- 1 Antibiotic resistome and microbial community structure during anaerobic co-digestion of
- 2 food waste, paper and cardboard
- 3
- 4 Kärt Kanger,^a Nigel G.H. Guilford,^b HyunWoo Lee,^b Camilla L. Nesbø,^{b,c} Jaak Truu,^a
- 5 Elizabeth A. Edwards^b#
- 6
- 7 ^aFaculty of Science and Technology, University of Tartu, Tartu, Estonia
- 8 ^bBioZone Centre for Applied Biosciences and Bioengineering, University of Toronto,
- 9 Toronto, ON, Canada
- 10 ^cDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada

- 12 Running Head: Anaerobic digester resistome and microbial community
- 13
- 14 #Address correspondence to Elizabeth A. Edwards, elizabeth.edwards@utoronto.ca.
- 15

16 ABSTRACT

17 Antimicrobial resistance is a globally recognized public health risk. High incidence of 18 antibiotic resistant bacteria and antibiotic resistance genes (ARGs) in solid organic waste 19 necessitates the development of effective treatment strategies. The objective of this study 20 was to assess ARG diversity and abundance as well as the relationship between resistome 21 and microbial community structure during anaerobic co-digestion (AD) of food waste, 22 paper and cardboard. A lab-scale solid-state AD system consisting of six sequentially fed 23 leach beds (each with a solids retention time of 42 days) and an upflow anaerobic sludge 24 blanket (UASB) reactor was operated under mesophilic conditions continuously for 88 25 weeks to successfully treat municipal organic waste and produce biogas. A total of ten 26 samples from digester feed and digestion products were collected for microbial 27 community analysis including SSU rRNA gene sequencing, total community 28 metagenome sequencing and quantitative PCR. Taxonomic analyses revealed that AD 29 changed the taxonomic profile of the microbial community: digester feed was dominated 30 by bacterial and eukaryotic taxa while anaerobic digestate possessed a large proportion of 31 archaea mainly belonging to the methanogenic genus Methanosaeta. ARGs were 32 identified in all samples with significantly higher richness and relative abundance per 16S 33 rRNA gene in digester feed compared to digestion products. Multidrug resistance was the 34 most abundant ARG type. AD was not able to completely remove ARGs as shown by 35 ARGs detected in digestion products. Using metagenomic assembly and binning we 36 detected potential bacterial hosts of ARGs in digester feed, that included Erwinia, 37 Bifidobacteriaceae, Lactococcus lactis and Lactobacillus.

38

39 IMPORTANCE

40	Solid organic waste is a significant source of antibiotic resistance genes (ARGs) (1) and
41	effective treatment strategies are urgently required to limit the spread of antimicrobial
42	resistance. Here we studied the antibiotic resistome and microbial community structure
43	within an anaerobic digester treating a mixture of food waste, paper and cardboard. We
44	observed a significant shift in microbial community composition and a reduction in ARG
45	diversity and abundance after 6 weeks of digestion. We identified the host organisms of
46	some of the ARGs including potentially pathogenic as well as non-pathogenic bacteria,
47	and we detected mobile genetic elements required for horizontal gene transfer. Our
48	results indicate that the process of sequential solid-state anaerobic digestion of food
49	waste, paper and cardboard tested herein provides a significant reduction in the relative
50	abundance of ARGs per 16S rRNA gene.
51	

52 INTRODUCTION

53	Antimicrobial resistance (AMR) is a widely recognized public health risk. The extensive
54	use of antimicrobial compounds since World War II has triggered the rapid spread and
55	evolution of AMR mechanisms to such an extent that AMR is considered one of today's
56	top medical concerns globally (2). Currently, 700 000 deaths are attributed to resistant
57	microbial infections annually, which is projected to increase to 10 million deaths by 2050
58	resulting in the loss of 100 trillion USD of economic output (3). In light of this gloomy
59	prospect, a One-Health approach has been proposed to tackle AMR by recognizing the
60	connections between human and animal health and the environment (4).
61	Although the vast majority of antimicrobial research is focusing on the clinical
62	setting, the natural environment has gained attention as a possible reservoir and dispersal
63	route of antimicrobial resistance determinants, including antibiotic resistant bacteria and
64	antibiotic resistance genes (ARGs) (5, 6). Various natural ecosystems, such as ancient
65	permafrost sediments (7), pristine soil (8, 9), oceanic (10) and freshwater bodies (11)
66	have been shown to possess a diversity of ARGs collectively defined as the resistome.
67	However, higher concentrations of resistance determinants have been observed in
68	environments with anthropogenic impact where selective pressure for ARGs is present,
69	such as wastewater treatment plants, animal husbandry facilities, aquaculture farms and
70	pharmaceutical manufacturing (12).
71	Various types of solid organic waste may also serve as potential sources of
72	antibiotic resistant bacteria and ARGs (1). In addition to the extensively studied
73	resistomes of sewage sludge and animal manure, the organic fraction of municipal solid
74	waste (MSW) may also contribute to the dissemination of AMR. Global production of

MSW is estimated at around 2 billion tons per year, of which 34–53% is organic
biodegradable waste including food waste as the primary component (13). Paper waste
forms 17% of MSW globally, including different lignocellulosic fibres such as cardboard,

newspaper, magazines, wrapping paper, shredded paper, boxes, bags and beverage cups

79 (14).

Several studies have highlighted the role of the food chain in AMR as a direct link to human health (15, 16) and identified antibiotic resistant pathogens in various food products such as meat (17–19), fruit and vegetables (20–23), poultry (24, 25), fish (26, 27) and dairy (28). Therefore, it is reasonable to assume that ARGs are also present in food waste: Lee *et al.* (29) detected a variety of ARGs in the wastewater from food waste recycling in Korea, although the abundance of ARGs remained below that of manure and sewage sludge.

87 To mitigate the harmful environmental impacts of organic solid waste, anaerobic 88 digestion (AD) is widely implemented as a treatment strategy, providing waste 89 stabilization as well as the production of renewable energy (30). AD changes the 90 structure of the microbial community of the substrates which in turn affects the resistome 91 present in digestion products. Although it is generally accepted that ARG abundance is 92 reduced overall during AD, enrichment of some ARGs and rebound-effects have been 93 reported in several studies (summarized by Youngquist et al. (31)). For example, Pu et al. 94 (32) studied the impact of applying pig manure to fields and found that AD reduced the 95 relative abundance of Macrolide-Lincosamide-Streptogramin (MLS) and tetracycline 96 resistance genes, while resistance genes for sulfa, aminoglycoside, florfenicol, 97 amphenicol and chloramphenicol were enriched. Similarly, the effect of aerobic

98 composting of organic waste remains contradictory: while some evidence suggests

- 99 composting can reduce the abundance of antibiotic resistant bacteria and ARGs, other
- 100 studies have shown increased abundance and diversity of ARGs (31).
- 101 Recently, there has been growing interest in AD of food waste due to its high
- 102 energetic value (13). However, limited information is available on the effect of AD on the
- 103 microbial community and resistome in food waste. Zhang et al. (33) identified 11 ARGs
- 104 and class 1 integron integrase gene *intI1* in digested food waste: while *tetA*, *tetB*, *tetX*,
- sull, cmlA, floR and intII were significantly reduced by AD, enrichment of tetM, tetW,

106 *tetQ* and *tetO* was recorded. Similarly, another study detected both increase and reduction

107 of specific ARGs in the co-digestion of sewage sludge and food waste following

108 microwave pretreatment (34). Thus, the effect of AD on the food waste resistome and the

109 associated microbial community is still unclear.

110 In addition to quantification of individual ARGs, detecting potential host

111 organisms of these genes is important to evaluate the risk to human health. Several

112 studies have used correlation and network analysis to detect relationships between

113 individual ARGs and bacterial genera (34–37). High mobility of ARGs due to horizontal

114 gene transfer (HGT) is responsible for the spread of AMR between different bacteria

115 including human pathogens as well as non-pathogenic environmental bacteria which

116 often serve as reservoirs of ARGs (38).

The objective of this study was to measure ARG abundance and resistome
diversity before and after anaerobic co-digestion of food waste, paper and cardboard.
Samples were collected from a lab-scale solid-state AD system that exhibited stable
methane production and substrate destruction rates (39, 40). By simultaneously analyzing

121	microbial community shifts, we attempted to assign ARGs to specific host organisms.
122	Using SSU rRNA gene sequencing, total community metagenome sequencing and
123	targeted quantitative PCR we were able to quantify changes in the diversity and size of
124	the resistome before and after digestion together with changes in the taxonomic profile of
125	the microbial community. We were further able to identify potential host organisms of
126	ARGs by using metagenomic assembly and binning methods.
127	
128	RESULTS
129	A total of 10 samples were collected from a lab-scale solid-state anaerobic digestion
130	system described in detail by a recent PhD thesis (39). The ten samples included three
131	samples of raw food waste (FW1, FW2, FW3) collected from local residential green bin
132	program, three samples of the mixture of food waste and lignocellulosic fibres that
133	constituted the leach bed feed (LBF1, LBF2, LBF3), three samples of 6 week old
134	digestate (DG74, DG76, DG78) and one sample of the microbial granules from the
135	upflow anaerobic sludge blanket reactor (UASB) treating leachate from the leach beds.
136	DNA was extracted from each sample in order to analyze the microbial community
137	composition and ARGs diversity, abundance, genomic location and host organisms using
138	a multi-pronged approach combining metagenome sequence analyses, taxonomic
139	profiling and quantitative PCR (Fig. 1).
140	Microbial community. Microbial community structure was analyzed by small
141	subunit (SSU) rRNA gene-fragment sequencing (method 2 in Fig. 1) capturing bacterial,
142	archaeal and eukaryotic diversity (Tables S1 and S2 in supplemental material). A clear
143	distinction in the communities of digester feed and digestion products was detected: food

144 waste and leach bed feed microbial communities were dominated by bacterial and 145 eukaryotic taxa while anaerobic digestate and microbial community of granules from the 146 UASB reactor possessed a large proportion of archaeal phylotypes mainly belonging to 147 the methanogenic genus Methanosaeta (Fig. 2). The most abundant bacterial OTUs in 148 digester feed belonged to the family Enterobacteriaceae, including the genera 149 Citrobacter, Enterobacter, Erwinia, Kluyvera, Pantoea, Serratia and Lelliottia. 150 Additionally, representatives of the phylum *Firmicutes* were detected in FW2, including 151 the genera *Lactobacillus* and *Leuconostoc*, probably indicating fermentation processes 152 occurring in the respective food waste. In addition to bacterial sequences, fungal and 153 plant material was detected in digester feed (FW, LBF), but not in digestion products 154 (DG) or the UASB. Across all samples, 36–62% of OTUs were detected at low relative 155 abundances comprising less than 1% of the total community. A comparison of genus 156 level taxonomic composition detected from SSU rRNA gene amplicon sequence analysis 157 using QIIME (tool 2.1 in Fig. 1) to that derived from total community metagenome sequencing analysis using Kaiju (tool 3.3 in Fig. 1) or metaxa2 (tool 3.4 in Fig. 1) 158 159 showed relatively good agreement between the three different annotation tools used in 160 this study (Fig. S1 in supplemental material).

ARG diversity and abundance. Total community metagenome sequencing data from seven samples (Table S3 in supplemental material) was analyzed using the ARGs Online Analysis Pipeline (ARGs-OAP) (41) (tool 3.5 in Fig. 1) to characterize the distribution and diversity of ARGs before and after anaerobic digestion. The richness of ARGs, measured as the number of distinct ARGs identified in one sample type, was highest in digester feed with 330 and 336 different ARGs detected in FW and LBF

167	samples, respectively. The richness of ARGs in digestion products remained two times
168	lower with 115 different ARGs detected in DG and UASB samples indicating reduced
169	diversity of ARGs after anaerobic digestion. Twenty three ARGs were found to be unique
170	to digestion products belonging to aminoglycoside (aac(3)-I, ant(9)-I), beta-lactam
171	(OXA-10, OXA-205, OXA-251, OXA-34, OXA-46, OXA-75), chloramphenicol (catQ),
172	MLS (ereB, lnuB, mphA, carA), sulfonamide (sul3), tetracycline (tet44, tetT),
173	trimethoprim (<i>dfrA5</i>) and vancomycin (<i>vanA</i> , <i>vanG</i> , <i>vanH</i> , <i>vanN</i> , <i>vanU</i> , <i>vanX</i>) type.
174	In addition to richness, the relative abundance of ARGs per 16S rRNA gene was
175	determined from total community metagenome sequencing data (Table S4 in
176	supplemental material). Relative abundances of ARGs per 16S rRNA gene were
177	significantly higher in digester feed than in digestion products, indicating the ability of
178	anaerobic digestion to reduce ARGs (Fig. 3). Total relative abundances of ARGs per 16S
179	rRNA gene in food waste samples FW1 (0.78 ARG/16S rRNA) and FW2 (0.40 ARG/16S
180	rRNA) were similar to the respective values in the mixtures of food waste with
181	lignocellulosic fibres (LBF1 0.84 ARG/16S rRNA, LBF2 0.44 ARG/16S rRNA),
182	indicating the role of food waste as the primary source of ARGs in leach bed feed. Most
183	of the ARGs identified in digester feed conferred multidrug resistance (Fig. 3A).
184	Additionally, many potential ARGs with unclassified resistance type were detected. The
185	highest relative abundance value for an individual gene (Fig. 3B) was recorded for
186	AcrAB-TolC multidrug efflux complex subunit <i>acrB</i> reaching 0.05 copies/16S rRNA
187	gene in samples FW1 and LBF1. Other highly abundant genes in digester feed included
188	subunits of multidrug resistance complexes (acrA, mdtB, mdtC, tolC), several regulatory
189	protein genes associated with AMR (<i>cpxR</i> , <i>arlR</i>) and bacitracin resistance gene <i>bacA</i> .

Relative abundances of individual ARGs in digestion products remained below 0.01
copies/16S rRNA in all cases. Similarly to digester feed, the highest value for an
individual gene in digestion products was recorded for *acrB* with 0.007 copies/16S rRNA
in UASB.

194	A high-throughput qPCR (HT-qPCR) array was also used as an alternative
195	approach to quantify 315 ARGs (tool 4.1 in Fig. 1) and 57 mobile genetic elements
196	(MGEs) (tool 4.2 in Fig.1) in food waste and digestate DNA samples (Table S5 in
197	supplemental material). In agreement with the results from the metagenomic data, the
198	diversity of ARGs and MGEs was higher in food waste with 161 different genes detected,
199	while only 32 different genes were detected in digestate (Fig. 4). Among these, 10 ARGs
200	were found only in digestate samples and not in food waste. Notably, MLS resistance
201	genes <i>mphA</i> and <i>lnuB</i> , phenicol resistance gene <i>catQ</i> and tetracycline resistance gene
202	tet44 were found to be unique to digestate by both methods.
203	Although the richness of ARGs and MGEs was higher in food waste samples,
204	absolute abundances of individual genes normalized per sample dry weight reached
205	higher levels in digestates (Fig. 4) according to HT-qPCR array results calculated based
206	on abundance of 16S rRNA gene per gram of dry sample (tool 1.1 in Fig. 1, Fig. S2 in
207	supplemental material). Most prevalent ARG types in final digestates (Fig. 4B) included
208	MLS (genes <i>ere(A)</i> , <i>erm(F)</i> , <i>erm(O)</i> , <i>lnu(F)</i> , <i>lnuB</i> , <i>mef(B)</i> , <i>mphA</i>), aminoglycoside
209	(genes aac3-Via, aadE, aph4ib) and tetracycline (genes tet44, tetD, tetM, tetW) with
210	absolute abundances of individual genes ranging between 10^7 and 10^8 copies/g-dw.
211	Absolute abundances of ARGs in food waste samples ranged between 10^4 and 10^7
212	copies/g-dw. MGEs followed a similar pattern to ARGs with more genes detected in food

waste but higher absolute abundances of individual genes per gram of sample dry weightdetected in digestates (Fig. 4C).

215	Genomic context of ARGs. In order to study the genomic context of ARGs, total
216	community metagenome sequencing reads were assembled into longer contigs using
217	MEGAHIT (tool 3.6 in Fig. 1) and metaSPAdes (tool 3.7 in Fig. 1) assemblers (Table S6
218	in supplemental material), followed by detection of ARGs on contigs (tool 3.10 in Fig. 1)
219	and identification of plasmid sequences carrying ARGs (tool 3.8 in Fig. 1) (Table S7 in
220	supplemental material).
221	On average, 0.10% of all assembled contigs carried ARGs in digester feed, while
222	only 0.003% of contigs identified in digestion products included ARGs (Table S8 in
223	supplemental material). More than 90% of ARG-carrying contigs in all samples included
224	only one ARG, however, contigs with multiple ARGs were also observed with up to five
225	ARGs per contig (Table S8 in supplemental material) detected in digester feed. Contigs
226	with multiple ARGs typically carried subunits of multidrug efflux systems such as
227	MdtABC-TolC coupled with two-component regulatory systems for efflux proteins (such
228	as BaeSR).
229	Identification of plasmids from ARG-carrying contigs revealed that on average
230	32% of ARGs detected in digestion substrates were located on plasmids (Table 1)
231	indicating their potential for HGT. The distribution of plasmid ARGs resembled the
232	pattern of ARGs identified from short sequencing reads with multidrug resistance genes

- being the most abundant type in digestion substrates (Fig. S3 in supplemental material).
- Proportion of plasmid ARGs in digestion products varied between 33.3% and 60.0%,
- although the number of detected ARGs remained low (11 ARGs on plasmids in DG74,

- . .

.

. - -

. .

. ~ .

236	24 ARGs in DG/8, and 20 ARGs in UASB, respectively; Table 1). ARGs identified as
237	chromosomal accounted for 8.3 to 28.9% of ARGs across all samples, remaining below
238	the respective values for plasmid ARGs in all cases (Table 1).
239	Bacterial hosts of ARGs. MEGAHIT-assembled contigs that were not identified
240	as plasmids were further annotated for their taxonomic affiliation (tool 3.9 in Fig. 1).

- 241 Figure 5 depicts the frequency of specific host-ARG pairs identified for most abundant
- bacterial genera in digester feed. Gammaproteobacterial genera Stenotrophomonas and
- 243 Acinetobacter clustered separately and were characterized by species-specific multidrug
- resistance efflux complexes and the corresponding regulatory systems.

.

- ----

. . .

. . . .

- 245 Stenotrophomonas carried subunits for SmeABC and SmeDEF efflux pumps as well as
- the SmeRS regulatory system formerly identified in *S. maltophilia* (42, 43).
- 247 Acinetobacter carried subunits for AdeIJK and AdeFGH multidrug efflux pumps together
- 248 with multidrug resistance genes *adeB*, *abeM*, transcriptional activator *mexT* and
- aminoglycoside resistance gene APH(3')-Ia. In addition to Stenotrophomonas and
- 250 Acinetobacter, other identified ARG host genera in the digester feed included
- 251 Pseudomonas, Enterobacter, Klebsiella, Raoultella, Rahnella, Rouxiella, Pantoea,
- 252 Serratia, Erwinia, Citrobacter, Leclercia and Lelliottia that formed a network by sharing
- 253 connections with ARGs belonging mainly to multidrug resistance type. For example,
- 254 Pseudomonas was characterized by the highest number of ARG connections carrying
- subunits of the MexEF-OprN efflux system; similarly, *Enterobacter* and *Klebsiella*
- shared connections to subunits of MdtABC-TolC and AcrAB-TolC efflux systems. In
- addition to multidrug resistance genes, genes conferring resistance to polymyxin were
- related to multiple host genera in digester feed: *rosA* and *rosB* were both found in

259 Serratia, Rahnella and Rouxiella, arnA was found in Citrobacter and Ps
--

- 260 *pmrE* in *Enterobacter* and *Klebsiella*, and *pmrA* in *Raoultella*.
- 261 Only a limited number of ARGs were detected and their host organisms
- taxonomically determined in digestion products (Table 2). Bacterial hosts of ARGs in
- 263 digestion products included genera formerly identified in anaerobic digesters associated
- with microbial degradation processes, such as *Fermentimonas*, and several sulphate-
- 265 reducing genera (Desulfobacca, Desulfococcus). More importantly, Burkholderia and
- 266 Arcobacter (both carrying isoniazid resistance gene katG), Streptococcus (carrying MLS
- 267 resistance gene *mefA*) and *Escherichia* (carrying MLS resistance gene *mefB*) were
- 268 identified as ARG host organisms of clinical relevance.
- 269 To further investigate the potential hosts of ARGs, the assembled contigs were
- binned into 201 metagenome assembled genomes (MAGs) (tools 3.11, 3.12 and 3.13 in
- Fig. 1) with >75% completeness and <25% redundancy (Table S9, Fig. S4 in
- supplemental material). Notably, MAGs found in digestion products (DG74, DG78,
- 273 UASB) accounted for 75% of all assembled MAGs and did not contain ARGs. On the
- 274 contrary, four MAGs containing ARGs were identified in digester feed (FW1, FW2,
- 275 LBF1, LBF2) (Table 3). Interestingly, a genome belonging to the plant pathogenic genus
- 276 Erwinia carried 19 ARGs conferring resistance to aminoglycoside, bacitracin, polymyxin,
- 277 quinolone and sulfonamide antibiotics while also harboring several genes for multidrug
- 278 resistance. Lactic acid bacteria *Lactococcus lactis* and *Lactobacillus* that are generally
- associated with probiotic features displayed resistance for MLS (*Lactococcus lactis* genes
- 280 *lmrC*, *lmrD*, *lmrP*), tetracycline (*Lactococcus lactis* genes *tetM*, *tetS*) and trimethoprim
- 281 (Lactobacillus gene dfrE). Additionally, a MAG belonging to the family

282	Bifidobacteriaceae carried the inner membrane transporter gene mdsB of multidrug and
283	metal efflux complex MdsABC. The four ARG-containing MAGs that were highly
284	abundant in digester feed were not identified in digestion products (Fig. S4 in
285	supplemental material).
286	
287	DISCUSSION
288	AD is widely used for treatment of solid organic waste providing waste stabilization as
289	well as energy (biogas) production. More recently, the potential of AD to reduce
290	antibiotic resistant bacteria and ARGs has been investigated with mixed results (31). In
291	this study, we examined the effect of co-digestion of food waste, paper and cardboard on
292	microbial community composition and resistome using SSU rRNA gene sequencing, total
293	community metagenome sequencing and quantitative PCR. The studied AD system that
294	was a lab-scale solid-state leach bed reactor with leachate recycle via a UASB reactor
295	that has been thoroughly described elsewhere (40). This AD system performed very well
296	over 1.5 years of operation, also maintaining a stable microbial community (44).
297	Microbial community composition of digester feed and digestion products.
298	Microbial community composition has been suggested as one of the main drivers of
299	ARGs in anaerobic digesters (35, 45). The microbial communities of the digester feed – a

300 mix of food waste and lignocellulosic fibres – revealed aerobes and facultative aerobes
301 that were distinct from the strictly anaerobic bacteria and archaea inside the digester. The

- 302 FW alone and the blended LBF samples had very similar taxonomic profiles indicating
- that food waste was the main contributor to the microbial community in the digester feed,

304	consisting mainly of microorganisms native to food products or of the microbes that
305	colonized food waste during collection and storage prior to AD.
306	Previous studies on food microbiomes have highlighted the role of fermentative
307	organisms such as lactic acid bacteria in fermentation processes (46). Several OTUs
308	belonging to the genera Lactobacillus and Leuconostoc were identified in the food waste
309	used in this study, indicating the presence of fermented food products (e.g. cheese,
310	sourdough) or the start of degradation processes during the collection, storage and pre-
311	processing of food waste prior to AD. Lactobacillus and Leuconostoc may also indicate
312	spoilage of meat as previously shown for vacuum-packed pork (47), beef (48-50),
313	minced meat (51) and sausages (52, 53). Besides lactic acid bacteria, several genera from
314	the family Enterobacteriaceae were detected in digester feed, including Citrobacter,
315	Enterobacter, Erwinia, Kluyvera, Pantoea, Serratia and Lelliottia. Jackson et al. (54)
316	identified Serratia, Erwinia, Enterobacter and Pantoea from leafy salad vegetables,
317	which are also common in food waste. While many of the identified Enterobacteriaceae
318	are widely recognized as plant pathogens or symbionts (e.g. Erwinia), potential human
319	pathogens were also detected (e.g. Enterobacter, Serratia).
320	Special attention should be given to the occurrence of ESKAPE pathogens -
321	Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
322	baumannii, Pseudomonas aeruginosa, and Enterobacter species, that are common causes
323	of nosocomial infections and characterized by various antimicrobial resistance
324	mechanisms (55). A total of 15 OTUs annotated to S. aureus, K. pneumoniae, A.
325	baumannii or P. aeruginosa were found in very low abundance in digester feed (each
326	with relative abundance below 0.12% of total OTUs), while none of these were detected

327 in digestion products. One hundred and two (102) OTUs were annotated to Enterobacter 328 comprising up to 0.13% of OTUs in digester feed, while none was detected in digestion 329 products. Thus, ESKAPE pathogens were detectable in relatively low abundance in the 330 digester feed used in this study but did not survive anaerobic treatment. 331 The microbial community after AD was completely different from that in the 332 feed. Hydrolytic, fermenting, acidogenic, acetogenic and methanogenic microorganisms 333 comprise a typical microbial community in a stable AD process. Representatives from the 334 phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes and Proteobacteria that 335 have been connected to hydrolysis, fermentation and acidogenesis (56) were identified in 336 the bacterial communities of the digestate samples in this study. As expected, digestates 337 exhibited abundant archaeal communities responsible for methane production. 338 Acetoclastic methanogen *Methanosaeta* was identified as the dominant archaeal genus 339 (reaching up to 72.6% of total archaeal OTUs in DG74), which has been noted before for 340 digesters with high acetate concentration (57, 58). Members of the orders 341 Methanobacteriales and Methanomicrobiales commonly identified in anaerobic digesters 342 treating food waste (59–61) were also present in the digestates of the current study. Thus, 343 a diverse methanogenic community achieved stable methane production, as evidenced by 344 substantial feedstock degradation and biogas production rates (40). 345 ARGs in digester feed and digestion products. ARGs were identified in all 346 samples, in digester feed as well as in AD products. Higher richness as well as higher 347 relative abundance of individual ARGs per 16S rRNA gene was found in digester feed 348 compared to digestion products indicating the ability of AD to reduce ARG diversity and 349 abundance. Total relative abundance of ARGs per 16S rRNA gene reached 0.84

ARG/16S rRNA gene in digester feed (LBF1), which is comparable to ARG levels in faeces and wastewater from livestock farms (36), while the respective value in digestion products was below 0.05 ARG/16S rRNA (0.04 ARG/16S rRNA in UASB), comparable to natural environments such as soils, sediments and river water (36). Thus, AD clearly reduced ARG values from levels associated with high contamination to environmental background levels.

356 Yet, although AD significantly reduced the abundance of ARGs, a limited number 357 of ARGs were also detected in digestion products. Total community metagenome 358 sequencing and HT-qPCR array both detected ARGs in digestion products that were low in abundance relative to the total microbial population (as shown by total community 359 360 metagenome sequencing), but achieved high absolute abundance per gram dry mass of 361 digestate (reaching 10⁸ copies/g-dw for individual genes and 10⁹ copies/g-dw in total) 362 due to high bacterial loads in the digestates (as shown by HT-qPCR array). Same order of 363 magnitude absolute abundance values of individual ARGs detected by qPCR have also 364 been reported previously for anaerobic digestates of FW (62). Thus, the effectiveness of 365 AD on treating waste containing ARGs is a function of which microbes can grow in the 366 AD system. In this case study, ARGs from food waste microbes were eliminated while 367 ARGs present in the microbes involved in the digestion process were more abundant in 368 the final digestate, and were at high absolute abundance owing to the high concentration 369 of microbes generally after digestion. Future experiments should focus on post-treatment 370 of digested solids, such as additional aerobic curing to reduce odor and stabilize waste, to 371 determine the ultimate environmental load of ARGs associated with land application of 372 anaerobic digestates.

373	Special attention should be given to the mobility of ARGs that can be transferred
374	from environmental bacteria to human pathogens or vice versa as shown previously (63).
375	In this study, on average, 32% of ARGs in assembled contigs from digester feed were
376	located on plasmids, indicating their potential mobility. Similar plasmid proportions from
377	total assembled contigs have also been found in photobioreactor microbial communities
378	(64) and microbial mats inhabiting mine waters (65). The HT-qPCR array detected a
379	wide array of MGEs including insertional sequences, integrases, transposases and
380	plasmids mostly in food waste but also in digestates. Class 1 integron-integrase gene intI1
381	has been suggested as a proxy for anthropogenic pollution (66) and was also found in
382	digester feed (in the range of 10^5 – 10^6 copies/g-dw) as well as in digestion products (10^8
383	copies/g-dw) of this study. The occurrence of <i>intI1</i> in digestion products correlates with
384	the limited number of ARGs detected in the digestates of this study, showing that
385	anthropogenic impact remains detectable after AD.
386	Potential bacterial host organisms of ARGs. Correlation and network analysis
387	have been used in previous studies to link ARGs to their potential host organisms (35–37,
388	67). Here we used a combination of metagenomic assembly and binning methods to
389	detect taxonomically annotated contigs and MAGs with ARGs.
390	Taxonomic annotation of ARG-containing contigs showed several connections
391	between bacterial genera and ARGs. Among others, the genera Enterobacter, Klebsiella,
392	Acinetobacter and Pseudomonas that include medically critical ESKAPE-pathogens were
393	connected to ARGs in digester feed conferring resistance to multidrug, MLS, polymyxin,
394	aminoglycoside, triclosan and bacitracin antibiotics. The high number of multidrug
395	resistance genes is especially worrisome as these genes have the potential to confer

396 resistance to several types of antibiotics. Besides that, 12 out of 14 of the most abundant 397 ARG-containing genera in digester feed also included resistance genes to polymyxin, a 398 last-resort antibiotic used against Gram-negative bacteria. This highlights the spread of 399 ARGs against last-resort antibiotics among various bacterial genera. ARG-containing 400 genera that include clinically important species were also detected in digestion products, 401 including Burkholderia, Arcobacter, Streptococcus and Escherichia indicating the risks 402 associated with the possible use of anaerobic digestates. 403 Using metagenomic binning we were able to detect four ARG-containing MAGs 404 originating from digester feed. A MAG annotated as *Erwinia* was found to carry 19 405 ARGs conferring resistance to several classes of antibiotics. Although Erwinia is 406 commonly known as a plant pathogen, few cases of human infections have also been 407 reported (68, 69). As *Erwinia* is closely related to other *Enterobacteriaceae* that include 408 several known human pathogens, horizontal transfer of ARGs from plant-pathogenic 409 *Erwinia* to human pathogenic genera may occur. Additionally, MAGs annotated as lactic 410 acid bacteria Lactococcus lactis and Lactobacillus were found to carry ARGs. These 411 bacteria are extensively used for food fermentation processes and are often regarded as 412 probiotics, however, increasing evidence suggests they are reservoirs of potentially 413 transmissible ARGs and may play a crucial role in the acquisition of AMR via food (70). 414 It is noteworthy, that although 75% of all MAGs originated from digestion products, 415 these MAGs did not contain ARGs. This correlates with the low abundance of ARGs in 416 digestion products detected by other methods used in this study. 417 **Methodological aspects of ARG detection.** In this study total community

418 metagenome data and HT-qPCR data were used to characterize the diversity and

419	abundance of ARGs. While the metagenomic approach has the potential to detect higher
420	diversity of ARGs due to large reference databases, qPCR of ARGs, although being
421	limited in the number of ARGs even in high-throughput applications, can provide higher
422	sensitivity (71). Our results showed that both metagenomic and HT-qPCR approach
423	detected a broad spectrum of ARGs with higher diversity of ARGs in digester feed
424	compared to digestion products. Among the limited number of ARGs detected in
425	digestion products mphA, lnuB, catQ and tet44 were found to be unique to digestate by
426	both metagenomic and HT-qPCR approach. Additionally, HT-qPCR provided absolute
427	abundance values for individual ARGs that could be related back to the number of gene
428	copies present per gram of digester feed and in digested solids. This type of quantitative
429	information on ARGs is required for assessing the risks associated with food waste and
430	the use of anaerobic digestates as agricultural fertilizers. Thus, a combination of shotgun
431	metagenomic and qPCR approach is recommended for a comprehensive view of a
432	sample's resistome and for the assessment of AMR risks.
433	In addition to the annotation of short sequencing reads, we used assembled
434	contigs to provide genomic context of ARGs. The distribution of ARG types on
435	assembled contigs closely resembled that on short sequencing reads, additionally,
436	assembled data provided information about genomic location and potential host
437	organisms of ARGs, which cannot be determined from short sequencing reads. Although
438	assembled contigs provide better resolution for taxonomic and functional annotation than
439	short sequencing reads, assembly may also introduce biases (71). Similar problem has
440	been noted for metagenomic binning, which often has limited power for analysis of
441	complex microbial communities. This was also evident in the results of the current study

442	with 75% of MAGs (151 MAGs) originating from digestion products and only 25% of
443	MAGs (50 MAGs) originating from the heterogeneous microbial communities of digester
444	feed. Thus, our findings should be interpreted in light of the limitations of current
445	methods used for taxonomic and functional analysis of complex microbial communities.
446	In conclusion, using a combination of metagenome sequencing, assembly and
447	binning as well as quantitative PCR analysis is recommended to estimate the diversity
448	and abundance of ARGs and to situate the ARGs within their genomic context and
449	potential host organisms. The detection of potential host organisms and genomic context
450	allows for a more accurate risk evaluation associated with solid organic wastes.
451	
452	MATERIALS AND METHODS
453	Anaerobic digestion system and feedstock. A lab-scale anaerobic digestion
454	system designed for the treatment of solid organic waste was operated for a total of 88
455	weeks. System design, its operating parameters and feedstock have been described in
456	detail by Guilford et al. (40). In short, the anaerobic digestion system consisted of 6 leach
457	beds (8.5 L each), an upflow anaerobic sludge blanket reactor (UASB, 27.5 L) treating
458	leach bed leachate, a UASB feed tank (17.5 L), a leach bed feed tank (17.5 L), three
459	peristaltic pumps to recirculate leachate, two wet-tip gas meters for biogas measurement,
460	and an automated control system. The system was maintained at 37-39°C with
461	continuous recirculation of the leachate. It was operated in sequential batch feeding
462	mode: each week one of the leach beds was filled with a mixture of lignocellulosic fibres
463	and food waste (FW) making up the leach bed feed (LBF), recovered from local
464	residential waste recycling programs. Lignocellulosic fibres included shredded cardboard,

boxboard, fine paper and newsprint; food waste was collected from a residential green

466 bin program and sorted manually to remove bones and inorganic materials. Solids

- 467 retention time in the system was six weeks.
- 468 **Sampling and DNA extraction.** Samples for microbial community analysis were
- 469 collected during weeks 75–84 of the experiment, during which FW contributed 21.3% of
- 470 the total COD in the feedstock and the system exhibited stable performance with a
- 471 methane yield of 246 L-CH₄ kg-VS_{added}⁻¹ and a substrate destruction efficiency, as

472 volatile solids (VS), of 63.5% (40). Ten 50 mL samples were collected: three food waste

473 samples FW1, FW2, FW3 (FW source and composition has been described by Guilford

474 *et al.* (40)); three leach bed feed samples LBF1, LBF2, LBF3 consisting of the respective

475 food waste mixed with lignocellulosic fibres; three digestate samples DG74, DG76,

476 DG78 collected after 6 weeks of digestion; and one sample from the microbial granular

477 sludge of the UASB reactor (UASB). It should be noted that DG74, DG76 and DG78

478 were not direct digestion products of LBF1, LBF2 and LBF3, respectively, although

479 derived from the same source of FW and lignocellulosic fibres used for LBF1, LBF2 and

480 LBF3. All samples were preserved at –20°C until DNA extraction.

481 Total community DNA was extracted using the PowerMax Soil DNA Isolation

482 Kit (MoBio Laboratories, Carlsbad, CA, USA) from 5 g of sample according to

483 manufacturer's protocol. FW and LBF samples were further purified with 5 M NaCl and

484 100% ethanol as recommended by the manufacturer. The quantity and quality of DNA

485 extracts was confirmed using NanoDrop spectrophotometer ND-1000 (Wilmington, DE,

486 USA). All DNA extracts were stored at -80° C.

487	Quantitative PCR analyses. Quantitative PCR (qPCR) was used to quantify total
488	bacterial (method 1.1 in Fig. 1) and archaeal (method 1.2 in Fig. 1) 16S rRNA gene
489	copies using a CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories,
490	Hercules, CA, USA) and previously published primers targeting most bacterial 16S
491	rRNA genes: Bac1055f (5'-ATGGCTGTCGTCAGCT-3') and Bac1392r (5'-
492	ACGGGCGGTGTGTAC-3') (72, 73), and most archaeal 16S rRNA genes: Arch787f
493	(5'-ATTAGATACCCGBGTAGTCC-3') and Arch1059r (5'-GCCATGCACCWCCTCT-
494	3') (74). qPCR reactions were performed in 20 μ L comprising 10 μ L SsoFast EvaGreen
495	Supermix (Bio-Rad Laboratories, Hercules, CA, USA), 0.5 μ M each forward and reverse
496	primer, 2 μ L template DNA, and sterile UltraPure distilled water. The thermocycling
497	program was as follows: initial denaturation at 98°C for 2 min, followed by 40 cycles of
498	denaturation at 98°C for 5 s, annealing at Tm (55°C for bacterial 16S rRNA, 60°C for
499	archaeal 16S rRNA) for 10 s, and final melting curve analysis in the range of 65–95°C
500	(steps of 0.5°C for 5 s). All samples were measured in three technical replicates and
501	every qPCR run included negative controls containing all reaction components except for
502	template DNA. Serial dilutions of plasmid stocks containing corresponding 16S rRNA
503	gene fragments were used to generate standard curves. Amplification data was analyzed
504	using CFX Manager Software v.3.1. Copy numbers of bacterial and archaeal 16S rRNA
505	genes per gram of sample dry weight were calculated as follows: AbsoluteAbundance =
506	StartingQuantity * DNAElutionVolume / (SampleWeight*SampleDW) where
507	StartingQuantity represents the gene copies in 1 μ L DNA extract as estimated by the
508	CFX Manager Software, DNAElutionVolume was 5000 µL for DG74, DG76, DG78,
509	UASB and 100 μ L for FW1, FW2, FW3, LBF1, LBF2, LBF3, SampleWeight was the

mass of the sample used for DNA extraction and SampleDW was the dry weight of thesample material used for DNA extraction.

512	A high-throughput qPCR (HT-qPCR) array was used for the quantification of
513	ARGs (method 4.1 in Fig. 1) and MGEs (method 4.2 in Fig. 1) in FW1, FW2, DG74 and
514	DG78. DNA extracts were sent to Dr Robert Stedtfeld at Michigan State University
515	(USA) who performed the analysis. A total of 384 primer sets were used targeting 315
516	ARGs and 57 MGEs, additionally taxonomic marker genes were included in the array
517	(75). All HT-qPCR reactions were performed using Takara (previously WaferGen)
518	SmartChip real-time PCR system as described previously (76). In brief, 5184 parallel
519	qPCR reactions (100 nL) were dispensed into the SmartChip using the SmartChip
520	Multisample Nanodispenser, followed by thermal cycling in the SmartChip Cycler,
521	automatic melting process and initial data processing with SmartChip qPCR Software
522	(v.2.7.0.1) as described before (76). Wells with multiple melt peaks and wells with
523	amplification efficiency outside the range 1.75 to 2.25 were removed from analysis. Each
524	sample was analyzed by three technical replicates. Genes detected in only one of the
525	replicates were considered false positives and removed from analysis. Genomic copy
526	numbers were estimated using the formula in Looft et al. (77) with the exception of
527	setting detection limit to threshold cycle (Ct) 28 as suggested by Stedtfeld et al. (75).
528	Relative abundances of the studied genes were calculated as ratios to 16S rRNA:
529	RelativeAbundance _{gene} = GenomicCopyNumber _{gene} / GenomicCopyNumber ₁₆₅ . Absolute
530	abundances were determined by multiplying the relative abundance of a gene by 16S
531	rRNA absolute abundance (determined by regular qPCR analysis described above):
532	AbsoluteAbundance _{gene} = RelativeAbundance _{gene} * AbsoluteAbundance _{16S} . ARG

absolute abundances were visualized in R software using the package ComplexHeatmap

534 (78).

- 535 SSU rRNA gene amplicon sequencing and taxonomic analyses. SSU rRNA
- 536 gene sequencing with the universal primers 926f-modified (5'-
- 537 AAACTYAAAKGAATWGRCGG-3') and 1392r-modified (5'-
- 538 ACGGGCGGTGWGTRC-3') (modified from (79)) targeting the V6–V8 variable region
- of the 16S rRNA gene from bacteria and archaea as well as the 18S rRNA gene in
- 540 eukarya was performed at McGill University and Génome Québec Innovation Centre
- 541 (Canada) on Illumina MiSeq System (PE300). The analysis of sequencing reads was
- 542 performed with QIIME1 package (tool 2.1 in Fig. 1) (80) by joining forward and reverse
- reads (multiple join paired ends.py, min overlap 50 bp, max mismatch allowance 8),
- removing low-quality sequences (multiple_split_libraries_fastq.py, quality threshold 19),
- removing chimeric sequences and identifying operational taxonomic units at 97%
- 546 similarity (identify_chimeric_seqs.py, pick_open_reference_otus.py, method usearch61
- 547 (81), reference database SILVA release 128).
- 548 **Total community metagenome sequencing and bioinformatic workflow.** Total
- community metagenome sequencing of the samples FW1, FW2, LBF1, LBF2, DG74,
- 550 DG78, UASB was performed at University of Toronto Centre for the Analysis of
- 551 Genome Evolution and Function (Canada) on Illumina NextSeq500 Desktop Sequencer
- v2 using High Output flowcell (PE150). Bioinformatic workflow included quality control
- and trimming of the sequencing reads, taxonomic classification, metagenomic assembly
- and binning, and detection of ARGs. Sequence reads were trimmed with Trimmomatic
- 555 v.0.32 (82) (tool 3.1 in Fig. 1) using default settings for paired-end mode, additional

trimming to remove polyG sequences (≥30 bp) was performed with AfterQC v.0.9.1 (83)
(tool 3.2 in Fig. 1).

558	Quality-trimmed reads were subjected to taxonomic classification using Kaiju
559	v.1.4.5 (84) (tool 3.3 in Fig. 1) in greedy mode (allowed substitutions 5, minimum
560	required match length 11, minimum required match score 70) with bacterial, archaeal,
561	eukaryotic and viral protein sequences from the NCBI nr database as reference. To
562	further investigate microbial community composition, metaxa2 v.2.1 (85) (tool 3.4 in Fig.
563	1) was used to extract small subunit rRNA gene reads in metagenome mode with default
564	search criteria and reliability score cut-off 80.
565	Quality-trimmed reads were assembled into longer DNA contigs using
566	MEGAHIT v.1.1.1 (86) (tool 3.6 in Fig. 1) and metaSPAdes v.3.10.1 (87) (tool 3.7 in
567	Fig. 1) with default settings. Assemblies were compared using metaQUAST v.4.5 (88)
568	which also provided assembly statistics. Metagenome binning was performed using
569	MaxBin v.2.2.3 (89) (tool 3.11 in Fig. 1) and MetaBAT v.2.12 (90) (tool 3.12 in Fig. 1)
570	with default settings on the MEGAHIT assemblies. All genome bins produced by both
571	binning methods were dereplicated using dRep v.1.4.3 (91) (tool 3.13 in Fig. 1) with
572	default settings (ANI cut-off 99%, minimum genome completeness 75%, maximum
573	contamination 25%) and evaluated with CheckM v.1.0.7 (92). Quality of the resulting
574	metagenome-assembled genomes (MAGs) was defined as (Completeness -
575	5*Contamination) as suggested by Parks et al. (93). MAGs with quality >50 and
576	taxonomic classification to at least phylum level, were submitted to the JGI Integrated
577	Microbial Genomes and Microbiomes (IMG) database for annotation. Anvi'o v.5 (94)
578	was used for visualizing MAGs clustered based on the relative abundance of MAGs in

579 the samples: Euclidian distances were calculated from relative abundance estimates of 580 each MAG and clustering was performed using the ward linkage algorithm. Relative 581 abundance of each MAG was calculated as number of reads recruited to the MAG 582 divided by total reads recruited to that MAG across all samples. 583 ARGs from subsets of quality-trimmed sequencing reads (20 million 584 reads/sample) were determined with ARGs-OAP v.1.2 (41) (tool 3.5 in Fig. 1) using the 585 default reference database SARG and default settings. The same reference database was 586 also used to detect ARGs on assembled contigs by local BLASTp (evalue 1e-7, identity 587 percent 80, minimal alignment length 25) using protein coding genes annotated by JGI 588 IMG/M 4 version (95) as query sequences (tool 3.10 in Fig. 1). Contigs with multiple 589 ARGs were identified by a local python script that counted how many times a contig ID 590 appeared in the list of contigs that carried ARGs (Method S1 in supplemental material). 591 PlasFlow v.1.1 (65) with default settings was used to predict plasmid sequences from the 592 contigs with ARGs (tool 3.8 in Fig. 1). Taxonomic classification of the non-plasmid 593 contigs carrying ARGs was determined with Kaiju v.1.4.5 (84) in greedy mode 594 (maximum mismatches allowed 5, minimal required match length 11, minimal required 595 match score 70, filtering of query sequences containing low-complexity regions on) (tool 596 3.9 in Fig. 1) using NCBI RefSeq reference database and visualized with Cytoscape 597 v.3.6.1 (96) by selecting 10 most abundant ARGs from all genera above relative 598 abundance of 1%. The presence of ARGs in MAGs was determined by a local python 599 script comparing a list of ARG-carrying contigs to the list of contigs included in the 600 MAG (tool 3.14 in Fig. 1, Method S2 in supplemental material).

601	Accession numbers. Sequencing data from SSU rRNA gene sequencing
602	(accession numbers provided in Table S1 in supplemental material) and total community
603	metagenome sequencing (accession numbers provided in Table S3 in supplemental
604	material) is available on NCBI Sequence Read Archive under BioProject PRJNA501900,
605	SRA study SRP167436, accession numbers SRX4965138-47 (SSU rRNA gene
606	sequencing) and SRX4986160-6 (total community metagenome sequencing).
607	Additionally, metagenome assemblies (accession numbers provided in Table S6 in
608	supplemental material) and metagenome assembled genomes (accession numbers
609	provided in Table S9 in supplemental material) have been deposited to the JGI Integrated
610	Microbial Genomes and Microbiomes (https://img.jgi.doe.gov/cgi-bin/m/main.cgi).
611	
612	ACKNOWLEDGEMENTS
613	This research was funded by the Natural Sciences and Engineering Research Council of
614	Canada (Collaborative Research and Development Grant), and by Miller Waste Systems
615	Inc. We would like to thank Dr. Robert Stedtfeld from Michigan State University for his
616	help advising and running the high-throughput qPCR analysis.

619 REFERENCES

620	1.	Pepper IL, Brooks JP, Gerba CP. 2018. Antibiotic Resistant Bacteria in Municipal
621		Wastes: Is There Reason for Concern? Environ Sci Technol 52:3949–3959.
622	2.	WHO. 2015. Global action plan on antimicrobial resistance. World Health
623		Organization, Geneva, Switzerland.
624	3.	O'Neill J. 2016. Tackling Drug-Resistant Infections Globally: Final Report and
625		Recommendations. The Review on Antimicrobial Resistance. HM Government
626		and Wellcome Trust.
627	4.	Robinson TP, Bu DP, Carrique-Mas J, Fèvre EM, Gilbert M, Grace D, Hay SI,
628		Jiwakanon J, Kakkar M, Kariuki S, Laxminarayan R, Lubroth J, Magnusson U,
629		Thi Ngoc P, Van Boeckel TP, Woolhouse MEJ. 2016. Antibiotic resistance is the
630		quintessential One Health issue. Trans R Soc Trop Med Hyg 110:377-80.
631	5.	Bengtsson-Palme J, Kristiansson E, Larsson DGJ. 2018. Environmental factors
632		influencing the development and spread of antibiotic resistance. FEMS Microbiol
633		Rev 42.
634	6.	Huijbers PMC, Blaak H, de Jong MCM, Graat EAM, Vandenbroucke-Grauls
635		CMJE, de Roda Husman AM. 2015. Role of the Environment in the Transmission
636		of Antimicrobial Resistance to Humans: A Review. Environ Sci Technol
637		49:11993–12004.
638	7.	D'Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D,
639		Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. 2011.
640		Antibiotic resistance is ancient. Nature 477:457–61.
641	8.	Durso LM, Wedin DA, Gilley JE, Miller DN, Marx DB. 2016. Assessment of

642		Selected Antibiotic Resistances in Ungrazed Native Nebraska Prairie Soils. J
643		Environ Qual 45:454–462.
644	9.	Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, Desai
645		MM. 2015. Functional Characterization of Bacteria Isolated from Ancient Arctic
646		Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics. PLoS One
647		10:e0069533.
648	10.	Hatosy SM, Martiny AC. 2015. The ocean as a global reservoir of antibiotic
649		resistance genes. Appl Environ Microbiol 81:7593–9.
650	11.	Czekalski N, Sigdel R, Birtel J, Matthews B, Bürgmann H. 2015. Does human
651		activity impact the natural antibiotic resistance background? Abundance of
652		antibiotic resistance genes in 21 Swiss lakes. Environ Int 81:45-55.
653	12.	Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F,
654		Bürgmann H, Sørum H, Norström M, Pons M-N, Kreuzinger N, Huovinen P,
655		Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL. 2015. Tackling
656		antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–7.
657	13.	Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P. 2018. Anaerobic
658		bioconversion of food waste into energy: A critical review. Bioresour Technol
659		248:37–56.
660	14.	Hoornweg D, Bhada-Tata P. 2012. What a Waste : A Global Review of Solid
661		Waste Management. World Bank, Washington, DC.
662	15.	Friedman M. 2015. Antibiotic-Resistant Bacteria: Prevalence in Food and
663		Inactivation by Food-Compatible Compounds and Plant Extracts. J Agric Food
664		Chem 63:3805–3822.

665	16.	Bengtsson-Palme J. 2017. Antibiotic resistance in the food supply chain: where
666		can sequencing and metagenomics aid risk assessment? Curr Opin Food Sci
667		14:66–71.
668	17.	Chajęcka-Wierzchowska W, Zadernowska A, Łaniewska-Trokenheim Ł. 2016.
669		Diversity of Antibiotic Resistance Genes in Enterococcus Strains Isolated from
670		Ready-to-Eat Meat Products. J Food Sci 81:M2799-M2807.
671	18.	Noyes NR, Yang X, Linke LM, Magnuson RJ, Dettenwanger A, Cook S,
672		Geornaras I, Woerner DE, Gow SP, McAllister TA, Yang H, Ruiz J, Jones KL,
673		Boucher CA, Morley PS, Belk KE. 2016. Resistome diversity in cattle and the
674		environment decreases during beef production. Elife 5:e13195.
675	19.	Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, Yang H,
676		Geornaras I, Woerner DR, Jones KL, Ruiz J, Boucher C, Morley PS, Belk KE.
677		2016. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne
678		Pathogens within the Microbiome of the Beef Production Chain. Appl Environ
679		Microbiol 82:2433–43.
680	20.	Oliveira M, Viñas I, Usall J, Anguera M, Abadias M. 2012. Presence and survival
681		of Escherichia coli O157:H7 on lettuce leaves and in soil treated with
682		contaminated compost and irrigation water. Int J Food Microbiol 156:133-140.
683	21.	Rahube TO, Marti R, Scott A, Tien Y-C, Murray R, Sabourin L, Zhang Y, Duenk
684		P, Lapen DR, Topp E. 2014. Impact of fertilizing with raw or anaerobically
685		digested sewage sludge on the abundance of antibiotic-resistant coliforms,
686		antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at
687		harvest. Appl Environ Microbiol 80:6898–907.

688	22.	Holvoet K, Sampers I, Callens B, Dewulf J, Uyttendaele M. 2013. Moderate
689		prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce,
690		irrigation water, and soil. Appl Environ Microbiol 79:6677-83.
691	23.	Marti R, Scott A, Tien Y-C, Murray R, Sabourin L, Zhang Y, Topp E. 2013.
692		Impact of Manure Fertilization on the Abundance of Antibiotic-Resistant Bacteria
693		and Frequency of Detection of Antibiotic Resistance Genes in Soil and on
694		Vegetables at Harvest. Appl Environ Microbiol 79:5701–5709.
695	24.	Diarra MS, Delaquis P, Rempel H, Bach S, Harlton C, Aslam M, Pritchard J, Topp
696		E. 2014. Antibiotic Resistance and Diversity of Salmonella enterica Serovars
697		Associated with Broiler Chickens. J Food Prot 77:40-49.
698	25.	Yang B, Cui Y, Shi C, Wang J, Xia X, Xi M, Wang X, Meng J, Alali WQ, Walls I,
699		Doyle MP. 2014. Counts, Serotypes, and Antimicrobial Resistance of Salmonella
700		Isolates on Retail Raw Poultry in the People's Republic of China. J Food Prot
701		77:894–902.
702	26.	Elhadi N. 2014. Prevalence and antimicrobial resistance of Salmonella spp. in raw
703		retail frozen imported freshwater fish to Eastern Province of Saudi Arabia. Asian
704		Pac J Trop Biomed 4:234–238.
705	27.	Moore JE, Huang J, Yu P, Ma C, Moore PJ, Millar BC, Goldsmith CE, Xu J. 2014.
706		High diversity of bacterial pathogens and antibiotic resistance in salmonid fish
707		farm pond water as determined by molecular identification employing 16S rDNA
708		PCR, gene sequencing and total antibiotic susceptibility techniques. Ecotoxicol
709		Environ Saf 108:281–286.
710	28.	Silveira-Filho VM, Luz IS, Campos APF, Silva WM, Barros MPS, Medeiros ES,

711		Freitas MFL, Mota RA, Sena MJ, Leal-Balbino TC. 2014. Antibiotic Resistance
712		and Molecular Analysis of Staphylococcus aureus Isolated from Cow's Milk and
713		Dairy Products in Northeast Brazil. J Food Prot 77:583-591.
714	29.	Lee J, Shin SG, Jang HM, Kim YB, Lee J, Kim YM. 2017. Characterization of
715		antibiotic resistance genes in representative organic solid wastes: Food waste-
716		recycling wastewater, manure, and sewage sludge. Sci Total Environ 579:1692-
717		1698.
718	30.	Vasco-Correa J, Khanal S, Manandhar A, Shah A. 2018. Anaerobic digestion for
719		bioenergy production: Global status, environmental and techno-economic
720		implications, and government policies. Bioresour Technol 247:1015–1026.
721	31.	Youngquist CP, Mitchell SM, Cogger CG. 2016. Fate of Antibiotics and Antibiotic
722		Resistance during Digestion and Composting: A Review. J Environ Qual 45:537.
723	32.	Pu C, Liu H, Ding G, Sun Y, Yu X, Chen J, Ren J, Gong X. 2018. Impact of direct
724		application of biogas slurry and residue in fields: In situ analysis of antibiotic
725		resistance genes from pig manure to fields. J Hazard Mater 344:441-449.
726	33.	Zhang J, Mao F, Loh K-C, Gin KY-H, Dai Y, Tong YW. 2018. Evaluating the
727		effects of activated carbon on methane generation and the fate of antibiotic
728		resistant genes and class I integrons during anaerobic digestion of solid organic
729		wastes. Bioresour Technol 249:729–736.
730	34.	Zhang J, Chen M, Sui Q, Wang R, Tong J, Wei Y. 2016. Fate of antibiotic
731		resistance genes and its drivers during anaerobic co-digestion of food waste and
732		sewage sludge based on microwave pretreatment. Bioresour Technol 217:28-36.
733	35.	Luo G, Li B, Li L-G, Zhang T, Angelidaki I. 2017. Antibiotic Resistance Genes

734		and Correlations with Microbial Community and Metal Resistance Genes in Full-
735		Scale Biogas Reactors As Revealed by Metagenomic Analysis. Environ Sci
736		Technol 51:4069–4080.
737	36.	Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, Zhang T. 2015. Metagenomic and
738		network analysis reveal wide distribution and co-occurrence of environmental
739		antibiotic resistance genes. ISME J 9:2490-2502.
740	37.	Jang HM, Shin J, Choi S, Shin SG, Park KY, Cho J, Kim YM. 2017. Fate of
741		antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of
742		chemically enhanced primary treatment (CEPT) sludge. Bioresour Technol
743		244:433–444.
744	38.	Stokes HW, Gillings MR. 2011. Gene flow, mobile genetic elements and the
745		recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS
746		Microbiol Rev 35:790–819.
747	39.	Guilford NGH. 2017. The Anaerobic Digestion of Organic Solid Wastes of
748		Variable Composition. PhD Thesis. University of Toronto.
749	40.	Guilford NGH, Lee HP, Kanger K, Meyer T, Edwards EA. 2019. Solid state
750		anaerobic digestion of mixed organic waste: the synergistic effect of food waste
751		addition on the destruction of paper and cardboard. bioRxiv
752		https://doi.org/10.1101/564203.
753	41.	Yang Y, Jiang X, Cai B, Ma L, Li B, Zhang A, Cole JR, Tiedje JM, Zhang T.
754		2016. ARGs-OAP: Online Analysis Pipeline for Antibiotic Resistance Genes
755		Detection from Metagenomic Data Using an Integrated Structured ARG-database.
756		Bioinformatics 32:2346–2351.

757	42.	Alonso A, Martínez JL. 2000. Cloning and characterization of SmeDEF, a novel
758		multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents
759		Chemother 44:3079–86.
760	43.	Li X-Z, Zhang L, Poole K. 2002. SmeC, an outer membrane multidrug efflux
761		protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333-
762		43.
763	44.	Lee H. 2018. Characterization of the Microbial Community in a Sequentially Fed
764		Anaerobic Digester Treating Solid Organic Waste. University of Toronto.
765	45.	Miller JH, Novak JT, Knocke WR, Young K, Hong Y, Vikesland PJ, Hull MS,
766		Pruden A. 2013. Effect of Silver Nanoparticles and Antibiotics on Antibiotic
767		Resistance Genes in Anaerobic Digestion. Water Environ Res 85:411-421.
768	46.	De Filippis F, Parente E, Ercolini D. 2018. Recent Past, Present, and Future of the
769		Food Microbiome. Annu Rev Food Sci Technol 9:589–608.
770	47.	Nieminen TT, Dalgaard P, Björkroth J. 2016. Volatile organic compounds and
771		Photobacterium phosphoreum associated with spoilage of modified-atmosphere-
772		packaged raw pork. Int J Food Microbiol 218:86–95.
773	48.	Jääskeläinen E, Hultman J, Parshintsev J, Riekkola M-L, Björkroth J. 2016.
774		Development of spoilage bacterial community and volatile compounds in chilled
775		beef under vacuum or high oxygen atmospheres. Int J Food Microbiol 223:25–32.
776	49.	Säde E, Penttinen K, Björkroth J, Hultman J. 2017. Exploring lot-to-lot variation
777		in spoilage bacterial communities on commercial modified atmosphere packaged
778		beef. Food Microbiol 62:147–152.
779	50.	Ferrocino I, Greppi A, La Storia A, Rantsiou K, Ercolini D, Cocolin L. 2016.

780	Impact of Nisir	-Activated	Packaging	on Microbiota	of Beef Burger	s during
-----	-----------------	------------	-----------	---------------	----------------	----------

- 781 Storage. Appl Environ Microbiol 82:549–59.
- 51. Stoops J, Ruyters S, Busschaert P, Spaepen R, Verreth C, Claes J, Lievens B, Van
- 783 Campenhout L. 2015. Bacterial community dynamics during cold storage of
- 784 minced meat packaged under modified atmosphere and supplemented with
- 785 different preservatives. Food Microbiol 48:192–199.
- 786 52. Fougy L, Desmonts M-H, Coeuret G, Fassel C, Hamon E, Hézard B, Champomier-
- 787 Vergès M-C, Chaillou S. 2016. Reducing Salt in Raw Pork Sausages Increases
- 788 Spoilage and Correlates with Reduced Bacterial Diversity. Appl Environ
- 789 Microbiol 82:3928–3939.
- 53. Benson AK, David JRD, Gilbreth SE, Smith G, Nietfeldt J, Legge R, Kim J, Sinha
- R, Duncan CE, Ma J, Singh I. 2014. Microbial successions are associated with
- changes in chemical profiles of a model refrigerated fresh pork sausage during an
 80-day shelf life study. Appl Environ Microbiol 80:5178–94.
- 54. Jackson CR, Randolph KC, Osborn SL, Tyler HL. 2013. Culture dependent and
- independent analysis of bacterial communities associated with commercial saladleaf vegetables. BMC Microbiol 13:274.
- 797 55. Rice LB. 2008. Federal Funding for the Study of Antimicrobial Resistance in
 798 Nosocomial Pathogens: No ESKAPE. J Infect Dis 197:1079–1081.
- 799 56. Wang P, Wang H, Qiu Y, Ren L, Jiang B. 2018. Microbial characteristics in
- 800 anaerobic digestion process of food waste for methane production–A review.
- 801 Bioresour Technol 248:29–36.
- 802 57. Supaphol S, Jenkins SN, Intomo P, Waite IS, O'Donnell AG. 2011. Microbial

- 803 community dynamics in mesophilic anaerobic co-digestion of mixed waste.
- 804 Bioresour Technol 102:4021–4027.
- 58. Lin J, Zuo J, Ji R, Chen X, Liu F, Wang K, Yang Y. 2012. Methanogenic
- 806 community dynamics in anaerobic co-digestion of fruit and vegetable waste and
- 807 food waste. J Environ Sci 24:1288–1294.
- 808 59. Yi J, Dong B, Xue Y, Li N, Gao P, Zhao Y, Dai L, Dai X. 2014. Microbial
- 809 Community Dynamics in Batch High-Solid Anaerobic Digestion of Food Waste
- 810 Under Mesophilic Conditions. J Microbiol Biotechnol 24:270–279.
- 811 60. Kim YM, Jang HM, Lee K, Chantrasakdakul P, Kim D, Park KY. 2015. Changes
- 812 in bacterial and archaeal communities in anaerobic digesters treating different
- 813 organic wastes. Chemosphere 141:134–137.
- 814 61. Peng X, Zhang S, Li L, Zhao X, Ma Y, Shi D. 2018. Long-term high-solids
- anaerobic digestion of food waste: Effects of ammonia on process performance
 and microbial community. Bioresour Technol 262:148–158.
- 817 62. Zhang J, Zhang L, Loh K-C, Dai Y, Tong YW. 2017. Enhanced anaerobic
- 818 digestion of food waste by adding activated carbon: Fate of bacterial pathogens
- and antibiotic resistance genes. Biochem Eng J 128:19–25.
- Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G. 2012. The
 Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science (80337:1107–1111.
- 823 64. Nõlvak H, Truu M, Oopkaup K, Kanger K, Krustok I, Nehrenheim E, Truu J.
- 824 2018. Reduction of antibiotic resistome and integron-integrase genes in laboratory-
- scale photobioreactors treating municipal wastewater. Water Res 142:363–372.

826	65.	Krawczyk PS, Lipinski L, Dziembowski A. 2018. PlasFlow: predicting plasmid
827		sequences in metagenomic data using genome signatures. Nucleic Acids Res
828		46:e35.
829	66.	Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu Y-G. 2015. Using
830		the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J
831		9:1269–79.
832	67.	Zhang J, Chen M, Sui Q, Wang R, Tong J, Wei Y. 2016. Fate of antibiotic
833		resistance genes and its drivers during anaerobic co-digestion of food waste and
834		sewage sludge based on microwave pretreatment. Bioresour Technol 217:28-36.
835	68.	O'Hara CM, Steigerwalt AG, Hill BC, Miller JM, Brenner DJ. 1998. First report
836		of a human isolate of Erwinia persicinus. J Clin Microbiol 36:248–50.
837	69.	Shin SY, Song JH, Ko KS. 2008. First Report of Human Infection Due to Erwinia
838		tasmaniensis-Like Organism. Int J Infect Dis 12:e329–e330.
839	70.	Devirgiliis C, Zinno P, Perozzi G. 2013. Update on antibiotic resistance in
840		foodborne Lactobacillus and Lactococcus species. Front Microbiol 4:301.
841	71.	Ju F, Zhang T. 2015. Experimental Design and Bioinformatics Analysis for the
842		Application of Metagenomics in Environmental Sciences and Biotechnology.
843		Environ Sci Technol 49:12628–12640.
844	72.	Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ
845		detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev
846		59.
847	73.	Ferris MJ, Muyzer G, Ward DM. 1996. Denaturing gradient gel electrophoresis
848		profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat

849		community. Appl Environ Microbiol 62:340-6.
850	74.	Yu Y, Lee C, Kim J, Hwang S. 2005. Group-specific primer and probe sets to
851		detect methanogenic communities using quantitative real-time polymerase chain
852		reaction. Biotechnol Bioeng 89:670-679.
853	75.	Stedtfeld RD, Guo X, Stedtfeld TM, Sheng H, Williams MR, Hauschild K,
854		Gunturu S, Tift L, Wang F, Howe A, Chai B, Yin D, Cole JR, Tiedje JM,
855		Hashsham SA. 2018. Primer set 2.0 for highly parallel qPCR array targeting
856		antibiotic resistance genes and mobile genetic elements. FEMS Microbiol Ecol
857		94:fiy130.
858	76.	Wang F-H, Qiao M, Su J-Q, Chen Z, Zhou X, Zhu Y-G. 2014. High Throughput
859		Profiling of Antibiotic Resistance Genes in Urban Park Soils with Reclaimed
860		Water Irrigation. Environ Sci Technol 48:9079–9085.
861	77.	Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ,
862		Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB. 2012. In-
863		feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S
864		A 109:1691–6.
865	78.	Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and
866		correlations in multidimensional genomic data. Bioinformatics 32:2847-2849.
867	79.	Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H,
868		Hugenholtz P. 2010. Experimental factors affecting PCR-based estimates of
869		microbial species richness and evenness. ISME J 4:642-647.
870	80.	Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,
871		Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D,

- 872 Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder
- J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld
- J, Knight R. 2010. QIIME allows analysis of high-throughput community
- sequencing data. Nat Methods 7:335–336.
- 876 81. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST.
- 877 Bioinformatics 26:2460–2461.
- 878 82. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
 879 Illumina sequence data. Bioinformatics 30:2114–20.
- 880 83. Chen S, Huang T, Zhou Y, Han Y, Xu M, Gu J. 2017. AfterQC: automatic
- 881filtering, trimming, error removing and quality control for fastq data. BMC
- Bioinformatics 18:80.
- 883 84. Menzel P, Ng KL, Krogh A. 2016. Fast and sensitive taxonomic classification for
 884 metagenomics with Kaiju. Nat Commun 7:11257.
- 885 85. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ,
- 886 Nilsson RH. 2015. metaxa 2: improved identification and taxonomic classification
- of small and large subunit rRNA in metagenomic data. Mol Ecol Resour 15:1403–
 1414.
- 889 86. Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, Yamashita H, Lam T-
- W. 2016. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by
 advanced methodologies and community practices. Methods 102:3–11.
- 892 87. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new
- 893 versatile metagenomic assembler. Genome Res 27(5):824–834.
- 894 88. Mikheenko A, Saveliev V, Gurevich A. 2016. MetaQUAST: evaluation of

895		metagenome assemblies. Bioinformatics 32:1088–1090.
896	89.	Wu Y-W, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning
897		algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics
898		32:605–607.
899	90.	Kang DD, Froula J, Egan R, Wang Z. 2015. MetaBAT, an efficient tool for
900		accurately reconstructing single genomes from complex microbial communities.
901		PeerJ 3:e1165.
902	91.	Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and
903		accurate genomic comparisons that enables improved genome recovery from
904		metagenomes through de-replication. ISME J 11:2864–2868.
905	92.	Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM:
906		assessing the quality of microbial genomes recovered from isolates, single cells,
907		and metagenomes. Genome Res 25:1043-55.
908	93.	Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN,
909		Hugenholtz P, Tyson GW. 2017. Recovery of nearly 8,000 metagenome-
910		assembled genomes substantially expands the tree of life. Nat Microbiol 2:1533-
911		1542.
912	94.	Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO.
913		2015. Anvi'o: an advanced analysis and visualization platform for 'omics data.
914		PeerJ 3:e1319.
915	95.	Markowitz VM, Chen I-MA, Chu K, Szeto E, Palaniappan K, Pillay M, Ratner A,
916		Huang J, Pagani I, Tringe S, Huntemann M, Billis K, Varghese N, Tennessen K,
917		Mavromatis K, Pati A, Ivanova NN, Kyrpides NC. 2014. IMG/M 4 version of the

- 918 integrated metagenome comparative analysis system. Nucleic Acids Res 42:D568–
- 919 D573.
- 920 96. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
- 921 Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated
- 922 models of biomolecular interaction networks. Genome Res 13:2498–504.

923

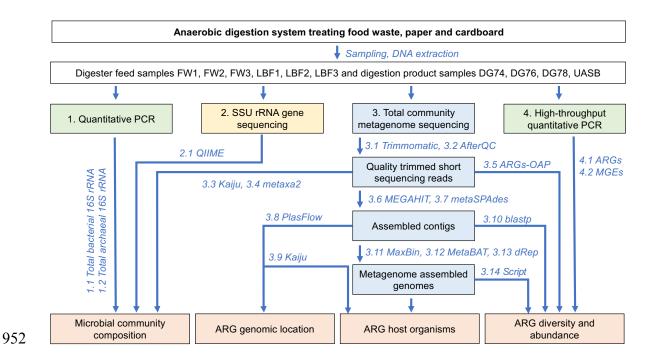
- 925 TABLES
- 926 **TABLE 1** Genomic location of antibiotic resistance genes (ARGs) detected in total
- 927 community metagenome sequencing data assembled with MEGAHIT. ARGs were
- 928 detected by BLAST analysis of protein coding genes using local SARG reference
- 929 database. Plasmid or chromosomal location of the ARGs was predicted by PlasFlow. All
- 930 ARG BLAST hits detected in MEGAHIT-assembled metagenome sequencing data are
- 931 provided in Table S7 in supplemental material.
- 932

Sample	Total assembly length (bp)	Protein coding genes	Number of ARG BLAST hits (% from protein coding genes)	Plasmid ARGs (%)	Chromosomal ARGs (%)
FW1	1 285 684 727	2 088 107	2 407 (0.12%)	30.2	28.6
FW2	941 870 975	1 796 492	2 484 (0.14%)	34.7	23.0
LBF1	120 537 563	1 821 640	1 908 (0.10%)	30.0	28.9
LBF2	1 044 915 087	1 906 512	1 938 (0.10%)	33.2	21.9
DG74	726 434 840	1 137 099	11 (0.001%)	36.4	9.1
DG78	729 045 788	1 138 132	24 (0.002%)	33.3	8.3
UASB	941 623 397	1 636 065	20 (0.001%)	60.0	10.0

934	TABLE 2 Bacterial host organisms of non-plasmid ARGs detected in digestion products
935	(DG74, DG78, UASB). ARGs were identified on MEGAHIT-assembled contigs by
936	BLAST analysis of protein coding genes using local SARG reference database (Table S7
937	in supplemental material). Non-plasmid contigs carrying ARGs were further annotated
938	for their taxonomic affiliation using Kaiju.

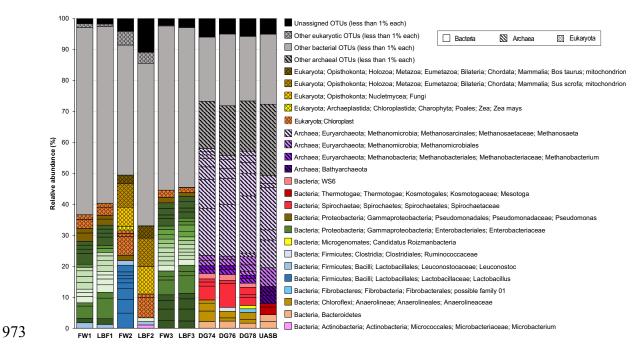
Kingdom/Phylum/Class	Family/Genus	ARG	ARG type
Firmicutes	not determined	ANT(6)-Ia	aminoglycoside
Terrabacteria group	not determined	ANT(9)-Ia	aminoglycoside
Bacteroidetes	Proteiniphilum	bacA	bacitracin
Betaproteobacteria	Thauera	bacA	bacitracin
Deltaproteobacteria	Desulfomicrobium	bacA	bacitracin
Firmicutes	Alkaliphilus	bacA	bacitracin
Firmicutes	Thermoanaerobacterium	bcrA	bacitracin
Kiritimatiellaeota	Kiritimatiella	OXA-119	beta-lactam
Betaproteobacteria	Burkholderia	katG	isoniazid
Epsilonproteobacteria	Arcobacter	katG	isoniazid
Bacteroidetes	Fermentimonas	ermF	MLS
Firmicutes	not determined	linB	MLS
Deltaproteobacteria	Desulfococcus	lnuF	MLS
Deltaproteobacteria	Geobacter	lnuF	MLS
Firmicutes	Streptococcus	mefA	MLS
Gammaproteobacteria	Escherichia	mefB*	MLS
Firmicutes	Clostridium	mel	MLS
Firmicutes	Desulfitobacterium	vatB	MLS
Betaproteobacteria	Thauera	acrB	multidrug
Deltaproteobacteria	Desulfobacca	acrB	multidrug
Deltaproteobacteria	Syntrophobacter	acrB*	multidrug
Planctomycetes	Thermogutta	acrB	multidrug
Firmicutes	not determined	lsaE	multidrug
Deltaproteobacteria	Desulfobacca	smeE	multidrug
Gammaproteobacteria	Sedimenticola	smeR	multidrug
Betaproteobacteria	Roseateles	arnA	polymyxin
Gammaproteobacteria	Enterobacteriaceae	arnA	polymyxin
Bacteria	not determined	sul1	sulfonamide
Bacteria	not determined	sull	sulfonamide

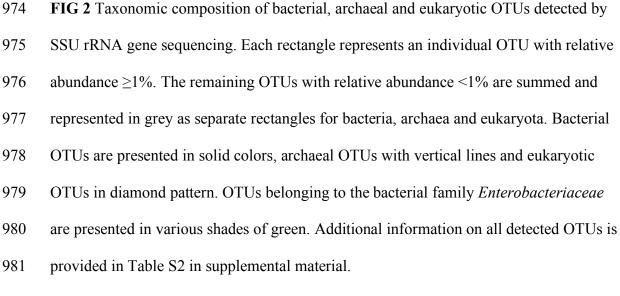
ARG was affiliated to the respective genus on several contigs

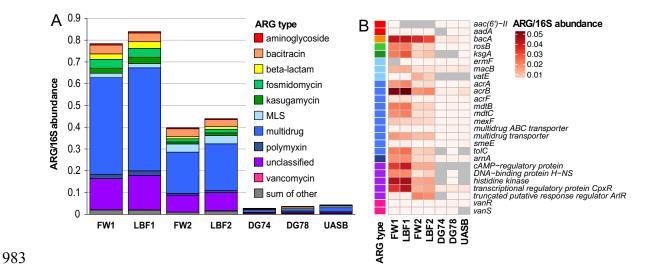

TABLE 3 Metagenome assembled genomes (MAGs) containing antibiotic resistance genes (ARGs) originating from digester feed
(FW1, FW2, LBF1, LBF2). ARGs were not detected in MAGs from digestion products. MAGs were produced by MaxBin and
metaBAT, dereplicated with dRep and evaluated with CheckM for genome size, GC%, completeness, contamination and estimated
quality. ARGs that were detected in two separate copies in a given MAG are indicated by parenthesis (2x). All ARG-containing
MAGs have been deposited to the JGI Integrated Microbial Genomes and Microbiomes (IMG/M). Additional information about all
MAGs is available in Table S9 and Figure S4 in supplemental material.

MAG	IMG/M ID	Genome size (bp)	GC%	Completeness (%)	Contamination (%)	Estimated quality	ARG	ARG type
Erwinia	2772190821	5 042 753	56.0	97.9	1.9	88.2	acrD	aminoglycoside
							bacA	bacitracin
							acrB	multidrug
							cpxA	multidrug
							cpxR(2x)	multidrug
							CRP	multidrug
							emrR	multidrug
							H-NS	multidrug
							mdtB(2x)	multidrug
							mdtC	multidrug
							arnA	polymyxin
							phoP	polymyxin
							pmrF	polymyxin
							rosA	polymyxin

							rosB emrB	polymyxin quinolone
							folP	sulfonamide
Lactococcus lactis	2773857626	3 416 378	33.7	92.0	5.7	63.4	lmrC	MLS
							lmrD	MLS
							lmrP	multidrug
							tetM	tetracycline
							tetS	tetracycline
Lactobacillus	2772190822	2 569 052	30.9	97.0	3.6	79.1	dfrE	trimethoprim
Bifidobacteriaceae	2806310579	2 067 166	64.6	90.7	2.4	78.6	mdsB	multidrug

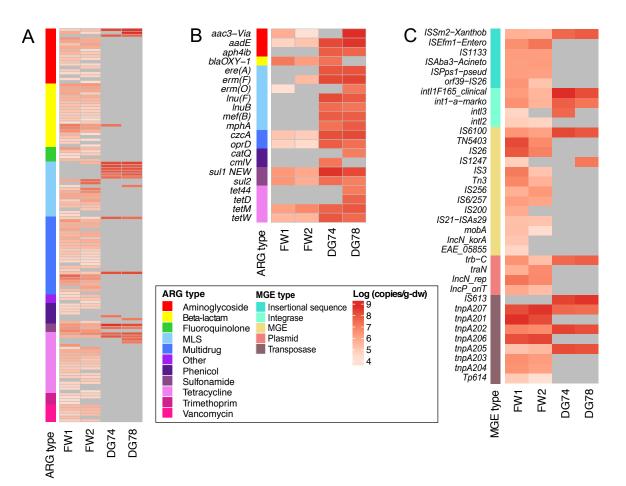

950 FIGURES


951

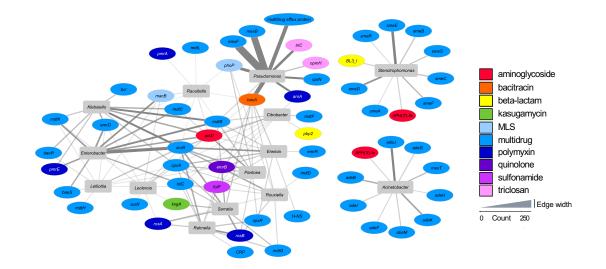


953 FIG 1 Experimental workflow of anaerobic digestion experiment. Total community 954 DNA extracts from 10 samples including food waste (FW1, FW2, FW3), leach bed feed 955 (LBF1, LBF2, LBF3), digestate (DG74, DG76, DG78) and microbial granules from 956 UASB reactor (UASB) were subjected to small subunit (SSU) rRNA gene amplicon 957 sequencing (2), total community metagenome sequencing (3) and quantitative PCR 958 analysis (1, 4). Sequencing data was analyzed using a variety of bioinformatic tools 959 shown and numbered in italics. SSU rRNA gene sequencing data was analyzed using 960 OIIME1 (tool 2.1). The workflow for total community metagenome sequencing data 961 included quality trimming of the short sequencing reads (tools 3.1 and 3.2), taxonomic 962 annotation of the quality trimmed reads (tools 3.3 and 3.4), detection of ARGs from 963 quality trimmed reads (tool 3.5), assembly of the quality trimmed reads into contigs 964 (tools 3.6 and 3.7), identification of plasmid sequences (tool 3.8) and ARGs (tool 3.10)

- 965 from assembled contigs, taxonomic annotation of assembled contigs (tool 3.9), binning of
- the assembled contigs into metagenome assembled genomes (tools 3.11, 3.12, 3.13) and
- 967 detection of ARGs in metagenome assembled genomes by a local Python script (tool
- 968 3.14). Quantitative PCR was performed for bacterial (1.1) and archaeal (1.2) 16S rRNA
- gene as well as for ARGs (4.1) and MGEs (4.2) using a high-throughput qPCR array.
- 970 Results covered microbial community composition, ARG diversity, abundance, genomic
- 971 location and potential bacterial host organisms of ARGs.


984 **FIG 3** Relative abundance of ARGs per 16S rRNA gene categorized by type (A) and by

gene (B) detected in total community metagenome sequencing reads using ARGs-OAP.


986 The ten most abundant ARGs from each sample are depicted in panel B. Genes not

987 detected are marked in grey. Relative abundances of all detected ARGs are provided in

988 Table S4 in supplemental material.

991 FIG 4 Absolute abundance of ARGs and MGEs in food waste (FW1, FW2) and digestate 992 (DG74, DG78) samples detected using a high-throughput qPCR array. Absolute 993 abundance of all detected genes is presented on log-scale as gene copies per gram of dry 994 weight of food waste or digestate samples. Genes not detected are marked in grey. Panel 995 A shows all ARGs detected in at least one of the four samples. Panel B shows all ARGs 996 detected in at least one of the digestate samples. Panel C shows all MGEs detected in at 997 least one of the four samples. Raw data for all analyzed genes together with abundance 998 calculations are provided in Table S5 in supplemental material. 999

1000

1001 **FIG 5** Most abundant bacterial host genera of non-plasmid ARGs detected in digester

1002 feed (FW1, FW2, LBF1, LBF2). ARGs were identified on MEGAHIT-assembled contigs

1003 by BLAST analysis of protein coding genes using local SARG reference database (Table

- 1004 S7 in supplemental material). Non-plasmid contigs carrying ARGs were further
- 1005 annotated for their taxonomic affiliation using Kaiju. ARGs are depicted in ellipses
- 1006 colored by resistance type and bacterial genera are depicted in grey rectangles. The width
- 1007 of the connecting edge corresponds to detection frequency of individual host-ARG pairs.