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Abstract

Motivation:
Enhancers are distal cis-acting regulating regions that play a vital role in gene transcription. However,
due to the inherent nature of enhancers being linearly distant from the affected gene in an irregular
manner while being spatially close at the same time, systematically predicting enhancers has been
a challenging task. Although several computational predictor models through both epigenetic marker
analysis and sequence-based analysis have been proposed, they lack generalization capacity across
different enhancer datasets and have feature dependency. On the other hand, the recent proliferation
of deep learning methods has opened previously unknown avenues of approach for sequence analysis
tasks which eliminates feature dependency and achieves greater generalization. Therefore, harnessing
the power of deep learning based sequence analysis techniques to develop a more generalized model
than the ones developed before to predict enhancer region in a DNA sequence is a topic of interest in
bioinformatics.
Results:
In this study, we develop the predictor model CHilEnPred that has been trained with the visual
representation of the DNA sequences with Hilbert Curve. We report our computational prediction
result on FANTOM5 dataset where CHilEnPred achieves an accuracy of 94.97% and AUC of 0.987 on
test data.
Availability:
Our CHilEnPred model can be freely accessed at https://github.com/iatahmid/chilenpred
Contact: msrahman@cse.buet.ac.bd

1 Introduction
An Enhancer is a short region of DNA that can be bound by proteins to
increase the likelihood that transcription of a particular gene will occur
(12)(13). These proteins are usually referred to as transcription factors.
In higher eukaryotes, enhancers activate gene transcription by recruiting
transcription factors and their complexes and in doing so, they contribute
to vital biological processes including development and differentiation
(14)(15), maintenance of cell identity (16), response to stimuli (18)(17),
and interactions with target genes through promoter-enhancer looping

(19)(20)(21). Also, genetic disruption in enhancers has been found to be
closely associated with cancers (22).

Although enhancers play a vital role in various genetic phenomena, a
promising way of identifying novel enhancers is yet to be found. There
are several reasons for this (13). First, the number of enhancer sequences
are very small as compared to the size of the human genome. Second,
enhancers are distal cis-acting DNA regions, meaning, they can be located
far away from the gene, upstream or downstream from the gene they
regulate. They do not necessarily act on the respective closest promoter
but can bypass neighboring genes to regulate genes located more distantly
along a chromosome. Third, in contrast to the well-defined sequence code
of protein-coding genes, there is no general sequence code of enhancers.

© The Authors 2019. 1

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted February 27, 2019. ; https://doi.org/10.1101/552141doi: bioRxiv preprint 

https://doi.org/10.1101/552141


“output” — 2019/2/27 — page 2 — #2

2 Anjum & Tahmid

Thus, identifying enhancer computationally has become a challenging
task.

The versatility and the complexity of the datasets that are available
through recent experimental procedures do not make this task any easier.
For instance, Chromatin Immuno-Precipitation followed by massive
Sequencing (ChIP-Seq) sheds light on chromatin accessibility in different
organisms, tissues and under different conditions. On the other hand,
Cap Analysis of Gene Expression (CAGE) estimates the quantity of 5′

ends of messenger RNA in a cell. Projects, such as the ENCODE (32)
and the NIH Epigenome Roadmap (33), released libraries of histone
modification marks in the human genome, whereas the FANTOM5 project
(34) released CAGE-based transcription start sites (TSSs) in different
cell types and tissues and enabled for the comprehensive identification of
functional regulatory elements. Thus, developing a computational model
to derive relevant information from these datasets has become essential.
The problem of identifying enhancers can be defined as follows: given a
DNA sequence, predict if it can function as an enhancer (23). Numerous
computational methods have been proposed for improving the enhancer
prediction.

One of the features that pioneered the computational approaches for
enhancer prediction is based on evolutionary conservation (2). Visel
et. al (3) argue that human regulatory elements show low conservation
among different species. As a result, they can not be characterized with
confidence based on enhancer regions in other mammals. The second
category of computational methods relies on more sophisticated algorithms
that associate enhancers and promoters with certain types of histone
modification marks and transcription regulators (18). However, since the
types of histone modifications and regulators that identify enhancers differ
significantly, they lack the generalization of the prediction model. The
third category of methods approach the enhancer detection problem as a
binary classification task by discriminating enhancer regions from non-
enhancer regions using supervised machine learning techniques, such
as support vector machines (SVMs) (24)(23), artificial neural networks
(ANNs) (25), decision trees (DTs) (26), random forests (RFs) (27), and,
more recently, deep learning (29). On the other hand, the unsupervised
learning approaches like ChromHMM(28) offer genomic segmentation
and characterization based on a Hidden Markov Model (HMM) whereas
Segway(30) presents a dynamic Bayesian network. Solely depending
on the sequence-based analysis, BiRen (35) offers a hybrid network of
Convolutional Neural Network (CNN) and Bidirectional Recurrent Neural
Network. DEEP (10) presents an ensemble technique to train classifiers
with unbalanced classes.

In our background studies on enhancer prediction, we have not
found any methodology that explores the idea of representing the DNA
sequence in a different way. However, some studies have been found
to visually represent a DNA sequence with a discussion on their impact
on classification task. Anders (11) first proposed the idea of visualizing
the genomics data with Hilbert Curve, one form of a space-filling curve.
Later, Yin et. al. (1) perfected on that idea and showed that such visual
representation helps to develop a CNN that performs significantly well on
classification tasks in bioinformatics.

In this article, we have developed a CNN model named CHilEnPred
that integrates the representational power of the Hilbert Curve with the
spacial hierarchical information extraction power of CNN. CHilEnPred
has been trained with FANTOM5 Human Enhancer dataset which applies
a distinct bidirectional CAGE pattern to identify enhancers in human
tissue and cells. We demonstrate that our model illustrates superior
prediction accuracy relative to the state-of-the-art methods based on
sequence characteristics. Since our model does not require any feature
engineering and depends solely on the image representation of the DNA
sequence, it has the power to generalize to other species as well. Our
CHilEnPred model has opened a new avenue of exploration in the study of

predicting distal cis-acting DNA regions like enhancers. We believe it will
provide the researchers with a broader understanding of the characteristics
of enhancer sequences as well.

2 Methods

2.1 Hilbert Curve

Our initial approach was to convert the DNA sequence in an image
which had the height of the length of the sequence and the width
would be 4 where each column would correspond to a specific base
{’A’,’T’,’C’,’G’}. We tried various combinations of CNN and RNN to
predict enhancers. However, none of them showed a promising result
or significant improvement over existing results. Feature engineering
of the enhancer sequences was also ineffective for this purpose. After
these efforts, we started to rethink our approach from the beginning
again. The unique relational formation of the enhancers and the regulated
sequences encouraged us to do so. In Eukaryotic cells, the structure of the
chromatin complex of DNA is folded in a way that functionally mimics
the super-coiled state characteristic of prokaryotic DNA, so although the
enhancer region in the DNA sequence may be far from the gene in a
linear way, it is spatially close to the promoter and gene (31). We need a
visual representation that does not rely on the linear representation of the
sequence, and perfectly captures such distal characteristic of the enhancers.
We hypothesize that it can be achieved by a space-filling curve which folds
a 1-D linear sequence in a 2-D image. So, as seen from Figure 1, although
the enhancers are found far away from the regulated gene, in a folded 2-D
space-filling curve, they are closer.

(a) (b)

Fig. 1: (a) Enhancers are linearly far away from the gene, but closer in a
folded structure. (b) Two nodes having a linear distance of 15 units comes
next to each other in a Hilbert Curve of order 2

2.2 Image Representation of the DNA sequence

Each of the enhancer sequence samples we have used in our experiment
has a sequence length of 401. We transformed these sequences into images
by following three distinct steps namely, k-mer construction, one-hot
vectorization, and image construction based on the Hilbert Curve which
are described in details below.

DNA sequences are composed of nucleotides; however, these
nucleotides do not have significant meaning when treated individually.
Therefore, it is common in molecular biology problems to treat DNA
sequences as a sequential collection of k-mers. Given that the alphabet of a
DNA sequence consists of 4 letters i.e. {A,T,C,G} , the number of possible
k-mers for any given k is 4k . This representation of a DNA sequences as
a k-mer list is more suitable for statistical analysis as it is a common
technique in text mining and other natural language processing tasks. For
example a DNA sequence of "ACCTATAT" can be represented as a list
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Fig. 2: Image Representation Of DNA Sequence

of 3-mers: {"ACC","CCT","CTA","TAT","ATA","TAT"}. In the first step,
we took each of our DNA sequence of length 401 and transformed them
into a list of k-mers. We did some primary experiments for determining the
appropriate value of k. During these experiments, we noticed that higher
values of k were more prone to overfitting in our specific case as our
dataset was significantly small. Therefore, we decided to use k = 1 for
our specific problem.

After completion of the first step, we had a discretized representation
of the sequence. In the second step, we transformed that discretized
representation to the mathematical form by using vectorization. In
natural language processing, it is common to transform words into
the mathematical form by using either word embedding, such as,
word2vec(36), GloVe(37) or by using one-hot vectors. However, word
embedding is not appropriate in our case. Word embedding tend to match
similar meaning words closer in vector space. Since DNA sequence k-
mers are not expected to have any meaningful co-relation with each other,
we decided not to use word embedding to mathematically represent the
k-mer list. We used one hot vector instead. One hot vector is a vector in
which each position corresponds to a single k-mer. Therefore, the length
of the vector is 4k. For example, if k = 1 then the one hot vector will have
length 4. Here, ’A’ will correspond to [1, 0, 0, 0], ’G’ will correspond to
[0, 1, 0, 0], ’C’ will correspond to [0, 0, 1, 0] and ’T’ will correspond to
[0, 0, 0, 1].

After completion of the second step, we had a list of one hot vectors
which represented the DNA sequence. In our third step, we transformed
these one hot vectors into an image representation by using Hilbert Curve
which is explained in details here. To transform the list of one-hot vectors
to an image we have to find a mapping to each of the one-hot vectors to a
specific pixel of the image. Since we are mapping one-dimensional vectors
to a two-dimensional image, the representation becomes a 3-dimensional
tensor. However, unlike RGB images that have 3 channels, this image
representation has 4 channels (as the length of the one hot vectors is41 = 4

for k = 1).

There are various space-filling curves available which maps 1-
dimensional sequences to a two-dimensional plane. However, given
the task at hand one specific curve stands out which is known as the
Hilbert curve. Yin et al has shown in (1) that Hilbert Curve shows better
performance over other space-filling curves when it comes to the task
of creating image representation from one hot encoded DNA sequence.
The construction of the Hilbert curve follows a recursive pattern. In the
first iteration, a Hilbert curve is drawn and is divided into 4 parts. Each
part is assigned to one of the four quadrants of a square. Each quadrant
subsequently gets divided into four part and each part of the initial Hilbert
curve gets subdivided accordingly. Therefore, each subdivision of the
square holds 1

16

th of the curve. The process can be farther continued.
For example, after the next iteration, each subdivision of the square will
hold 1

64

th of the curve. Since on each iteration, the number of parts in the
square quadruples, it can be inferred that the square holds 2n ∗ 2n parts.
Each part holds a corresponding part of the Hilbert curve. Since DNA
sequences in our dataset are of length 401, we chose the value of n = 5,
since choosing n = 4 yields an image of 256 pixels which is not suitable
for holding information of the whole sequence. However, in our case, a
large portion of the image remain unused as the image representation has
1024 pixels but we use only 401 of them. We did not crop the image to
discard the irrelevant parts since the neural network eventually learns to
discard those irrelevant pixels anyway.

(a) Order=1 (b) Order=2 (c) Order=3 (d) Order=4

(e) Order=5

Fig. 3: Hilbert Curves for Different Orders

2.3 Network Architecture

For image recognition and representation learning tasks, Convolutional
Neural Networks are widely used because of their multi-layer hierarchical
feature extraction capability. The network is composed of multiple layers
of parameterized kernel convolutions on the image which work to extract
increasingly abstract features from the image as the network gets deeper.
Upon optimizing these parameters, the CNN can be used as a universal
feature extractor for images. Our network architecture is based on CNN
with Fully connected layers on top of it. It is described in details in the
coming sections.

We are working on images with the dimension of 32×32×4. In most
CNN based models square window sizes of 3,4,5 used. In our model, the
first convolution layer uses a square window of size 3. In the subsequent
convolution layers, we have used the same window size. We have used
rectified linear units (ReLU) as the activation function. We have also
experimented with other activation functions. However, rectified linear
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units performed the best. For pooling layers, we have tried both average-
pooling and max-pooling. However, max-pooling has shown a slight edge
over the average-pooling. Therefore, in our final model, we have used
max-pooling layers. These convolution layers were followed by fully
connected layers with 50% dropout added. For loss function, we used
binary cross-entropy.

Layer Description Output
Input Layer 32,32,4

Conv2D 3× 3 Conv 30,30,64
Maxpooling2D 2× 2 15,15,64

Conv2D 3× 3 Conv 13,13,128
Maxpooling2D 2× 2 6,6,128

Conv2D 3× 3 Conv 4,4,256
Maxpooling2D 2× 2 2,2,256

Flatten 1024
Dropout Random 50% activation of neurons 512

Dense Layer Fully connected layer 512
Dense Layer Sigmoid activated output layer 1

Table 1. Network Architecture for Enhancer Classification in FANTOM5
Dataset

2.4 Experiments

For evaluating the performance of our proposed approach we used the
FANTOM5 human enhancer dataset which is publicly available (38)(39).
The dataset contains 32693 human enhancer samples. Each of the samples
is of length 401. Each sample in this dataset is labeled as a "positive"
sample. For the negative sample, we used another dataset of random DNA
strings. Negative Dataset consisted of 36800 samples.

We randomly choose approximately 75% of the dataset for training
purposes. The other 20% are used for the validation test and 5% is used
as the test set. We choose RMSprop optimizer for training the model.
The next hyperparameter we choose is the learning rate. We initially set it
to 10−6 which results in poor performance. We updated the value to 2×
10−5 which gave the optimal training performance. We have experimented
with various batch sizes and found that batch size of 256 gives the best
performance in terms of generalization and reducing overfitting .

We experimented with the number of epochs and found that setting
epoch number of 250 is suitable for our purpose since that is when loss
becomes lowest. The performance metric of our final model was the
accuracy of the model.

Algorithm Accuracy AUC
CHilEnPred 94.97% 0.987

BiRen N/A 0.956
DEEP-VISTA 90.2% 0.894

Lee’s SVM N/A 0.662

Table 2. Performance comparison with existing methods on accuracy and AUC

3 Results
The results of our model, CHilEnPred, for enhancer classification is very
promising. Our goal was to predict enhancer from DNA sequences. We
have achieved 94.97% accuracy on the test data which was separated from

(a) Area Under the Curve(fpr=false positive rate, tpr = true positive
rate)

Fig. 4: Model performance

the training and validation data at the very beginning. AUROC of the
model is 0.987. Our model shows significant performance improvement
over other models which can be seen from table 1. Our proposed method
conclusively outperforms both Bi-Ren and DEEP-VISTA in terms of
accuracy of prediction and overall area under the curve.

Fig. 5: Sample Heatmap of an Enhancer Sample

Features Number of occurrence
AAA 5012
TTT 4981
CCC 2613
GGG 2387
TCT 2136
CTC 2068
CCT 1931
TTC 1832
CTT 1793
AGA 1767
GAG 1759

Table 3. Activated Feature Sequences of the model Found From The Heatmaps
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In order to have a deeper understanding of the network’s learned
features, we drew the heatmaps for each enhancer. These heatmaps show
a significant increase in hue in some areas other than the whole image.
We find the equivalent DNA sequences from those activated pixels. Some
samples of these sequences along with their occurrence count across the
dataset are listed in table 3. We hypothesize that these sequences hold
significant meaning in identifying enhancers. The proof for that is left for
further research.

4 Discussion
In this paper, we have proposed a Deep learning model which can predict
enhancers from only DNA sequence information. Our method of prediction
does not require any feature extraction from DNA sequences in the pre-
processing phase. In most previous works, the feature extraction part was
very context specific and therefore was harder to generalize. However,
our proposed method is a complete end to end model where the input is
an image representation of the enhancer using the Hilbert Curve and the
output is the enhancer prediction. Therefore, it has more generalization
capacity than the other shallow and deep learning models for enhancer
prediction.

The robustness of our proposed method can be attributed to the
representation of the DNA sequence. To elaborate, in the case of an
enhancer, there is sizable variance in the temporal domain which means
that the base pair distance between the regulating site (enhancer) and the
regulated region is not fixed. Therefore, when RNN or similar models tend
to capture the temporal properties of the enhancer DNA sequences they
generally fall short. However, in our case, due to the inherent nature of
representation of the Hilbert curve, this particular information of variance
in base pair distance was better represented and therefore, resulted in a
greater prediction accuracy.

5 Conclusion
We proposed a generalized deep learning method which can predict
enhancer from DNA sequence input. Our method takes advantage of better
representation by the Hilbert curve and uses CNN to predict enhancer.
It shows significant performance improvement over existing methods as
demonstrated by experimental results over FANTOM5 human enhancer
dataset. However, there is still room for farther improvements which we
would like to address in our future work. For future work, a probable avenue
would be using higher dimensional images with sparse data density as data
points and using specialized deep learning model on them to build a more
generalized model. Furthermore, a more generalized version of our model
can be achieved by incorporating datasets from species other than humans.
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