main approaches have been developed to address this
challenge: (1) parallelizing over anti-diagonal stretches of
cells in the DP matrices ((i, j), (i+1, j−1), . . . (i+15, j−15),
assuming 16 cells fit into one SIMD register) [31], (2) paral-
lelizing over vertical or horizontal segments of the DP ma-
trices (e.g. (i, j), (i+1, j), . . . (i+15, j)) [32], (3) parallelizing
over stripes of the DP matrices ((i, j), (i+ 1×D, j), . . . (i+
15×D, j) where D := ceil(query length/16)) [33] and (4)
where 16 cells (i, j) of 16 target sequences are processed in
parallel [34].
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1: procedure Viterbi(q,t) . query and target profile HMMs
2: for i:=1 ... Lq do . Lq = # match states of query HMM
3: for j:=1 ... Lt do . Lt = # match states of target HMM
4: if cell offi,j == true then . cell forbidden?

5: SMM
i,j , SMI

i,j , SIM
i,j , SDG

i,j , SGD
i,j ← −∞ . Alignment cannot

6: continue with next j . pass through this cell
7: end if
8:

9:

MAX6( SMM
i−1,j−1 + qM2M

i−1 + tM2M
j−1 , . qM2M

i−1 = log qi−1(M,M)

SGD
i−1,j−1 + qM2M

i−1 + tD2M
j−1 ,

SIM
i−1,j−1 + qI2M

i−1 + tM2M
j−1 ,

SDG
i−1,j−1 + qD2M

i−1 + tM2M
j−1 ,

SMI
i−1,j−1 + qM2M

i−1 + tI2M
j−1,

Smin,
SMM
i,j , btMM

i,j )

10: SMM
i,j ← SMM

i,j + log
(

Saa

(
qp
i , tpj

))
11: SMM

i,j ← SMM
i,j + log

(
Sss

(
qss
i , tss

j

))
12: MAX2(SMM

i,j−1 + tM2D
j−1 , SGD

i,j−1 + tD2D
j−1, SGD

i,j , btGD
i,j )

13: . Compute SIM
i,j , SDG

i,j , SMI
i,j analogously

14: ...

15: end for
16: end for
17: end procedure

18: procedure MAX2(sMM, sXY, score, bt)
19: if sMM > sXY then
20: score← sMM; bt← MM
21: . The states STOP, MM, GD,... are 1-byte numbers
22: else
23: score← sXY; bt← SAME
24: end if
25: end procedure

26: procedure MAX6(sSTOP, sMM, sGD, sIM, sDG, sMI, score, bt)
27: if (sSTOP > sMM) then . score will be max. score on return
28: score ← sSTOP; bt ← STOP . bt: for backtracing
29: else
30: score ← sMM; bt ← MM
31: end if
32: if (sGD > score) then
33: score ← sGD; bt ← GD
34: end if
35: if (sIM > score) then
36: score ← sIM; bt ← IM
37: end if
38: if (sDG > score) then
39: score ← sDG; bt ← DG
40: end if
41: if (sMI > score) then
42: score ← sMI; bt ← MI
43: end if
44: end procedure

Algorithm 2: Viterbi algorithm for HMM-HMM alignment

1: procedure Viterbi(q,t) . t contains 4 or 8 target HMMs,
2: for i:=1 ... Lq do . q contains 4 or 8 copies of query HMM
3: for j:=1 ... Lt do . ... in SIMD variables
4: . These SIMD instructions process 4 or 8 values in parallel:
5: Sm2m,m2m ← SMM

i−1,j−1 + qM2M
i−1 + tM2M

j−1

6: Sm2m,d2m ← SGD
i−1,j−1 + qM2M

i−1 + tD2M
j−1

7: Si2m,m2m ← SIM
i−1,j−1 + qI2M

i−1 + tM2M
j−1

8: Sd2m,m2m ← SDG
i−1,j−1 + qD2M

i−1 + tM2M
j−1

9: Sm2m,i2m ← SMI
i−1,j−1 + qM2M

i−1 + tI2M
j−1

10: bti,j ← 0

11: VMAX6
(

Sm2m,m2m, Sm2m,d2m, 2,SMM
i,j , bti,j

)
12: VMAX6

(
Si2m,m2m, SMM

i,j , 3,SMM
i,j , bti,j

)
13: VMAX6

(
Sd2m,m2m, SMM

i,j , 4,SMM
i,j , bti,j

)
14: VMAX6

(
Sm2m,i2m, SMM

i,j , 5,SMM
i,j , bti,j

)
15: SMM

i,j ← ScoreMM
i,j + log

(
Saa

(
qp
i , tpj

))
16: SMM

i,j ← ScoreMM
i,j + log

(
Sss

(
qss
i , tss

j

))
17: . Compute four state transitions GD, IM, DG and MI
18: Sm2m,m2d ← SMM

i,j−1 + tM2D
j−1

19: Sg2d,d2d ← SGD
i,j−1 + tD2D

j−1

20: VMAX2
(

Sm2m,m2d, Sg2d,d2d, 8,SGD
i,j , bti,j

)
21: Compute SIM

i,j , SDG
i,j , SMI

i,j analogously

22: . Branch-less cell-off logic
23: cell off← simdi32 set(ShiftRight(bti,j , 1))
24: cell off← simdi32 and(cell off, co mask)
25: cell off← simdi32 gt(co mask, cell off)
26: cell off← simdi32 andnot(cell off,−∞)

27: Add (simdf32 add) cell off to SMM
i,j , SMI

i,j , SIM
i,j , SDG

i,j and SGD
i,j

28: end for
29: end for
30: end procedure

31: procedure VMAX6(vec1, vec2,mask vec, res score vec, res bt vec)
32: res gt vec← simdf32 gt (vec1, vec2)
33: index vec← simdi and (res gt vec, mask vec)
34: res bt vec← simdui8 max (res vec, index vec)
35: res score vec← simdf32 max (vec1, vec2)
36: end procedure
37: procedure VMAX2(vec1, vec2,mask vec, res score vec, res bt vec)
38: res gt vec← simdf32 gt (vec1, vec2)
39: index vec← simdi and (res gt vec, mask vec)
40: res bt vec← simdi xor (res vec, index vec)
41: res score vec← simdf32 max (vec1, vec2)
42: end procedure

Algorithm 3: Branchless, vectorized Viterbi algorithm for
HMM-HMM alignment
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The last option is the fastest method for sequence-
sequence alignments, because it avoids data dependencies.
Here we present an implementation of this option that can
align one query profile HMM to 4 (SSSE3) or 8 (AVX2)
target profile HMMs in parallel.

Vectorized Viterbi algorithm for aligning profile HMMs
Algorithm 2 shows the scalar version of the Viterbi algo-
rithm for pairwise profile HMM alignment based on the it-
erative update equations (1)–(3). Algorithm 3 presents our
vectorized and branch-less version (Fig. 2). It aligns batches
of 4 or 8 target HMMs together, depending on how many
scores of type float fit into one SIMD register (4 for SSSE3,
8 for AVX).

The vectorized algorithm needs to access the state transi-
tion and amino acid emission probabilities for these 4 or 8
targets at the same time. The memory is laid out (Figure 3),
such that the emission and transition probabilities of 4 or 8
targets are stored consecutively in memory. In this way, one
set of 4 or 8 transition probabilities (for example MM) of
the 4 or 8 target HMMs being aligned can be loaded jointly
into one SIMD register.

The scalar versions of the functions MAX6, MAX2 contain
branches. Branched code can considerably slow down code
execution due to the high cost of branch mispredictions,
when the partially executed instruction pipeline has to be
discarded to resume execution of the correct branch.

The functions MAX6 and MAX2 find the maximum score out
of two or six input scores and also return the pair transition
state that contributed the highest score. This state is stored
in the backtrace matrix, which is needed to reconstruct the
best-scoring alignment once all five DP matrices have been
computed.

To remove the five if-statement branches in MAX6, we im-
plemented a macro VMAX6 that implements one if-statement
at a time. VMAX6 needs to be called 5 times, instead of just
once as MAX6, and each call compares the current best score
with the next of the 6 scores and updates the state of the
best score so far by maximization. At each VMAX6 call, the
current best state is overwritten by the new state if it has
a better score.

We call the function VMAX2 four times to update the four
states GD, IM, DG and MI. The first line in VMAX2 com-
pares the 4 or 8 values in SIMD register sMM with the
corresponding values in register sXY and sets all bits of the
four values in SIMD register res gt vec to 1 if the value
in sMM is greater than the one in sXY and to 0 otherwise.
The second line computes a bit-wise AND between the four
values in res gt vec (either 0x00000000 or 0xFFFFFFFF)
and the value for state MM. For those of the 4 or 8 sMM val-
ues that were greater than the corresponding sXY value, we
obtain state MM in index vec, for the others we get zero,
which represents staying in the same state. The backtrace
vector can then be combined using an XOR instruction.

In order to calculate suboptimal, alternative alignments,
we forbid the suboptimal alignment to pass through any
cell (i, j) that is nearer than 40 cells from any of the cells
of the better-scoring alignments. These forbidden cells are
stored in a matrix cell off[i][j] in the scalar version of

the Viterbi algorithm. The first if-statement in Algorithm
2 ensures that these cells obtain a score of −∞.

To reduce memory requirements in the vectorized version,
the cell-off flag is stored in the most significant bit of the
backtracing matrix (Fig. 5) (see section Memory reduction
for backtracing and cell-off matrices). In the SIMD Viterbi
algorithm, we shift the backtracing matrix cell-off bit to the
right by one and load four 32bit (SSSE3) or eight 64bit

(AVX2) values into a SIMD register (line 23). We extract
only the cell-off bits (line 24) by computing an AND be-
tween the co mask and the cell off register. We set ele-
ments in the register with cell off bit to 0 and without
to 0xFFFFFFFF by comparing if cell mask is greater than
cell off (line 25). On line 26, we set the 4 or 8 values in the
SIMD register cell off to −∞ if their cell-off bit was set
and otherwise to 0. After this we add the generated vector
to all five scores (MM, MI, IM, DG and GD).

A small improvement in runtime was achieved by com-
piling both versions of the Viterbi method, one with and
one without cell-off logic. For the first, optimal alignment,
we call the version compiled without the cell off logic and
for the alternative alignments the version with cell-off logic
enabled. In C/C++, this can be done with preprocessor
macros.

Shorter profile HMMs are padded with probabilities of
zero up to the length of the longest profile HMM in the
batch (Fig. 2). Therefore, the database needs to be sorted
by decreasing profile HMM length. Sorting also improves
IO performance due to linear access to the target HMMs
for the Viterbi alignment, since the list of target HMMs
that passed the prefilter is automatically sorted by length.

Vectorized column similarity score
The sum in the profile column similarity score Saa in the
first line in Algorithm 4 is is computed as the scalar product
between the precomputed 20-dimensional vector qpi (a)/fa
and tpj (a). The SIMD code takes 39 instructions to compute
the scores for 4 or 8 target columns, whereas the scalar
version needed 39 instructions for a single target column.

From quadratic to linear memory for scoring matrices
Most of the memory in Algorithm 2 is needed for the five
score matrices for pair states MM, MI, IM, GD and DG. For
a protein of 15 000 residues, the five matrices need 15 000×
15 000×4 byte×5 matrices = 4.5 GB of memory per thread.

In a naive implementation, the vectorized algorithm would
need a factor of 4 or 8 more memory than that, since it
would need to store the scores of 4 or 8 target profile HMMs
in the score matrices. This would require 36 GB of memory
per thread, or 576 GB for commonly used 16 core servers.

However, we do not require the entire scoring matrices to
reside in memory. We only need the backtracing matrices,
the position (ibest, jbest) and score of the highest scoring cell
seen so far to to reconstruct the alignments.

We implemented two approaches. The first uses two vec-
tors per pair state (Fig. 4 top). One holds the scores of the
current row i, where (i, j) are the positions of the cell whose
scores are to be computed, and the other vector holds the
scores of the previous row i − 1. After all the scores of a
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1: procedure SaaScalar(q, t) . Two profiles q and t
2: res ← 0
3: for i:=0 ... 19 do
4: res← res + (qi ∗ ti)
5: end for
6: return res
7: end procedure

8: procedure Saa(q, t) . Two SIMD-batches of profiles, q and t
9: vector res0← t[0] ∗ q[0]

10: vector res1← t[1] ∗ q[1]
11: vector res2← t[2] ∗ q[2]
12: vector res3← t[3] ∗ q[3]
13: for i:=4 ... 19 by 4 do
14: res0← t[i] ∗ q[i]) + res0
15: res1← t[i + 1] ∗ q[i + 1]) + res1
16: res2← t[i + 2] ∗ q[i + 2]) + res2
17: res3← t[i + 3] ∗ q[i + 3]) + res3
18: end for
19: res0 ← res0 + res1
20: res2 ← res2 + res3
21: return res0 + res2
22: end procedure

Algorithm 4: The similarity scores (eq. (4)) for 4 or 8 tar-
get HMMs can be computed in parallel by 39 SIMD vector
instructions in just 39 CPU clock cycles.

row i have been calculated, the pointers to the vectors are
swapped and the former row becomes the current one.

The second approach uses only a single vector (Fig. 4
bottom). Its elements from 1 to j − 1 hold the scores of
the current row that have already been computed. Its ele-
ments from j to the last position Lt hold the scores from
the previous row i− 1.

The second variant turned out to be faster, even though it
executes more instructions in each iteration. However, pro-
filing showed that this is more than compensated by fewer
cache misses, probably owed to the factor two lower memory
required.

Memory reduction for backtracing and cell-off matrices
To compute an alignment by backtracing from the cell
(ibest, jbest) with maximum score, we need to store for each
cell (i, j) and every pair state (MM,GD,MI,DG, IM)
the previous cell and pair state the alignment would pass
through, that is, which cell contributed the maximum score
in (i, j). For that purpose it obviously suffices to only store
the previous pair state.

HHblits 2.0.16 uses five different matrices of type char,
one for each pair state, and one char matrix to hold
the cell-off values (in total 6 bytes). The longest known
protein Titin has about 33 000 amino acids. To keep a
33 000 × 33 000 × 6 byte matrix in memory, we would need
6 GB of memory. Since only a fraction of ∼10−5 sequences
are sequences longer than 15 000 residues in the UniProt
database, we restrict the default maximum sequence length
to 15 000. This limit can be increased with the option
-maxres.

But we would still need about 1.35 GB to hold the back-
trace and cell-off matrices. A naive SSSE3 implementation
would therefore need 5.4 GB, and 10.8 GB with AVX2. Be-
cause every thread needs its own backtracing and cell-off
matrices, this can be a severe restriction.
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Figure 3 The layout of the log transition probabilities (top) and
emission probabilities (bottom) in memory for single-instruction
single data (SISD) and SIMD algorithms. For the SIMD algorithm, 4
(using SSSE3) or 8 (using AVX) target profile HMMs (t1 – t4) are
stored together in interleaved fashion: the 4 or 8 transition or
emission values at position i in these HMMs are stored consecutively
(indicated by the same color). In this way, a single cache line read of
64 bytes can fill four SSSE3 or two AVX2 SIMD registers with 4 or 8
values each.

We reduce the memory requirements by storing all back-
tracing information and the cell-off flag in a single byte per
cell (i, j). The preceding state for the IM, MI, GD, DG
states can be held as single bit, with a 1 signifying that the
preceding pair state was the same as the current one and
0 signifying it was MM. The preceding state for MM can
be any of STOP, MM, IM, MI, GD, and DG. STOP repre-
sents the start of the alignment, which corresponds to the 0
in eq. (1) contributing the largest of the 6 scores. We need
three bits to store these six possible predecessor pair states.
The backtracing information can, thus, be held in ‘4 + 3‘
bits, which leaves one bit for the cell-off flag (Fig. 5). Due
to the reduction to one byte per cell we need only 0.9 GB
(with SSSE3) or 1.8 GB (with AVX2) per thread to hold
the backtracing and cell-off information.

Viterbi early termination criterion
For some query HMMs, the prefilter lets a lot of non-
homologous target HMMs pass, for example when they
contain one of the very frequent coiled coil regions. To
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Figure 4 Two approaches to reduce the memory requirement for the
DP score matrices from O(LqLt) to O(Lt), where Lq and Lt are
lengths of the query and target profile, respectively. (Top) One
vector holds the scores of the previous row, SXY(i− 1, ·), for pair
state XY ∈{MM, MI, IM, GD and DG}, and the other holds the
scores of the current row, SXY(i− 1, ·) for pair state XY ∈{MM, MI,
IM, GD and DG}. Vector pointers are swapped after each row has
been processed. (Bottom) A single vector per pair state XY holds
the scores of the current row up to j − 1 and of the previous row for
j to Lt. The second approach is somewhat faster and was chosen for
HH-suite3.

avoid having to align thousands of non-homologous target
HMMs with the costly Viterbi algorithm, we introduced an
early termination criterion in HHblits 2.0.16. We averaged
1/(1 + E-value) over the last 200 processed Viterbi align-
ments and skipped all further database HMMs when this
average dropped below 0.01, indicating that the last 200
target HMMs produced very few Viterbi E-values below 1.

This criterion requires the targets to be processed by de-
creasing prefilter score, while our vectorized version of the
Viterbi algorithm requires the database profile HMMs to
be ordered by decreasing length. We solved this dilemma
by sorting the list of target HMMs by decreasing prefilter
score, splitting it into equal chunks (default size 2000) with
decreasing scores, and sorting target HMMs within each
chunk by their lengths. After each chunk has been pro-
cessed by the Viterbi algorithm, we compute the average
of 1/(1 + E-value) for the chunk and terminate early when
this number drops below 0.01.

MI

IM

MM

DG

GD

cell-
off MI DG IM GD MM MM MM

7 6 5 4 3 2 1 0

Figure 5 Predecessor pair states for backtracing the Viterbi
alignments are stored in a single byte of the backtrace matrix in
HH-suite3 to reduce memory requirements. The bits 0 to 2 (blue)
are used to store the predecessor state to the MM state, bits 3 to 6
store the predecessor of GD, IM, DG and MI pair states. The last bit
denotes cells that are not allowed to be part of the suboptimal
alignment because they are near to a cell that was part of a
better-scoring alignment.

SIMD-based MSA redundancy filter
To build a profile HMM from an MSA, HH-suite reduces
the redundancy by filtering out sequences that have more
than a fraction seqid max of identical residues with another
sequence in the MSA. The scalar version of the function
(Algorithm 5) returns 1 if two sequences x and y have a
sequence identity above seqid min and 0 otherwise. The
SIMD version (Algorithm 6) has no branches and processes
the amino acids in chunks of 16 (SSSE3) or 32 (AVX2). It
is about ∼11 times faster than the scalar version.

1: procedure Filter(x, y, seqid min) . Two MSA sequences
2: cov ← L; diff min ← cov ∗ (1− seqid min)
3: for i := 1 to L do
4: if xi is gap OR yi is gap then
5: cove← cov− 1; diff min ← cov ∗ (1− seqid min)
6: else if xi not equal yi then
7: diff← diff + 1
8: if diff >= diff min then return 1 . x, y dissimilar enough
9: end if

10: end if
11: end for
12: return 0 . x,y too similar
13: end procedure

Algorithm 5: Check if x,y have seq. identity > seqid min

Results
Speed benchmarks
Speed of HHsearch 2.0.16 versus HHsearch 3
Typically more than 90% of the run time of HHsearch is
spent in the Viterbi algorithm, while only a fraction of the
time is spent in the the maximum accuracy alignment. Only
a small number of alignments reach an E-value low enough
in the Viterbi algorithm to be processed further. HHsearch
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Figure 6 Speed comparisons. A runtime versus query profile length for 1644 searches with profile HMMs randomly sampled from UniProt.
These queries were searched against the PDB70 database containing 35 000 profile HMMs of average length 234. The average speedup over
HHsearch 2.0.16 is 3.2-fold for SSSE3- vectorized HHsearch and 4.2-fold for AVX2-vectorized HHsearch. B Box plot for the distribution of total
runtimes (in logarithmic scale) for one, two, or three search iterations using the 1644 profile HMMs as queries. PSI-BLAST and HHMER3
searches were done against the UniProt database (version 2015 06) containing 49 293 307 sequences. HHblits searches against the uniprot20
database, a clustered version of UniProt containing profile HMMs for each of its 7 313 957 sequence clusters. Colored numbers: speed-up factors
relative to HMMER3.

1: procedure FilterSIMD(x, y, seqid min) . Two MSA sequences
2: cov ← L; diff min ← cov ∗ (1− seqid min)
3: aamax = mm set1 epi8(19) . vector with 32 times 19
4: for i := 1 to L & diff < diff min do
5: gaps x ← mm cmpgt epi8(xi aamax ) . pos’s with gaps in x
6: gaps y ← mm cmpgt epi8(yi, aamax ) . pos’s with gaps in y
7: . Compute mask (32 bit int) of positions with gap in x or y
8: no aa← mm movemask epi8( mm or si128(gaps x, gaps y))
9: . Update number of aligned residues

10: cov ← cov - CountBits(no aa)
11: diff min ← cov ∗ (1− seqid min)
12: . Compute mask of positions with identical amino acids
13: ident ← mm movemask epi8 ( mm cmpeq epi8 (xi, yi))
14: diff ← diff + 32 - CountBits(ident)
15: end for
16: return (diff >= diff min)
17: end procedure

Algorithm 6: Vectorized version of Algorithm 5

therefore profits considerably from the SIMD vectorization
of the Viterbi algorithm.

To compare the speed of the HHsearch versions, we
randomly selected 1644 sequences from Uniprot (release
2015 06), built profile HMMs, and measured the total run
time for searching with the 1644 query HMMs through the
PDB70 database (version 05Sep15). The PDB70 contains
profile HMMs for a representative set of sequences from
the PDB [22], filtered with a maximum pairwise sequence
identity of 70%. It contained 35 000 profile HMMs with an
average length of 234 match states.

HHsearch with SSSE3 is 3.2 times faster and HHsearch
with AVX2 vectorization is 4.2 times faster than HHsearch
2.0.16, averaged over all 1644 searches (Fig. 7A). For pro-
teins longer than 1000, the speed-up factors are 5.0 and
7.4, respectively. Due to a runtime overhead of ∼20 s that is
independent of the query HMM length (e.g. for reading in
the profile HMMs), the speed-up shrinks for shorter queries.

Most of this speed-up is owed to the vectorization of the
Viterbi algorithm: The SSSE3-vectorized Viterbi code ran
4.2 times faster than the scalar version.

In HHblits, only part of the runtime is spent in the
Viterbi algorithm, while the larger fraction is used by the
prefilter, which was already SSSE3-vectorized in HHblits
2.0.16. Hence we expected only a modest speed-up between
HHblits 2.0.16 and SSSE3-vectorized HHblits 3. Indeed, we
observed an average speed-up of 1.2, 1.3, and 1.4 for 1, 2 and
3 search iterations, respectively (Fig. 7A), whereas AVX2-
vectorized version is 1.9, 2.1, and 2.3 times faster than HH-
blits 2.0.16, respectively. AVX2-vectorized HHblits is 14, 20,
and 29 times faster than HMMER3 [3] (version 3.1b2) and
9, 10, and 11 times faster than PSI-BLAST [9] (blastpgp
2.2.31) for 1, 2, and 3 search iterations.

All runtime measurements were performed using the Unix
tool time on a single core of a computer with two Intel Xeon
E5-2640 CPUs with 128 GB RAM.

Sensitivity benchmark
To measure the sensitivity of search tools to detect remotely
homologous protein sequences, we used a benchmarking
procedure very similar to the one described in [4]. To anno-
tate the uniprot20 (version 2015 06) with SCOP domains,
we first generated a SCOP20 sequence set by redundancy-
filtering the sequences in SCOP 1.75 [24] to 20% maxi-
mum pairwise sequence identity using pdbfilter.pl with
minimum coverage of 90% from HH-suite, resulting in
6616 SCOP domain sequences. We annotated a subset of
uniprot20 sequences by the presence of SCOP domains
by searching with each sequence in the SCOP20 set with
blastpgp through the consensus sequences of the uniprot20
database and annotated the best matching sequence that
covered ≥ 90% of the SCOP sequence and that had a min-
imum sequence identity of at least 30%.
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Figure 7 Sensitivity of sequence search tools. A We searched with 6616 SCOP20 domain sequences through the UniProt plus SCOP20
database using one to three search iterations. The sensitivity to detect homologous sequences is measured by cumulative distribution of the Area
Under the Curve 1 (AUC1), the fraction of true positives ranked better than the first false positive match. True positive matches are defined as
being from the same SCOP superfamily [24], false positives have different SCOP folds, excepting known cases of inter-fold homologies. B
Sensitivity of HHsearch with and without scoring secondary structure similarity, measured by the cumulative distribution of AUC1 for a
comparison of 6616 profile HMMs built from SCOP20 domain sequences. Query HMMs include predicted secondary structure, target HMMs
include actual secondary structure annotated by DSSP. True and false positives are defined as in A.

We searched with PSI-BLAST (2.2.31) and HMMER3
(v3.1b2) with three iterations, using the 6616 sequences in
the SCOP20 set as queries, against a database made up of
the UniProt plus the SCOP20 sequence set. We searched
with HHblits versions 2.0.16 and 3 with three iterations
through a database consisting of the uniprot20 HMMs plus
the 6616 UniProt profile HMMs annotated by SCOP do-
mains.

We defined a sequence match as true positive if query and
matched sequence were from the same SCOP superfamily
and as false positive if they were from different SCOP folds
and ignore all others. We excluded the self-matches as well
as matches between Rossman-like folds (c.2-c.5, c.27 and
28, c.30 and 31) and between the four- to eight-bladed β-
propellers (b.66-b.70), because they are probably true ho-
mologs [1]. HMMER3 reported more than one false positive
hit just in one out of three queries, despite setting the max-
imum E-value to 100 000, and we therefore measured the
sensitivity up to the first false positive (AUC1) instead of
the AUC5 we had used in earlier publications.

We ran HHblits using hhblits -min prefilter hits

100 -n 1 -cpu $NCORES -ssm 0 -v 0 -wg and wrote check-
point files after each iteration to restart the next iteration.
We ran HMMER3 (v3.1b2) using hmmsearch --chkhmm

-E 100000 and PSI-BLAST (2.2.31) using -evalue 10000

-num descriptions 250000.
The cumulative distribution over the 6616 queries of the

sensitivity at the first false positive (AUC1) in Fig. 7A
shows that HHblits 3 is as sensitive as HHblits 2.0.16 for
1, 2, and 3 search iterations. Consistent with earlier results
[4, 25], HHblits is considerably more sensitive than HM-
MER3 and PSI-BLAST.

We also compared the sensitivity of HHsearch 3 with and
without scoring secondary structure similarity, because we

slightly changed the weighting of the secondary structure
score (Methods). We generated a profile HMM for each
SCOP20 sequence using three search iterations with HH-
blits searches against the uniprot20 database of HMMs. We
created the query set of profile HMMs by adding PSIPRED-
based secondary structure predictions using the HH-suite
script addss.pl, and we added structurally defined sec-
ondary structure states from DSSP [35] using addss.pl to
the target profile HMMs. We then searched with all 6616
query HMMs through the database of 6616 target HMMs.
True positive and false positive matches were defined as be-
fore.

Figure 7B shows that HHsearch 2.0.16 and 3 have the
same sensitivity when secondary structure scoring is turned
off. When turned on, HHsearch 3 has a slightly higher sen-
sitivity due to the better weighting.

Conclusions
A sizeable fraction of proteins in genomics and metage-
nomics projects remain unannotated due to the lack of
an identifiable, annotated homologous protein [36]. These
projects could improve their annotation depth by adding
HHblits searches through the PDB, Pfam and other align-
ment databases to their annotation pipeline [7] at only a
marginal cost in CPU time, since HHblits 3 runs 20 times
faster than HMMER, the standard tool for Pfam and IN-
TERPRO annotations. The improvements in parallelization
across CPU cores and compute servers further facilitates the
use of HH-suite on larger projects.

Availability and requirements
• Project name: HH-suite
• Project page:https://github.com/soedinglab/hh-suite
• Operating systems: Linux, Max OS X
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• Programming languages: C++ with SSSE3/AVX2 in-
trinsics, Python utilities

• Other requirements: support for SSSE3 or higher
• License: GNU GPL version 3

Abbreviations
MSA: multiple sequence alignment; HMM: hidden Markov model;
SIMD: single-instruction multiple-data; SSSE3: supplemental stream-
ing SIMD extensions 3; AVX2: advanced vector extension (SIMD in-
struction set standards);
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