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Abstract

Renal cell carcinoma (RCC) is one of the ten most common and lethal cancers in the United States. Tumor heterogeneity and
development of resistance to treatment suggest that patient-specific evolutionary therapies may hold the key to better patients
prognosis. Mathematical models are a powerful tool to help develop such strategies; however, they depend on reliable biomarker
information. In this paper, we present a dynamic model of tumor-immune interactions, as well as the treatment effect on tumor
cells and the tumor-immune environment. We hypothesize that the neutrophil-to-lymphocyte ratio (NLR) is a powerful biomarker
that can be used to predict an individual patient’s response to treatment. Using randomly sampled virtual patients, we show that the
model recapitulates patient outcomes from clinical trials in RCC. Finally, we use in silico patient data to recreate realistic tumor
behaviors and simulate various treatment strategies to find optimal treatments for each virtual patient.
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1. Introduction

Renal cell carcinoma (RCC) represents a heterogeneous
group of malignancies composed of a diverse histologic and
genetic assembly [1, 2, 3]. It is one of the most common and
lethal cancers in the United States. Clear cell renal cell carci-
noma (ccRCC) is the most common subtype of RCC, present-
ing metastasis by the time of diagnosis in nearly one-third of
patients [2]. The progression of ccRCC is modulated, in part,
by immune cells in the tumor microenvironment. Cytotoxic T
cells can prevent tumor growth, but tumor-associated suppres-
sor cells, such as regulatory T cells, can suppress T cells re-
sponse allowing the tumor to further develop [4].

For metastatic ccRCC (m-ccRCC) patients, cytotoxic
chemotherapy offers little to no survival benefit [5]. The mu-
tational phenotype of m-ccRCC patients suggests vascular en-
dothelial growth factor (VEGF) and mechanistic target of ra-
pamycin (mTOR) pathway as potential targets for successful
treatment [6]. However, the use of targeted therapies, which
include tyrosine kinase inhibitors (TKi) and mTOR inhibitors
(mTORi), has extended the survival of patients with m-ccRCC
only moderately, with an average of 14 to 24 months [7]. More
recently, immunotherapeutics, including immune checkpoint

inhibitors such as nivolumab (Nivo) and others have been ap-
proved by the FDA for m-ccRCC. Yet, m-ccRCC remains a
lethal disease due to development of resistance [8]. None of
the current therapies consider patient- and tumor-specific fac-
tors, and have yet to be optimized in their timing or sequenc-
ing [9, 3, 10].

Additionally, continuous treatment fails to consider the evo-
lutionary dynamics of treatment response, where competition,
adaptation, and selection between treatment sensitive and resis-
tant cells contribute to therapy failure. In fact, continuous treat-
ment maximally selects for resistant phenotypes and eliminates
other competing populations, and may actually accelerate the
emergence of resistant populations a well-studied evolutionary
phenomenon termed competitive release [11, 12]. Intermittent
therapies and alternating drug combinations have the potential
to exploit these evolutionary dynamics to help extend patient
survival [13]. However, identifying the specific treatment and
treatment combinations that would benefit an individual patient
is challenging [2].

Mathematical models that adequately simulate tumor growth,
tumor-immune interactions, and treatment mechanisms may be
calibrated to individual patients’ disease dynamics. Then, in sil-
ico simulations of parameterized models can test a wide variety
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of treatment strategies and ultimately find an optimal treatment
strategy. Dynamic biomarkers may elucidate individual tumor
sensitivity to different drugs to help develop evolutionary ther-
apies [14]. Neutrophil-to-lymphocyte ratio (NLR), an inexpen-
sive and frequently used blood test, may be a candidate for a
biomarker of ccRCC response to treatment [15, 16, 17, 18]. We
hypothesize that the NLR can inform the presented mathemati-
cal framework to help develop therapies that drive the evolution
of the tumor-immune landscape towards control.

Our overall goal is to evaluate radiographic tumor responses
and dynamic changes in the host tumor-immune landscape in
sequentially obtained blood samples. These will serve to trig-
ger treatment adaptations. We propose a system of three or-
dinary differential equations that account for tumor cells, ef-
fector immune cells, and tumor-associated suppressor immune
cells. In our model, we account for the effect of three treatment
strategies, namely mTORi, TKi, and Nivolumab. By simulat-
ing in silico responses to different therapies, we aim to identify
previously-hidden functional sensitivity profiles. These profiles
are used to simulate responses to the three drug classes on a
per-patient basis in silico – at a magnitude not possible through
traditional biological investigations alone.

2. Mathematical Model

We present a mathematical model of tumor-immune interac-
tions based on the model proposed by Kuznetsov et al. [19].
Here we consider immune cells to be divided into two groups:
effector cells that fight the tumor, and suppressor cells that in-
hibit effector cells, thereby benefiting tumor cells. Thus our
model has three principal variables: T (t), the number of tu-
mor cells at time t; E(t), the number of effector immune cells
at time t; and S (t), the number of suppressor immune cells at
time t, where time is measured in days. In this approach, we
approximate the NLR with S (t)/E(t).

The increase in tumor cell numbers in the absence of treat-
ment is assumed to follow logistic growth, with intrinsic growth
rate α and carrying capacity K. They are killed by effector cells
at rate η. Effector cells are assumed to be recruited to the tu-
mor site. In our model, this process is divided into two events:
normal influx of effector cells to the site, given by σ, and addi-
tional accumulation of cytotoxic cells in the region due to the
presence of the tumor. Such additional accumulation was tak-
ing to follow the functional form proposed by Kuznetsov et al.
[19], where ρ represents the maximum rate of accumulation,
and γ the constant accumulation of immune cells at equilib-
rium. Effector cells die due to exhaustion at rate µ, and due to
natural apoptosis at a rate ω. Suppressor cells are assumed to
accumulate at the tumor site in response to the tumor, follow-
ing the same functional form as effector cells. They inhibit the
killing of tumor cells by effector cells and are also assumed to

Figure 1: Model Schematic. The model is comprised of three variables: tu-
mor T , effector E, and suppressor S cells. Tumor cells proliferate following a
logistic growth and recruit immune cells. Effector cells have a constant influx
to tumor site, induce tumor cell death, and can die due to exhaustion or apop-
tosis. Suppressor cells inhibit the killing of tumor cells by effector cells and
can undergo apoptosis. mTORi treatments inhibit tumor growth, TKi causes
starvation of tumor cells, and Nivo increases the recruitment of effector cells.

die at rate ε. Thus, without treatment, the model is given by

dT
dt

= α
(
1 −

T
K

)
T − ηET

(
1 −
( S
S + E

))
,

dE
dt

= σ +
ρET
γ + T

− µET − ωE,

dS
dt

=
ρS T
γ + T

− εS .

(1)

RCC treatments are classified based on their mechanisms of
action: mTOR inhibitors, TK inhibitors, and immunotherapy.
Thus we extend the system of equations in (1) to account for
each treatment. mTORis are known to affect tumor cell prolif-
eration and in our model they reduce α by rate β. TKis stop
tumor cells from secreting VEGF, stopping angiogenesis and
effectively starving tumor cells. In our model this is viewed as
an increased reduction of the tumor growth rate for large cell
numbers, represented by φ. Finally, Nivo increases the recruit-
ment of effector cells by increasing the maximum rate of ac-
cumulation of effector cells by ψ percent. The values of β, φ,
and ψ will determine the response or resistance of the tumor to
each of the treatments. A schematic of the model is shown in
Figure 1. Incorporating these treatments, the model becomes
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Parameter Value Units Reference
α 0.18 day−1 [19]
K 5 × 109 cells [19]
η 1.1 × 10−8 cells−1 day−1 [19]
σ 1.3 × 104 cells day−1 [19]
ρ 0.1245 day−1 [19]
γ 2.019 × 107 cells [19]
µ 3.422 × 10−10 cells−1day−1 [19]
ω 0.0412 day−1 [19]
ε 0.0622 day−1 Fixed

Table 1: Parameter values, units, and corresponding reference.

dT
dt

= (α − βδmTORi)
(
1 −
(T

K

)1−φδT Ki)
T

− ηET
(
1 −
( S
S + E

))
,

dE
dt

= σ +
ρ(1 + ψδNIVO)ET

γ + T
− µET − ωE,

dS
dt

=
ρS T
γ + T

− εS .

(2)

Each treatment has a Kronecker delta function
δmTORi, δT Ki, δNIVO that will be equal to one when treat-
ment is being administered, and zero otherwise. All parameters
in equations (1) where taken from Kuznetsov et al. [19], except
for ε, which was fixed at a value 0.0622 (see Table 1). Thus
our model is completely determined by the initial conditions of
tumor, effector, and suppressor cells, and the resistance to each
of the treatments β, φ, ψ. Initial conditions are assumed to be
patient-specific and will determine patients’ prognoses.

2.1. Analysis
Given a specific choice of initial conditions and treatment

parameters, we can determine tumor evolution by studying the
dynamics of the system using phase plane analysis. First, con-
sider the equations given in (1) of untreated tumor growth. We
note that, since our model is used for biological purposes, we
only consider positive cell populations, and positive parame-
ters. Under these assumptions the nullclines for effector and
tumor cells are given by

T = K
(
1 −

η

α
E
)
≡ f (E), (3)

E =
σ

ω +
ρT
γ+T + µT

≡ g(T ), (4)

which are variations of the ones obtained by Kuznetsov et al.
[19]. Furthermore, the steady states for the T-E phase plane are

T = 0, E =
σ

ε
, (5)

T =
εγ

ρ − ε
, E =

σ

ε +
µεγ
ρ−ε

+ ω
, (6)

where (5) can be interpreted as tumor remission, and (6) is a
saddle point which basins of attraction divides the phase plane

Figure 2: Phase planes under various treatment conditions. Phase planes of
tumor versus effector cells considering A. no treatment and treatment after 20
days with B. mTORi, C. TKi, and D. Nivo (D.) Blue arrows represent the gradi-
ent field and solid curves are representative trajectories. Solid dots and arrows
denote the beginning and end of the trajectory, respectively. Depending on the
initial conditions, the tumor may enter remission.

into a responsive and non-responsive area of initial conditions.
These steady-states show that without treatment even patients
with a robust initial immune response will eventually exhaust
effector cells allowing the tumor to escpape. Figure 2 shows
the phase plane of effector versus tumor cells, along with their
trajectories for varying initial conditions. Patients with a small
tumor burden and relatively high effector cell population will
show an initial equilibrium between tumor cells and the im-
mune system, followed by inevitable tumor growth.

However when treatment is applied, the saddle point and its
basins of attraction move over time. Some non-responder pa-
tients can now move towards the remission steady state. As the
treatment wears off or patients develop resistance, the trajec-
tory shows two different behaviors. In one, the trajectory will
cross towards the remission area before the basin of attraction
returns to its original state, leading the patient to successfully
reach remission. Alternatively, if the trajectory does not enter
the remission area before the treatment’s effect disappears, the
tumor will eventually regrow. In this case, patients exhibit a
transient response.

Figures 2B, C, and D show the phase planes for mTORi, TKi,
and Nivo therapy, respectively. Patients with the same initial
conditions behave in different ways in each of the phase planes.
Under mTORi, two patients will show an initial response but
later develop resistance, while the remaining patients will con-
verge to the remission state. With TKi, patients with higher
tumor burden will not respond to treatment, while the others
will show remission. Finally, all patients treated with Nivo
show an initial response but treatment ultimately fails. Based
on this knowledge, an optimal treatment should move the basin
of attraction in such a way that the patients’ trajectory will be
attracted to the remission steady-state long enough that the tra-
jectory can cross to its area of attraction before treatment wears
off.
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Figure 3: A Kaplan Meier plots of 25 virtual patients treated with Nivo, strati-
fied by NLR (low NLR blue, high NLR green). D Kaplan Meier plots for virtual
patients treated with TKi (blue) and mTORi (green).

3. Results

Patients with RCC can respond in different ways to the same
treatment. Some patients show no response while others will
show an initial response that can be lasting or temporary. From
a mathematical point of view, we can correlate this notion with
trajectories in our model. In Figure ?? we show trajectories for
25 virtual patients, created by randomly choosing initial condi-
tions and treatment parameters (β, φ, ψ). In all cases, we applied
Nivo after 30 days of tumor progression. Out of the 25 patients,
≈ 30% show a transient initial response, eventually develop-
ing resistance to treatment. The other virtual patients were not
responsive to treatment.

3.1. NLR Stratifies Response

Figure 3A shows the Kaplan-Meier plots for our virtual pa-
tient cohort and demonstrates that patients with a low NLR have
a significantly higher survival compared to those with a high
NLR when Nivo is applied. These results are in good agree-
ment with those by Bilen et al. who used a cutoff of 5.5 to
stratify patients into NLR low or NLR high Bilen et al. [16].
Figure 3B shows the Kaplan-Meier plot for our group of vir-
tual patients when mTORi and TKi are applied. We compared
our results with those presented in Choueiri et al. [20] where,
in an open-label randomized phase 3 trial, 658 patients with ad-
vanced or metastatic ccRCC were randomly assigned to receive
cabozantinib (TKi) or everolimus (mTORi) once a day (see Fig-
ure 4 in [20]). Based on these results, we are confident that the
structure of the model adequately recreated tumor-immune and
treatment dynamics.

3.2. Clinical Feasibility & Optimal Treatment Strategies

In order for our model to be clinically relevant, it must be
able to identify patient-specific parameters with an acceptable
degree of accuracy, with ideally as few time points as possible.
To assess the number of data points required for acceptable ac-
curacy, we performed in silico studies on our virtual patients for
whom the true parameters are known. Figure 4, illustrates the
results for one of our of our virtual patients, treated with im-
munotherapy. From this, we found that six weekly data points
are sufficient to accurately capture the tumor behavior. With
this conceptual exercise we show that, given one to two months

of a patient’s data, we will be able to estimate the model param-
eters and accurately model tumor dynamics.

The final step is to obtain an optimal treatment strategy,
which can be easily implemented in our model once all pa-
rameters are determined. Figure 5 shows tumor dynamics of a
virtual patient undergoing various treatments, namely intermit-
tent and continuous single drug treatment with mTORi, TKi,
and NIVO. Intermittent mTORi treatment gives better progno-
sis than a continuous strategy for this specific patients. How-
ever, TKi works best with continuous administration, whereas
NIVO shows no difference.

4. Discussion

RCC are highly heterogeneous, and with limited biomark-
ers to access heterogeneity clinicians may not be able to de-
termine an individual patient’s prognosis accurately. Identi-
fying individual patients tumor composition and personalizing
treatment and treatment combinations has the potential to im-
prove quality of life and increase survival. We propose that
using imaging data and extracting immune markers via non-
invasive blood tests could help initialize a mathematicl model
for patient-specific treatment simulations. During treatment
with either mTORi, TKi, or Nivo, weekly blood counts will be
used to determine the sensitivity parameter associated with that
treatment. Subsequently, the other single drug treatments will
be given, specifying Equations (2) for the patient. We would
then perform in silico simulations to determine the best treat-
ment strategy for the patient. Similar to adaptive control ap-
proaches, treatment would begin, treatment response observed,
model calibrated and response predicted, and repeated.

Patients with RCC show little to no response to traditional
treatment strategies. Targeted therapies have been proposed
as a better alternative by general guidelines. However, the di-
verse histology and genetic assembly make it difficult to find
a treatment strategy that will benefit all patients. Evolutionary,
personalized strategies can produce a better prognosis. Mathe-
matical models can help clinicians choose such treatment. Our
proposed model is capable of capturing tumor-immune interac-
tions, as well as treatment mechanisms. In order to use such a
model we propose NLR as a biomarker for treatment response.
Using a reasonable number of blood samples, we can obtain
enough NLR information to parameterize our model to recreate
the tumor behavior of a specific patient. Optimal treatment can
then be found by running in silico simulations.

Acknowledgments

We will like to thank Dr. Alexander Anderson, for organizing
the 8th Annual Moffitt IMO workshop in evolutionary therapy,
where this project was developed.

References

[1] W. H. Fridman, F. Pages, C. Sautes-Fridman, J. Galon, The immune con-
texture in human tumours: impact on clinical outcome, Nature Reviews
Cancer 12 (2012) 298.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2019. ; https://doi.org/10.1101/563130doi: bioRxiv preprint 

https://doi.org/10.1101/563130
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Parameter determination for a virtual patient treated with immunotherapy. Original virtual patient data is shown in a light blue dashed line, data points
used for parameter estimation are shown in green squares, and parametrized model simulations in a solid blue line. We determine that six weekly data points were
enough to recapture tumor behavior.

Figure 5: Comparison between continuous and intermittent treatment. Single-drug intermittent and continuous treatment were considered with mTORi, TKi, and
Nivo. For this particular virtual patients, intermittent treatment was beneficial using mTORi, detrimental with TKi, and neutral using Nivo when compared to
continuous treatment.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2019. ; https://doi.org/10.1101/563130doi: bioRxiv preprint 

https://doi.org/10.1101/563130
http://creativecommons.org/licenses/by-nc-nd/4.0/


[2] K. Geissler, P. Fornara, C. Lautenschläger, H.-J. Holzhausen, B. Seliger,
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