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ABSTRACT 22 

Background and Aims: Southern Arabia is a global biodiversity hotspot with a high 23 

proportion of endemic desert-adapted plants. Here we examine evidence for a Pleistocene 24 

climate refugium in the southern Central Desert of Oman, and its role in driving 25 

biogeographical patterns of endemism. 26 

Methods: Distribution data for seven narrow-range endemic plants were collected 27 

systematically across 195 quadrats, together with incidental and historic records. Important 28 

environmental variables relevant to arid coastal areas, including night time fog and cloud cover 29 

were developed for the study area. Environmental niche models were built and tuned for each 30 

species and spatial overlap examined. 31 

Key Results: A region of the Jiddat Al Arkad reported independent high model suitability for 32 

all species. Examination of environmental data across southern Oman indicates that the Jiddat 33 

Al Arkad displays a regionally unique climate with higher intra-annual stability, due in part to 34 

the influence of the southern monsoon. Despite this, relative importance of environmental 35 

variables was highly differentiated among species, suggesting characteristic variables such as 36 

coastal fog are not major cross-species predictors at this scale. 37 

Conclusions: The co-occurrence of a high number of endemic study species within a narrow 38 

monsoon-influenced region is indicative of a refugium with low climate change velocity. 39 

Combined with climate analysis, our findings provide strong evidence for a southern Arabian 40 

Pleistocene refugium in the Oman’s Central Desert. We suggest this refugium has acted as an 41 

isolated temperate and mesic island in the desert, resulting in the evolution of these narrow-42 

range endemic flora. Based on the composition of species, this system may represent the 43 

northernmost remnant of a continuous belt of mesic vegetation formerly ranging from Africa 44 
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to Asia, with close links to the flora of East Africa. This has significant implications for future 45 

conservation of endemic plants in an arid biodiversity hotspot. 46 

 47 

KEYWORDS 48 

Arabian Peninsula, Central Desert, Coastal fog desert, Desert endemic, Ecological niche 49 

modelling, Important Plant Areas, Oman, Pleistocene, Refugia. 50 

 51 

INTRODUCTION 52 

Southern Arabia is part of the Horn of Africa global biodiversity hotspot, and is one of only 53 

two hotspots that are entirely arid (Mittermeier et al. 2005; Mallon 2013). The flora of southern 54 

Arabia arises from the relatively late separation of Arabia from Africa and Asia around 25 55 

million years before present (Raven and Axelrod 1974; Delany 1989). During the Miocene 56 

Arabia supported palaeo-tropical vegetation with swamps and open savannah grassland 57 

(Whybrow and Mcclure 1981). This was progressively replaced by more drought-adapted 58 

vegetation through the Pliocene, with mesic elements of the flora persisting only in climatically 59 

favourable refugia (Kürschner 1998; Jolly et al. 2009). The environment of southern Arabia 60 

subsequently oscillated between climatic extremes throughout the Quaternary period 61 

(Fleitmann and Matter 2009; Parker 2010; Jennings et al. 2015). These oscillations, combined 62 

with the relative stability of localized climatic refugia may have contributed to the high degree 63 

of species endemism (Patzelt, 2015; Sandel et al., 2011). 64 

The biogeographic consequences of contraction and expansion from glacial refugia have been 65 

well described in the temperate zones of Europe and North America (Bennett et al. 1991; 66 

Comes and Kadereit 1998; Birks and Willis 2008; Keppel et al. 2012; Wang et al. 2014). By 67 

comparison, these processes are poorly known in the arid environments of the Arabian 68 

Peninsula (Ghazanfar, 1998; Meister, Hubaishan, Kilian, & Oberprieler, 2006; Patzelt, 2015). 69 
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Therefore establishing the spatiotemporal distribution of past climate refugia in southern 70 

Arabia is likely to have important implications for future conservation planning (Al-Abbasi et 71 

al. 2010), building evolutionary resilience under climate change (Sgrò et al. 2011; Keppel et 72 

al. 2012) and even interpreting the history of hominid dispersal out of Africa (Jennings et al. 73 

2015; Gandini et al. 2016).  74 

A key center for plant endemism in southern Arabia is Oman’s Central Desert (Ghazanfar, 75 

2004; Miller & Nyberg, 1990; Patzelt, 2014; White & Léonard, 1990). The Central Desert is a 76 

hyper-arid region, characterized by scarce precipitation often less than 100 mm/pa with high 77 

inter-annual variability and temperatures ranging from 6°C to more than 50°C (Stanley Price 78 

et al. 1988; Fisher and Membery 1998; Almazroui et al. 2013).  Provisionally divided into 79 

‘northern’ and ‘southern’ systems, the Central Desert has relatively low species diversity, but 80 

the highest proportion of range restricted endemic and regionally endemic plants in Oman 81 

(Patzelt, 2015). This represents an ideal study system in which to test for evidence of climatic 82 

refugia and their influence on the floral biogeography of southern Arabia. 83 

Despite significant progress in documenting the flora of Oman (Brinkmann et al., 2011; 84 

Ghazanfar, 1998, 2004; Ghazanfar & Fisher, 2013; Miller & Cope, 1996; Patzelt, 2009, 2014) 85 

high resolution plant diversity and distribution data are limited or lacking for many areas, 86 

hindering our ability to test these biogeographic hypotheses and identify putative refugia. To 87 

address this knowledge gap, here we report results of a systematic botanic survey of the 88 

southern Central Desert. We focus on seven high priority narrow range endemic desert plants 89 

(Table 1; Figure 1), restricted to the coastal belt and the adjacent escarpment and identified 90 

through development of the Oman Red Data Book (Patzelt, 2014).  91 

To enable a transition from survey data to predictive distribution maps we use an environmental 92 

niche modelling (ENM) approach. ENMs are a suite of methods used to establish the 93 
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relationship between a species and a set of environmental variables (Elith and Leathwick, 2009; 94 

Peterson, Papeş and Soberón, 2015). In principle, ENMs evaluate the environmental conditions 95 

in grid cells known to be occupied by a species and identify additional cells that represent 96 

similar environmental conditions (Merow, Smith and Silander, 2013). The species’ niche can 97 

then be projected across the study area to predict its spatial distribution and identify 98 

environmental variables that contribute significantly to model performance (Searcy and Shaffer 99 

2016). In this study we benefit from both presence and absence survey data and a stratified 100 

survey design, which negates many of the biases common in environmental niche models 101 

(Jiménez-Valverde et al. 2008; Warren and Seifert 2011).  102 

To distinguish amongst alternative environmental drivers for local endemism, selection of 103 

appropriate environmental modelling variables in arid environments is important (Dilts et al. 104 

2015; Title and Bemmels 2018). In other coastal desert systems, endemic plant distributions 105 

are strongly influenced by the presence of cloud shade and fog, which causes condensation on 106 

leaves and stems that trickles down to root systems  (Cereceda et al. 2008; Fischer et al. 2009). 107 

Given the extreme temperatures and low precipitation, the presence of coastal fog and the 108 

cooling effect of the prevailing wind have been hypothesised to be a key driver of Central 109 

Desert flora distributions (Miller, 1994; Patzelt, 2015; Price et al., 1988). The presence of 110 

coastal fog is supported by data from the northern Central Desert in 1984, where water collected 111 

from fog collectors at Jiddat al Harasisi ranged from 0.08 L/m2 in January to 3.6 L/m2. A total 112 

of 93 nights with fog moisture were recorded across the year, with fog moisture at ground level 113 

coinciding with reduced night-time temperatures, increased humidity and a wind speed less 114 

than 15 Km/h (Price et al., 1988). In a subsequent study (Fisher and Membery 1998) a monthly 115 

maximum of 4.0 L/m2 during March and a minimum 2.5 L/m2 during January, May, June and 116 

December was recorded. To our knowledge, no empirical data is available on coastal fog from 117 

the southern central desert. 118 
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Validation of environmental variables across a large, arid and sparsely populated study area 119 

such as the Central Desert is also exacerbated by the paucity of weather stations (meaning that 120 

global climate models are highly interpolated) and the fact that where weather stations do exist, 121 

cloud cover and coastal fog are rarely recorded. To address these shortfalls, we make use of 122 

the newly available WorldClim2 dataset that incorporates high accuracy remotely sensed 123 

maximum and minimum land surface temperature (Fick and Hijmans 2017), together with 124 

remotely sensed cloud cover data (Wilson and Jetz 2016). We also incorporate remotely sensed 125 

fog and putative fog covariates, to explore whether these variables contribute significantly to 126 

Central Desert species distributions. Specifically, we derive night time fog intensity from 127 

MODIS data (MODIS Characterization Support Team (MCST) 2018) using the approach of 128 

Chaurasia et al. (2011), as well as topography (including elevation, slope, aspect and terrain 129 

roughness, as locally higher areas may catch more moisture (Schemenauer et al. 1987)), wind 130 

speed and night time land surface temperature (LST) (Wan, Hook, & Hulley, 2018). As an 131 

additional line of evidence in assessing the importance of coastal fog, we also survey 132 

physiological fog capture adaptations across our study species using the approach of Larraín-133 

Barrios et al. (2018).  134 

Here, building on novel systematic survey data from the Central Desert, we aim to address 135 

three main questions. First, we use newly available climate data to examine the influence of 136 

the southern monsoon and coastal fog influx on the Central Desert climate. Second, we model 137 

the distributions of seven high priority narrow-range endemics, and test the hypothesis that the 138 

same environmental variables are consistently important across taxa. Third, we consider 139 

evidence for past climatic refugia and their influence on the current floral biogeography of the 140 

Central Desert. We consider these data in the context of conserving rare desert endemics across 141 

southern Arabia, a global biodiversity hotspot. 142 

MATERIALS AND METHODS 143 
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Study area 144 

The southern Central Desert is dominated by the Jiddat Al Arkad, a meandering escarpment of 145 

50 to 100 m dissected by extensive wadi systems, depressions and runnels which discharge 146 

into the Sahil Al Jazir coastal plain. Surface flows are only present following heavy rains. 147 

Geologically, the study area is dominated by Oligocene – Miocene white bioclastic limestone 148 

with coral debris flow deposits and laminated dolomitic limestone (Patel 1992). Soil is 149 

predominantly Calciorthids – gravelly sandy loam on alluvial fans and stream terraces and 150 

torriorthents (rock outcrops) weakly or undeveloped, low in organic matter and moderately 151 

calcareous (Dregne 1976). 152 

The vegetation is classified into three units as per Patzelt, (2015): i) Acacia tortilis – Prosopis 153 

cineraria open woodland. Common grass and shrub species include the endemic shrubs, 154 

Convolvulus oppositifolius and Ochradenus harsusiticus and endemic grass Stipagrostis 155 

sokotrana.  ii) Xeromorphic dwarf shrubland intermixed with grasses and annual species. The 156 

dwarf palm Nannorrhops ritchieana and A. ehrenbergiana are common in sandy depressions 157 

close to the coastal escarpments. iii) Xeromorphic dwarf shrubland with Searsia gallagheri and 158 

O. harsusiticus. In addition to flowering plants, several species of corticolous and saxicolous 159 

lichens and epilithic cyanobacteria occur here, of which most are restricted to the putatively 160 

fog-affected zones (Ghazanfar & Gallagher, 1998). The seven study species (Figure 1) are 161 

considered a part of, though not restricted to, the xeromorphic dwarf shrubland community. A 162 

description of their known habitat and conservation status is provided in Table 1. 163 

Field surveys and plant morphology 164 

Fieldwork was conducted during the period 13th – 24rd January 2017, from Ras Madrakah, 165 

across the Sahil Al Jazer (coastal plain) to the southern extent of the Jiddat Al Arkad, as part 166 

of the Central Desert Botanic Expedition 2017. A stratified survey strategy was designed 167 

orientating ten 20 km transects at 315 degrees (NW) along a 270 km portion of coastline, at 30 168 
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km intervals. This approach was designed to cross multiple environmental gradients that 169 

frequently run perpendicular to the coastline. Stratified quadrat locations at 1 km intervals were 170 

plotted prior to field work and their coordinates uploaded to handheld GPS units (Garmin, 171 

Oregon). Due to the remote nature of the study area, with several deep wadis bisecting these 172 

transects and inhibiting access, some portions of these transects were not surveyed. When 173 

moving between transects we opportunistically sampled additional quadrats at 5 km intervals 174 

and recorded incidental observations of target species to maximise data collection. These 175 

additional quadrats were positioned via random number generation to determine distance and 176 

bearing from the vehicle. A significant portion of travel was away from roads, but where roads 177 

(mostly gravel tracks) were present, quadrat positioning began > 100 m from the road to 178 

mitigate disturbance bias in the vegetation recorded. 179 

The following data were recorded for each quadrat: location, soil texture, soil pH, soil electrical 180 

conductivity (EC) (following the method of Zhang et al. 2005), total vegetation cover, 181 

maximum vegetation height, elevation, topography description and the presence, absence and 182 

count of the seven study species. Voucher specimens were collected for subsequent analysis, 183 

and are deposited in the Oman Botanic Garden herbarium (OBG) (Table 1).  Summary statistics 184 

of quadrats were calculated in in R software V3.1.2, implemented in RStudio (R Development 185 

Core Team, 2014; RStudio Team, 2015). A checklist of fog moisture capture and water use 186 

efficiency functional traits commonly observed in xerophytic plants was also collated, 187 

following the approach of (Larraín-Barrios et al. 2018). Each study species was examined and 188 

scored for their presence/absence and degree of development (see Tables S1 and S2, 189 

Supporting Information). In addition to observations recorded during this field study, historical 190 

records were included from relevant national and international collections, specifically; Oman 191 

Botanic Garden Herbarium (OBG), Sultan Qaboos University (SQUH), the Oman Natural 192 
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History Museum National Herbarium (ON) and the Royal Botanic Garden Edinburgh (E) 193 

(Summarised in Table 2; Figure S1, Supporting Information). 194 

Preparation of environmental variables 195 

To ensure we captured important environmental variation, we collated 54 bioclimatic variables 196 

covering the study area at 1 km resolution (Table S3, Supporting Information). In addition to 197 

WorldClim2 and Bioclim variables (Fick and Hijmans 2017), we generated a complementary 198 

set of bioclimatic layers that may better characterise arid environments using the ‘ENVIREM’ 199 

package (Title and Bemmels 2018). We also sought to include night time fog, an important 200 

candidate variable in determining plant distributions in this region  (Price et al. 1988). 201 

Specifically we followed the approach of Chaurasia et al. (2011) and classified fog based on 202 

the brightness temperature difference (ΔBT) of the 3.9 and 10.75 µm bands (channels 22 and 203 

31) of the MODIS satellite. The emissive properties of these two bands differ for fog water 204 

droplets which are typically small, and do not excite the 3.9 µm band, whereas emissivity for 205 

both cloud and fog droplets is approximately the same for the 10.75 µm band (Hunt 1973). 206 

Twice nightly images at 1 km resolution were collated for the period 2001-17 (MODIS product: 207 

MOD021KM) from the LAADS database (MCST, 2018). Raw radiance values were converted 208 

to brightness temperature using Planck’s function implemented in ENVI software (Harris 209 

Geospatial) and the difference calculated. In contrast to Chaurasia et al. (2011), high quality 210 

real-time ground truth data is not available for our region, therefore we did not apply a fog 211 

classification threshold, instead we retained the data as a continuous variable with higher (less 212 

negative) values considered more likely to represent smaller fog water droplets. 213 

At a fine spatial scale, other variables may also interact with fog moisture and influence the 214 

local ecology (Rastogi et al. 2016; Chung et al. 2017), thus we also incorporated several 215 

relevant fog proxies or co-variates. Cloud cover data (period 2001-15) was extracted from the 216 

global high-resolution cloud cover dataset generated by Wilson & Jetz (2016). Roughness, 217 
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Terrain Ruggedness Index (TRI), slope and aspect were generated from a digital elevation 218 

model (GTOPO30) using the R package ‘Raster’ (Hijmans, 2017). Night time Land Surface 219 

Temperature (LST) was obtained from the MODIS satellite mission at 1 km resolution (Wan 220 

et al., 2018). Important climate variables are plotted, together with the study, area using the 221 

package ‘RasterVis’ (Lamigueiro, 2018). 222 

To compare and characterize the range of environmental conditions across the Central Desert 223 

and other regional centres of endemism we randomly sampled all environmental variables for 224 

n cells in each region (with n being proportional to the area of the sampled polygon) and 225 

performed principal components analysis (PCA). We report variable loadings of the first and 226 

second principal components in Figure S2 (Supporting Information). To provide an additional 227 

line of evidence for local climatic stability, we compared interpolated Worldclim data (mean 228 

for 1970-2000) to more recent independent meteorological records from four contemporary 229 

weather stations (data period 1999-2017) in the central desert. Additional mapping and data 230 

visualization was performed using ‘ggplot2’ (Wickham 2009) and ‘rgeos’ (Bivand et al. 2018). 231 

Environmental niche modelling 232 

The suite of environmental layers retained for modelling was refined in three stages. First, 233 

layers that had low variability at the spatial scale of our study area were removed (e.g. soil). 234 

Second, correlated environmental variables across the study area (r > |0.7|) were grouped, with 235 

a single variable from each group considered to be most relevant to arid environment plant 236 

ecology retained. Third, we performed an iterative selection procedure by removing variables 237 

with the highest Variance Inflation Factor (VIF) using the package ‘usdm’ (Naimi et al. 2014), 238 

with an upper threshold of VIF ≤ 2.5. Retained environmental variables are reported in Table 239 

S3 (Supporting Information).  240 
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Environmental niche modelling was performed with MAXENT v3.3.3 (Phillips et al., 2006), 241 

implemented in the packages ‘Dismo’ (Hijmans et al., 2011) and ‘ENMeval’ (Muscarella et al. 242 

2014). To minimise model over-fitting, species data (including historic and incidental 243 

observations) were geographically rarefied to a 3 km bin size and examined across 244 

environmental space. Models were individually run and tuned for each study species over a 245 

study area encompassing the southern system, with quadrat surveys providing both presence 246 

and true absence data. Due to low sample sizes, data were partitioned using a jackknife 247 

approach where the number of model runs is equal to the number of occurrence localities, with 248 

a single data point excluded from each run for testing. Runs were performed iteratively across 249 

the full range of feature classes, with regularization multiplier values increasing from 1 to 4 in 250 

0.5 increments.  251 

Models were evaluated based on Akaike’s Information Criterion corrected for small sample 252 

sizes (i.e. (ΔAICc = 0), which penalises models that employ a greater number of parameters to 253 

describe the data (Warren and Seifert 2011; Muscarella et al. 2014). We report AUCTEST 254 

averaged over all iterations, with higher values reflecting better model discrimination of 255 

presence locations from background absences. To quantify model overfitting we use two 256 

metrics. First, we report the mean difference in AUC between training and test data (AUCDIFF); 257 

this is expected to be higher where models are overfit to training data (Muscarella et al. 2014). 258 

Second, we report the proportion of testing localities with predicted habitat suitability values 259 

lower than the training locality with the lowest reported value (ORMTP). For each species, the 260 

best performing model was projected across the study area and a Maximum Training 261 

Sensitivity Plus Specificity (MaSS) logistic threshold, which balances the trade-off between 262 

omission and commission errors (Lobo et al. 2008; Liu et al. 2016), was employed to estimate 263 

habitat area. For two species (OH, SG) where model evaluation indicated evidence of weak 264 
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overfitting, we used a Minimum Training Presence (MTP) threshold to ensure that all training 265 

observations are included within the predicted suitable habitat area.  266 

In an effort to understand the abiotic drivers of the resulting distributions, several studies have 267 

shown that ranking variable contributions successfully captures biologically important factors 268 

(Kearney and Porter 2009; Searcy and Shaffer 2016). To assess relative variable importance 269 

across species we compare ranked permutation importance using Kendall’s W, corrected for 270 

ties, implemented in the package ‘irr’ (Gamer et al. 2012). Secondly, we use linear regression 271 

to assess the relationship between the contribution of mean annual fog to model performance, 272 

and the species’ trait score (see Tables S1-2, Supporting Information). Finally we calculated 273 

niche overlap across study species using the method of Warren, Glor and Turelli, (2008) and 274 

then combined thresholded species distribution classifications to identify areas of spatial 275 

overlap and co-occurrence of multiple species. RBG images were obtained from Sentinel 2 276 

(Copernicus Sentinel data 2015, processed by ESA, accessed from https://remotepixel.ca/ on 277 

20/12/2018) and plotted with increased contrast. Surface wind direction data, averaged for the 278 

months June to August (2015-17), was obtained from the Global Forecasting System, via the 279 

package ‘rWind’ (Fernández-López 2018).  280 

 281 

RESULTS 282 

Evaluation of regional climate identifies a weak influence of the southern monsoon system on 283 

the Jiddat Al Arkad of the southern system (Figure 2). Concurrently, increased summer fog 284 

incidence in the southern Central Desert coincides with the warmest temperatures of the 285 

summer months, which appears to result in cooler coastal night time temperatures. Principal 286 

component analysis of abiotic variables clearly differentiated the major regions of endemism 287 

(Figure 3). Overall temperature related variables were the major contributors to PC1, with 288 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2019. ; https://doi.org/10.1101/563650doi: bioRxiv preprint 

https://remotepixel.ca/
https://doi.org/10.1101/563650
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

precipitation differentiating PC2 (Figure S2, Supporting Information). The two Central Desert 289 

systems are found to be differentiated, but partially overlapping with 88.5% and 62% of points 290 

representing a unique climate variables for the northern and southern systems respectively.  291 

Fieldwork surveys assessed 195 quadrats throughout the Southern System and successfully 292 

located all seven regional endemics. Study species were recorded in 41% of quadrats. In 293 

addition, 288 incidental and 68 historical observations were collated. After spatial filtering, 294 

177 records were retained (Table 2; Figure S1, Supporting Information). Mean pH and EC 295 

across all quadrats was 7.73 (SD = 0.44) and 14.99 (SD = 27.13) respectively. No significant 296 

difference in pH or EC values was identified across species (ANOVA p > 0.05). In our 297 

assessment of fog and drought functional trait adaptation, P. pulvinata scored highest, and S. 298 

gallagheri scored lowest, with low stature, low leaf area and hairs the most frequent 299 

adaptations. 300 

Environmental niche modelling and variable importance 301 

After filtering, we retained nine environmental variables for modelling (Table S3, Supporting 302 

Information). Ecological niche model evaluation statistics are reported in Table 2. Modelling 303 

was not performed for P. jazirensis due to insufficient data. AUCTEST ranged from 0.76 (PP) 304 

to 0.93 (SG). AUC values are often lower for more widespread species, which may be the case 305 

for P. pulvinata and O. Harsusiticus (Jiménez-Valverde et al. 2008). Model logistic habitat 306 

suitability projections are plotted in Figure 4, with the percentage contribution of variables 307 

reported in Table 3. Binary threshold maps are provided in Figure S3 (Supporting Information). 308 

The most important variables varied substantially, with no evidence of consistent rank 309 

importance across species (Wt = 0.079, p = 0.87). Annual mean fog did not appear to rank 310 

highly for any species, and was not significantly associated with fog adaptation trait scores (F1,4 311 

= 0.76, p = 0.4). Niche overlap was high in all pairwise comparisons (median = 0.87; Table S4, 312 

Supplementary Information).  313 
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Identification of climate refugia 314 

Combined binary species distributions identified a key area where all study species are 315 

predicted to co-occur (Figure 5A). High predicted habitat suitability across all models was 316 

localized to the southern Jiddat al Arkad. Satellite imagery shows the region, seasonal cloud 317 

cover and the prevailing summer wind direction in Figure 5B. Independent contemporary 318 

weather station records provide an additional line of evidence. Whilst the three northern 319 

stations show elevated maximum daily temperatures (period 2002-17) compared to the 320 

Worldclim 2 reference (1970-2000), Shalim station – close to our putative coastal fog and cloud 321 

affected area – shows summer maximum temperatures below the Worldclim 2 reference 322 

(Figure 6). 323 

 324 

DISCUSSION 325 

In this study we present evidence for a Southern Arabian Pleistocene refugium in Oman’s 326 

Central Desert (Figures 2, 5). As shown by Sandel et al. (2011), the negative relationship 327 

between endemism and the increasing velocity of changing climate is strongest in poorly 328 

dispersing species such as plants. Therefore co-occurrence of a high number of endemic study 329 

species within a narrow monsoon-influenced region is indicative of a refugium with low 330 

climate change velocity (Sandel et al. 2011; Abellán and Svenning 2014; Harrison and Noss 331 

2017). Climate analysis identified cooler mean annual temperatures in the study area and the 332 

influence of coastal cloud and fog (Figure 2), which combined with novel survey data and 333 

environmental distribution modelling suggests that the vegetation of the southern Central 334 

Desert is a relict of an earlier, more mesic period. This is further supported by the biogeography 335 

of genera such as Aerva, Searsia and Ochradenus which have global distributions from Africa 336 

to South-East Asia, yet with endemic species restricted to Arabia (POWO 2018), indicating 337 

support for a refugium further back into the Neogene.  Thus, this system may represent the 338 
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northernmost remnant of a continuous belt of mesic vegetation formerly ranging from Africa 339 

to Asia, with close links to the flora of East Africa (Kürschner, 1998; Patzelt, 2011). 340 

The relictual distributions that we observe appear to be driven by the interaction of climate and 341 

topographic factors, in particular the influence of the southern monsoon. It had been speculated 342 

that parts of the Central Desert may be at the fringe of the monsoon-affected area (Patzelt, 343 

2015), thus benefiting from occasional low clouds, cool winds and coastal fog during the 344 

southern monsoon, but previously this could not be tested because of the lack of climate 345 

stations. Here, using evidence from remote sensing, we demonstrate that the southern monsoon 346 

does indeed influence the southern system of the Central Desert, with patterns of night time 347 

fog detected via the MODIS satellite also consistent with the limited reports available. This 348 

putatively places the southern Arabian coastal fog-influenced Central Desert together with 349 

other coastal fog deserts such as the Namib and Peruvian lomas (Cereceda et al. 2008; Henschel 350 

and Seely 2008), though based on limited fog adaptation traits in the flora, fog intensity may 351 

be lower. 352 

By applying these climate data to systematic field records of endemic plants, we develop a 353 

suite of models characterizing each species’ environmental niche. We show that despite small 354 

sample sizes it is possible to generate robust niche models, incorporating true absence data, 355 

which identify important areas of plant diversity. Surprisingly, the relative importance of 356 

retained climatic and topographic variables differed substantially across study species. 357 

Therefore, we conclude that it is not a single set of environmental variables contributing to the 358 

distribution of this unique flora. For example, whilst overall, aridity and mean annual 359 

temperature are unsurprisingly important predictors in an arid environment, almost all retained 360 

variables are important across specific taxa. Therefore our analysis does not support the 361 

hypothesis that it is predominantly fog that influences the distribution of this endemic flora, 362 

rather a range of factors appear to be important, consistent with the diverse traits and 363 
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phylogenetic provenance of the species. We note however that on a finer spatial scale, factors 364 

such as microrefugia and fog hydrology may have greater importance (Mclaughlin et al. 2017).  365 

Despite being recognised for its global importance, the arid Horn of Africa biodiversity hotspot 366 

is one of the most severely degraded, with less than 5% of habitat considered to be in pristine 367 

condition (Mittermeier et al. 2005; Mallon 2013). Key threats to the Central Desert include 368 

overgrazing (Ghazanfar, 2004), and climate change (Almazroui et al. 2013), with mean annual 369 

temperature for the Arabian Peninsula increasing at 0.6°C per decade and a significant 370 

decreasing trend in annual rainfall (Almazroui et al. 2013). It is also concerning that climate 371 

change has been associated with a historic shifts in intensity and northward extent of the 372 

monsoon (Fleitmann and Matter 2009) and elsewhere a contemporary decline in coastal fog 373 

frequency (Johnstone and Dawson 2010), with strong implications for persistence of endemic 374 

flora. In our study area, a relatively minor shift in the northward extent of the monsoon could 375 

have significant implications for regional climate. 376 

Refugia have been suggested as priority sites to conserve global biodiversity under climate 377 

change precisely because of their demonstrated ability to facilitate species survival under 378 

adverse conditions (Keppel et al. 2012). Based on previous studies, it is also likely that refugial 379 

populations harbour the highest genetic diversity across the species’ distribution (Meister, 380 

Hubaishan, Kilian, & Oberprieler, 2005), helping building future evolutionary resilience (Sgrò 381 

et al. 2011). This may be particularly important in the Central Desert, where many endemic 382 

species have been restricted to only a single refugial location, reducing potential for subsequent 383 

population admixture (Petit et al. 2003). The southern coast of the Arabian peninsula has also 384 

been predicted to contain a significant proportion of unassessed at-risk vascular plant species 385 

(Pelletier et al. 2018). In recent years, an Important Plant Area (IPA) programme has been 386 

initiated for the Middle East, which highlights the value of an ecological and evolutionary 387 

process-based view in identifying candidate conservation sites (Al-Abbasi et al. 2010). 388 
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Therefore, the site outlined here (Figure 5), covering approximately 880 km2, may be candidate 389 

for further evaluation and consideration as an IPA. 390 

In conclusion, this study makes an important contribution to our understanding of southern 391 

Arabian climate refugia, and the biogeographical origins of the endemic flora of Oman’s 392 

Central Desert. In the future we highlight the value of a network of detectors to characterise 393 

coastal fog across the landscape, particularly in the southern Central Desert. These would better 394 

enable an assessment of how coastal fog co-varies with other readily available datasets such as 395 

topography, cloud cover and land surface temperature to enable higher resolution predictions 396 

of the influence of coastal fog on species distributions. More generally, we emphasise the value 397 

of predictive modelling in the region to advance beyond initial presence-absence grids, both to 398 

identify the drivers of biogeographic patterns and to prioritise sites for the conservation. In the 399 

future, further identification and characterisation of southern Arabian climate refugia may be a 400 

useful strategy to support conservation in a global biodiversity hotspot. 401 

 402 
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TABLES 633 

 634 

Table 1. Summary of the seven study taxa, including Red List status from Patzelt (2014).  635 

1Voucher specimens are deposited at the Oman Botanic Gardens, accession numbers (OH: CDBE-1; PP: CDBE-2; SH: CDBE-636 
3; PJ:CDBE-4; SG: CDBE-5, 6). 2All assessments are global assessments which have been submitted to IUCN to be included 637 
to the Global Red List of Threatened Species, with the exception of a national assessment for S. gallagheri. The relationship 638 
between S. gallagheri (formerly Rhus) and S. vulgaris awaits more detailed taxonomic investigation, thus a national 639 
assessment is reported. 640 
 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

ID Species1 Family Habitat description Status2 

AA Aerva artemisoides  Vierh. 
& O. Schwartz subsp. 
Batharitica A.G. Mill 

Amaranthaceae Coastal areas including dry cliffs, rocky slopes 
and wadi banks on limestone, 20-300 m. 

VU 

HG Hyoscyamus gallagheri  
A.G. Mill. & Biagi. 

Solanaceae Low sand dunes and gravel desert, 0-250 m. VU 

OH Ochradenus harsusiticus 
A.G. Mill. 

Resedaceae Open Acacia tortilis - Prosopis cineraria 
woodland, in sandy and gravelly depressions of 
the central desert, 100-210 m. 

VU 

PJ Polycarpaea jazirensis R. 
A. Clement. 

Caryophyllaceae Coastal areas of Sahil al Jazir in sandy 
depressions and on limestone cliffs, 100-210 m.  

CR 

PP Pulicaria pulvinate E. 
Gamal-Eldin 

Asteraceae Limestone cliffs and central limestone plateau 
on sand and gravel, 0-300 m. 

NT 

SG Searsia gallagheri Ghaz. Anacardiaceae Stony wadis and depressions, 130-205 m.  VU 

SH Salvia aff. Hillcoatiae R.A. 
Clement 

Lamiaceae Dry limestone plateau of the central desert, 0-
300 m. 

VU 
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Table 2. Environmental niche model input and evaluation statistics. 655 

Species 
Pre-filtering observations Post-

filtering  

Model evaluation 

Incidental Quadrats Historical Features RM AUCTEST AUCDIFF ORMTP Parameters 

AA 161 20 12 41 L 2.5 0.84 0.11 0.05 6 

HG 34 4 19 23 L 1.5 0.82 0.08 0.04 5 

OH 16 3 13 13 L 0.5 0.79 0.15 0.23 6 

PJ 8 0 1 4 - - - - - - 

PP 19 45 18 54 LQHP 2.5 0.76 0.11 0.04 10 

SG 35 7 0 17 L 2 0.93 0.03 0.12 4 

SH 15 15 0 25 LQ 1.5 0.89 0.05 0.04 8 

Feature classes: Linear L, Quadratic Q, Hinge H, Product P and Threshold T. RM = regularization multiplier. 656 
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Table 3. Percentage contribution of environmental variables to environmental niche models 680 

across study species. 681 

Environmental variable AA HG OH PP RG SH Mean (SD) 

Night LST 22.7 0.0 0.0 1.3 4.1 2.6 5.1 (8.8) 

Mean annual cloud cover 0.0 2.2 0.0 2.4 0.0 1.6 1.0 (1.2) 

Cloud cover seasonality 0.5 31.2 0.0 2.9 0.4 9.4 7.4 (12.2) 

Thornthwaite aridity index 44.5 0.0 4.2 0.0 82.3 0.8 22.0 (34.3) 

Aspect  0.0 0.0 10.2 1.6 0.0 33.7 7.6 (13.4) 

Elevation  0.0 40.6 33.1 37.7 0.0 26.7 23.0 18.4) 

Mean annual fog 8.0 3.4 13.7 2.5 0.9 9.0 6.2 (4.8) 

Terrain roughness index 24.0 0.0 7.6 21.1 12.4 5.0 11.7 (9.4) 

Annual mean temperature 0.5 22.6 31.3 30.4 0.0 11.1 16.0 (14.2) 

 682 
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FIGURE LEGENDS 705 

Figure 1. Images of the endemic Central Desert plant species included in this study. a)  Aerva 706 

artemisoides subsp. batharitica; b) Hyoscyamus gallagheri; c) Ochradenus harsusiticus; d) 707 

Polycarpaea jazirensis; e) Pulicaria pulvinata; f) Salvia aff. hillcoatiae; g) Searsia gallagheri; 708 

h) A typical Central Desert landscape. 709 

Figure 2. a) Elevation map of Oman, with annual offshore cloud cover percentage identifying 710 

the major southern and Indian monsoon climate patterns. Cloud cover over land is not shown, 711 

but is negligible for the Central Desert. Northern and southern study systems are denoted by 712 

shaded polygons. b) Quarterly mean temperature across the Central Desert. c) Quarterly night 713 

time fog intensity (change in brightness temperature) across the Central Desert. Higher values 714 

(less negative) are indicative of greater fog intensity. 715 

Figure 3. Principal component analysis of abiotic variables across principal ecoregions of 716 

Oman. Grey points denote a random background sample from across Oman. The five major 717 

centres of plant endemism comprise i) the Hajar Mountains; ii-iii) the Dhofar Mountains 718 

comprising the Jabal Samhan and Jabal Al Qamar/Qara centres of endemism, combined for the 719 

purposes of this figure; iv) the Northern Central Desert consisting of the Jiddat Al Harasis/Huqf 720 

and v) the Southern Central Desert comprising the Sahil Al Jazir/Jiddat Al Arkad. The Empty 721 

Quarter is plotted (yellow) for reference as it comprises a significant proportion of Oman’s 722 

land area, but is not considered a centre of endemism. The candidate refugium (red) is a subset 723 

of the southern system of the Central Desert.  724 

Figure 4. Environmental niche models for each of six study species across the southern Central 725 

Desert. Higher values indicative of greater modelled habitat suitability. Dashed line denotes 726 

the southern Central Desert system. 727 
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Figure 5. Identification of endemic species co-occurrence in the southern Central Desert. a) 728 

Composite map of the binary distributions of six study species. Dashed line identifies a region 729 

of high diversity with potential as a candidate Important Plant Area. b) False colour Sentinel 2 730 

image of the high diversity area. Red line shows a primary road crossing the study area. Inset 731 

rose diagram shows the prevailing wind direction during the Khareef (Southern Monsoon). 732 

Cloud cover mean is shown in blue. 733 

Figure 6. Locations of Omani weather stations contributing to interpolated climate variables 734 

used in this study (1970-2000), as well as four independent validation weather stations from 735 

the Central Desert (1999-2017). Maximum daily temperature recorded at these stations is 736 

reported (coloured by year), with the black line denoting the historic Worldclim 2 average for 737 

this period. Northern and southern systems are depicted in blue and orange, respectively. 738 
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 FIGURES  746 

 747 

Figure 1. 748 
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Figure 2. 757 
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Figure 3. 762 
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Figure 4. 769 
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Figure 5. 788 
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Figure 6. 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2019. ; https://doi.org/10.1101/563650doi: bioRxiv preprint 

https://doi.org/10.1101/563650
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

DATA ACCESSIBILITY 816 

All topographic and environmental GIS layers used in this study are freely available from the 817 

sources outlined in Table S3, Supporting Information. Raw meteorological data for Central 818 

Desert climate stations are available on request from the Meteorological Society of Oman. 819 

Novel species observation records from the Central Desert will be provided on the Global 820 

Biodiversity Information Facility.  821 
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