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Abstract  
To understand how protein function changes upon an allosteric perturbation, such as ligand 

binding and mutation, significant progress in characterizing allosteric network from molecular dynamics 

(MD) simulations has been made. However, determining which amino acid(s) play an essential role in the 

propagation of signals may prove challenging, even when the location of the source and sink is known for 

a protein or protein complex. This challenge is mainly due to the large fluctuations in protein dynamics 

that cause instability of the network topology within a single trajectory or between multiple replicas. To 

solve this problem, we introduce the current-flow betweenness scheme, originated from electrical network 

theory, to protein dynamical network analysis. To demonstrate the benefit of this new method, we chose 

a prototypic allosteric enzyme (IGPS or HisH-HisF dimer) as our benchmark system. Using multiple 

replicas of simulations and multiple network topology comparison metrics (edge ranking, path length, and 

node frequency), we show that the current-flow betweenness provides a significant improvement in the 

convergence of the allosteric networks. The improved stability of the network topology allows us to 

generate a delta-network between the apo and holo forms of the protein. We illustrated that the delta-

network is a more rigorous way to capture the subtle changes in the networks that would otherwise be 

neglected by comparing node usage frequencies alone. We have also investigated the use of a linear 

smoothing function to improve the stability of the contact map. The methodology presented here is general 

and may be applied to other topology and weighting schemes. We thus conclude that, for determining 

protein signaling pathways between the pair(s) of source and sink, multiple MD simulation replicas are 

necessary and the current-flow betweenness scheme introduced here provides a more robust approach than 

the geodesic scheme based on correlation edge weighting. 
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Introduction 
Allosteric regulation is ubiquitous inside the cell and serves to regulate cell functions in a delicate way. 

To understand how protein function changes upon external perturbation, such as protein-protein/ligand 

binding, mutation, or voltage change, numerous researchers have implemented variants of allosteric 

network concepts to biomolecules1-12. One important application of network theory in the context of 

structural dynamics of biomolecules is to determine which amino acid residues in a protein play an 

essential role in the propagation of signals within a protein or between proteins by constructing a network 

of interactions between amino acid residues. Various computational approaches in identifying such 

allosteric pathways have been extensively reviewed13-16. Among them, graph theory based network 

analysis has been seeing increasing attention over the past few decades.  

In graph theory, a network topology is usually defined by a set of nodes representing structural 

features such as the alpha carbon or side chain of amino acids, and a set of edges connecting the nodes, 

representing interactions between these features. To assess the importance of a given node or edge with 

respect to signal propagation, common methods make use of betweenness centrality, also known as 

geodesic centrality, which measures the number of shortest paths that cross a given node or utilize a given 

edge in the studied network. This measurement is quite straightforward. It provides a useful metric to 

determine which nodes are important with respect to general propagation of signals (e.g., energy, motion, 

conformational change, etc.) across the network.  

While betweenness centrality is useful in the case of an exploratory study, often, one is concerned 

with the propagation of changes between a known pair or set of residues or domains. For example, how a 

ligand binding or a single mutation on a protein allosterically alters the dynamics of a remote site on the 

same protein or protein oligomers. When applied under that context, betweenness centrality may contain 

contributions from paths that are not relevant to transmitting a signal between the domains of interest. On 

a related note, betweenness centrality considers only the shortest paths between nodes in a network. 

However, edges and nodes that lie ‘near to’ but not exactly on the shortest path that may provide relevant 

contributions will be ignored by a standard betweenness centrality computation. These two drawbacks can 

lead to artifacts such as undervaluing the importance of nodes and edges that are near but are not part of 

shortest paths, and also to overvaluing of edges that lie on non-relevant paths. Moreover, since edges lying 

near to shortest paths may never be included at all, this can lead to significant instability when applying 

betweenness centrality to molecular dynamics simulations, wherein the network topology may fluctuate 

over time. The instability of network topology has been discussed previously6 and thoroughly 

demonstrated in the current study. 
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 When the transmission between a pair of known residues or domains is of interest, a modified 

approach to betweenness centrality may be employed. First, one computes the shortest paths connecting 

residues in the two domains of interest. Next, contributions of edges and nodes that lie ‘near to’ but not 

on the shortest path may be included by assigning a cutoff value for path length. This method called 

“suboptimal path search” was developed and implemented in the subopt program from the NetworkView 

plugin of VMD program by Luthey-Schulten et. al. a decade ago 2, 17-18. An enhanced version of the subopt 

program called ‘Weighted Implementation of Suboptimal Paths’ (WISP)7 was recently developed, which 

achieves rapid calculation of suboptimal pathways, and may compensate, at least in part, for these 

fluctuations in the network topology by choosing a sufficiently large path length cutoff.  

While the suboptimal path approach addresses the main shortcomings of the general geodesic 

betweenness metric described above, it is often difficult to know a priori the appropriate cutoff value for 

additional path length, which is obviously system dependent. In addition, computing sets of suboptimal 

paths for extremely long cutoff lengths can become quite cumbersome. Here, we show that there is an 

alternative betweenness metric that is generalizable to any system, network topologies, and weighting 

schemes, with significantly improved stability. This metric, known as current-flow betweenness, takes its 

roots in the analysis of electrical circuits19. The applicability of electrical circuit analysis to 

thermodynamics problems was proposed by Oster et. al. in 1971, in which they stated that “most systems 

that can be analyzed with the network approach share one common property: the rate of energy 

transmission and a flow variable. In electrical networks these variables are voltage difference and current; 

in mechanics are force and velocity …”20. Interestingly, this method is analogous to a metric commonly 

employed in the analysis of information propagation networks, known as information centrality21, which 

was derived in a much different manner. It can be shown that information centrality and current-flow 

centrality yield essentially equivalent results mathematically19. Moreover, it has been shown that these 

metrics are upper or asymptotic limits for certain random walk based methods19, 22. Here, we will focus 

on the current-flow betweenness formalism since the derivation is conceptually simpler and more intuitive 

than the derivation of the analogous information centrality measurement.  

 The current-flow betweenness metric may be applied (and in fact is most easily applied) when one 

is concerned only with paths connecting a specific set of nodes. Thus it does not suffer from the drawback 

of standard betweenness centrality where paths connecting extraneous pairs of nodes may lead to 

overvaluing the importance of a node or edge. Like the suboptimal path search, current-flow betweenness 

includes contributions from edges and nodes that are ‘near to’ but do not lie on a shortest path. However, 

the unique advantage of our method for searching suboptimal path lies in the fact that current-flow 
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betweenness includes contributions from all possible paths connecting the set of nodes of interest (source 

and sink), not just those falling within a specified cutoff. Thus, in some sense, current-flow betweenness 

proposed here can be conceived of as a “cutoff-free” and more robust version of the suboptimal path 

method with respect to computing betweenness. 

In this work, we introduce, for the first time, the application of current-flow betweenness to 

investigate allosteric networks in proteins. We demonstrated the advantage of current flow betweenness 

over correlation weighted betweenness in the scenario of ligand-binding induced allosteric network 

change. Our benchmark system is imidazole glycerol phosphate synthase (IGPS or HisH-HisF dimer), a 

prototypic system most frequently used for network analysis6-7, 23-25. IGPS belongs to the glutamate 

amidotransferase family that regulates the histidine biosynthetic pathway. The catalytic triad is located at 

HisH domain, however, the binding of an allosteric effector PRFAR to the HisF domain increases the 

catalytic turnover number by thousands fold. The allosteric mechanism of IGPS has been extensively 

studied, both experimentally and computationally, and hence provided us with an ideal benchmark system 

for implementing the current-flow scheme.  

Using multiple replicas of MD simulations and various network topology metrics (edge ranking, 

path length, and node frequency), we show that a current-flow betweenness scheme vastly improved the 

convergence of allosteric network topology. The improved stability of topology allows us to generate a 

delta-network between the apo and holo IGPS systems. We show that delta-network is a more rigorous 

way to capture the subtle change in the network than comparing node frequencies alone. We have also 

investigated the use of a linear smoothing function to generate a contact map, which has been suggested 

as a means of improving network topology stability. A set of python scripts for calculating current-flow 

betweenness scores is available to download at https://github.com/LynaLuo-

Lab/network_analysis_scripts, which can be easily incorporated to use together with NetworkView tool 

in VMD program.  

 

 

Theory and Methods 
 

Current-flow betweenness 

Current-flow betweenness is framed in terms of a network of electrical resistor connecting a pair 

(or set) of source nodes and sink nodes across which a sufficient voltage is applied to induce a unit of 

current to flow. In the case of a system of electrical resistors, it is known that current will flow through all 
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possible paths between a given source and ground simultaneously. If one were to measure the current 

flowing through a given edge (resistor) in such a network, this would then yield the “current-flow 

betweenness”, i.e. as the current-flow through that node or edge in the electrical network. For simple 

networks, this may be computed quite easily by hand by employing Kirchhoff’s laws. Figure 1 shows an 

example of using Kirchhoff’s Laws to compute current-flow through each edge of a network of resistors. 

As mentioned earlier, it can be shown that this ‘current-flow betweenness’ is equivalent to information 

centrality and several betweenness scoring metrics based on random walk approaches. These metrics have 

been shown to provide better results as compared with shortest path betweenness in other network analysis 

fields. A more detailed in depth derivation of flow betweenness can be found in the paper by Brandes and 

Daniel19, along with discussions of how it can be shown to be equivalent to information centrality.  

 

 

 

Figure 1: Example of using Kirchhoff’s Laws to compute current-flow through each edge of network of 

resistors.  

   

To compute current-flow betweenness, one must first construct the associated adjacency and 

Laplacian matrices. The adjacency matrix, A, has as its elements, ai,j, which is the absolute values of the 
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corresponding network weights wi,j. In the case of a network of electrical resistors, these weights would 

correspond to the conductance of each resistor. Here, we are interested in transfer of motion as described 

by a contact map weighted by correlation of atomic motions. Thus the absolute values of the entries in the 

correlation matrix will serve as the weights. I.e. given the atomic correlation matrix C, we assign ai,j = 

|ci,j| if i, j corresponds to an edge in the contact map, and we assign ai,j = 0 if i,j edge is not included in the 

contact map. The most frequently used criteria for contact map generation is: residue i is determined to be 

in contact with another residue j, if for at least 75% of the frames in a given trajectory, there is at least one 

atom of i in contact (e.g. within 4 Å) with at least one atom in j. We later showed that a smoothed function 

can be applied to increase the stability of the contact map (Table 1). ci,j can be any correlation coefficients 

such as the commonly used Pearson correlation coefficients, or generalized correlation coefficients based 

on the mutual information concept26, or a more protein specific inter-residue interaction energy based 

weights6. 

 

 
The difference between the diagonal matrix D and the adjacency matrix A is known as the 

Laplacian matrix L (Eq. 1), in which di,i are the elements of the diagonal matrix D (the sum of the weights 

of edges connected to node i), constructed by summing over each row of the adjacency matrix A. Next, 

the inverse of this network Laplacian L must be computed to obtain the betweenness of each edge, as 

illustrated in Figure 2. Betweenness of each node can be computed by summing the betweenness of each 

connected edge. However, by its construction, the Laplacian matrix is guaranteed to be ‘singular’, meaning 

that no unique inverse exists. Fortunately, an appropriate ‘pseudo-inverse’ can serve just as well. The 

Moore-Penrose pseudo inverse is used here, although other methods such as single value decomposition 

may also work. It should be noted that computation of matrix inverses and pseudo-inverses can become 

quite computationally taxing for very large networks. However, the process is reasonably fast for networks 

consisting of thousands or even tens of thousands of nodes. In the case of allosteric network applications, 

network nodes are typically taken to represent individual residues within a protein and are computed from 

molecular dynamics or other simulation techniques that have similar size limitations and so, direct 

computation of pseudo-inverses should be tractable. In the event where they are not, approximation 
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methods are available, such as the eigenvalue decomposition methods given in the paper by Bozzo and 

Franceschet27. 

 Given a network’s adjacency matrix, A, and a suitable inverse (or approximation thereof) to its 

Laplacian, L+, the current-flow betweenness between nodes i and j, Bi,j, for a given source node s, and 

target node t, is given as in equation 2:  

 

                                     (2) 

  

 Where  is the potential at a given node i. In the case of multiple nodes as source and target, as 

in this study, one may attain the current-flow as the sum over all combinations of source and target nodes 

divided by the number of combinations. This is a relatively trivial double sum when the two sets are 

disjoint, e.g: 

 

  Where S, T are disjoint sets of source and target nodes respectively. When S and T are not disjoint 

(e.g. as in computing a generalized current betweenness over the entire network) one must take care to 

avoid / remove contributions from double summations19. Here we consider only the former case where 

the sources are disjoint from the targets. Figure 2 illustrates an example of flow betweenness calculation 

for a simple 10-node network with a single source and sink. The corresponding ‘by hand’ calculation 

using Kirchhoff’s Laws was shown previously in Figure 1 for the analogous network of electrical resistors, 

where each edge’s resistance is equal to the reciprocal of the correlation shown in Figure 2. One can see 

that the result for edge 4-8 (B4,8) using the above matrix formalism is identical to the result from electrical 

network analog in Figure 1. 

vi
s,t =Li,s+ −Li,t+

Bi, j =Ai, j*|vi
s,t −vj

s,t |

vi
s,t
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Figure 2: Calculation steps of flow betweenness for edge 4-8 of an example network (top left corner). 

Note that this network is equivalent to the network in Figure 1. Here, edges are labeled with 

conductance value rather than corresponding resistance values. 

 

 

System Preparation and Simulation  

We have simulated the IGPS systems in an equivalent manner to previous studies of the same system6-7, 

23. Briefly, the crystal structure of HisH-HisF (PDB 1GPW) was used as substrate-free (apo) structure and 

the coordinate of PRFAR substrate was taken from the crystal structure (PDB 1OX5) to build substrate-

bound (holo) state. CHARMM-GUI 28 was used to read in the PDB file and generate solvated systems. 

All simulations employed the all-atom CHARMM C36 force field for proteins and ions, and the 

CHARMM TIP3P force field29 for water. All molecular dynamics simulations were performed using the 
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PMEMD module of the AMBER16 package30 with support for MPI multi-process control and GPU 

acceleration code. Orthorhombic periodic boundary conditions were used for all simulations in the 

isobaric-isothermal (NPT) ensemble using Langevin thermostat and Berendsen barostat. The pressure and 

temperature were maintained at 1 atm and 310.15 K. Long-range electrostatic interactions were treated 

using the default particle mesh Ewald (PME) method. Nonbonded cutoff is set to be 8 Å. The dynamics 

were propagated using Langevin dynamics with Langevin damping coefficient of 1 ps-1 and a time step of 

2 fs. The SHAKE algorithm was applied to all hydrogen atoms. For each system (apo and holo), for four 

independent replicas (different initial velocities) of 50 ns production runs were accumulated for analysis. 

Protein snapshots were extracted at 100 ps intervals for calculating contact map and correlation 

coefficients. 

 

Dynamical Network Analysis  

Amaro and colleagues examined various node representations in Cartesian coordinates, and reported that 

the amino acid residue center of mass (COM) performed better in detecting HisH:Lys181-HisF:Asp98 salt 

bridge known to participate in allostery23. We thus used pytraj to extract the residue COM trajectories 

from original all-atom trajectories, then use CARMA program to generate correlation matrices for residue 

COM or alpha carbon (CA). The resulting data matrices were then used to compute associated current-

flow betweenness scores. To calculate suboptimal path, we chose the substrate binding residue 

HisF:Leu50 as the source node and HisH:Glu180 in the catalytic triad as the sink node, same as the nodes 

used in previous work on suboptimal paths search7.   

 

 

Results and Discussion 
 

Increased stability of contact map topology using linear smoothing function  

In current dynamical network analysis, optimal and suboptimal pathways are generated based on a contact 

map. Residues within a particular distance of another residue for certain percentage of the simulation time 

are assumed to influence the communication pathway directly, and residue that do not satisfy these criteria 

are removed from analysis. Therefore, the fluctuation in the contact map has a direct consequence in the 

instability of the network topology. To reduce the fluctuation of the contact map, we tested three cutoff 

criteria: 1) The default contact criteria in the program CARMA31 (4.5 Å distance for at least 75% of an 
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MD trajectory); 2) Linear smoothing from 3 Å full contact to 6 Å zero contact (‘half’ contact at 4.5 

angstroms); 3) Gaussian smoothing with 3 Å full contact, ‘half’ contact at 4.5 Å, and s =1 Å.  

To measure the stability of the contact map, four replicas (rep_1 to rep_4) of 50 ns trajectory were 

split into five 10 ns windows (traj_001 to traj_004) to allow statistical analysis (Table 1). The stability is 

calculated by 1–normalized standard deviation of the contact frequency over the given marginal (i.e. all 

traj_001 over four replicas, or traj_001 to traj_004 over a single replica). The joint stability is the stability 

over all trajectories and all replicas. Since contact is measured as a binomial variable, i.e. either 1 if a 

residue pair is in contact or 0 if not, its standard deviation of contact i can be given in terms of the contact 

frequency by the equation: 

𝜎" = $𝑛 × 𝑝" × (1 − 𝑝")  (4) 

 

 Where n is the number of frames over a marginal or joint set of trajectory windows, and pi is the 

contact frequency of contact i. This, then, implies that the maximum possible standard deviation occurs 

when the contact frequency (p) is equal to 50%. Therefore, we may compute normalized standard 

deviations of contact frequency by dividing by 0.5√(n). Since standard deviation is a measure of how 

frequently a contact is formed or lost, we then define stability s=1-〈𝜎"〉. These results are tabulated in 

Table 1. 

 From table 1, we found that within the same system and same cutoff criteria, the stability of the 

contact map is similar between replicas and does not deviate alone simulation time  (from traj_000 to 

traj_004). Comparing with the default cutoff criteria, Gaussian smoothing function yield larger number of 

contacts (counts), but only slightly improved stability, while the linear smoothing function provided 

consistent higher stability across all replicas, trajectories, and systems (highlighted in green box). It is of 

course possible to further fine tune the Gaussian smoothing function or introduce other types of cutoff to 

further improve the contact map stability. Our current data demonstrated that the linear smoothing function 

used here is superior to the default cutoff method.  

 
Table 1: Marginal and joint stabilities of the contact map calculated for each system and each smoothing 
type. Count is the number of contact in the contact matrix. 
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Significant improvement in the edge ranking convergence using current-flow betweenness 

As discussed previously,6, 8 choice of weighting scheme can impact the network topology. We follow a 

similar protocol here to compare the stability of the network generated using current-flow betweenness 

weights versus correlation weights. The weight of each edge are either the -ln(|betweenness|) or -

ln(|correlation|). Network occurrence frequency (η) is assigned to each edge by counting the number of 

paths the edge occurred over a total number of sub-optimal paths ranked by their flow betweenness 

weights or correlation weights.  

           (4) 

 Where e is an edge in window w, of the system s, being considered. n is the number of paths that 

edge e occurs in and N is the total number of paths computed for window w of system s. These values 

were then used to rank each edge in each window with a rank of 1 assigned to the edges with the highest 

η value, rank of 2 to the next highest η value, etc. In practice, subopt program in VMD was run iteratively 

until at least N paths were generated and then only paths with rank less than or equal to N were taken. 

Since subopt program returns path lengths with only integer precision, ties can occur frequently. To handle 

ηs,w,e =
ns,w,e
Ns,w
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ties, a maximum ranking scheme was employed in which all ties are assigned a rank equal to the next 

lowest rank plus the number of ties. Due to this method, replicas may contain slightly fewer or slightly 

more than N paths in cases where there were ties at ranks. Next, the average, <r(η)>s,e was computed over 

all 20 windows for each system, followed by a second round of ranking based on each edge’s average η 

ranking R(<r(η)>)s,e. Finally the average root mean square deviation (RMSD) of edge ranks versus the 

number of edges included for calculating RMSD was plotted for each system to compare ranking based 

on correlation weights versus betweenness weights. E.g. the top m edges were selected based on average 

rank score and the RMSD of ranking over the 20 windows was computed using those top m edges. 

 

 Where, s is one of the systems being considered, m is the number of top ranked edges (by ranking 

of average η values, R(<r(η)>)s,e, over all windows for system s and edge e, being considered). Em, is the 

set of those top m edges for system s, and |windowss| is the number of windows for the system. The results 

are shown in Figure 3. The  <η> over four replicas for the 365 edges exhibiting non-zero frequency in at 

least one of the four top 700 suboptimal path networks (apo correlation, apo betweenness, holo correlation, 

holo betweenness) are provided in the supporting data (Table S1).   
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Figure 3: Comparison of edge ranking stability for correlation (black) and current flow betweenness (red) 

for apo and holo systems. For each system, the nodes representation is either alpha carbon (CA) or center 

of mass of each residue (COM). For each system, two different contact maps were used to generate either 

correlation based network (CORR) or current-flow betweenness (FLOW_BTW) based network: solid line 

represents the contact map generated using the default cutoff; dash line represents the linear smoothing 

cutoff contact map generated using linear smoothing function. 

 

Figure 3 shows clearly that no matter which node representation or which contact map we used, 

for both apo and holo systems, flow betweenness weighting significantly decreases the edge ranking error 

(red line) compared with direct use of correlation as weights (black line), which means the network 

topology generated by flow betweenness scores is much more stable between simulation windows. The 

poor performance of using correlation to weight the edge is largely due to the fact that the change in 

correlation value of an edge only indicates the change of a specific edge, which may exhibit significant 
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fluctuation. Furthermore, changes in the correlation between a pair of nodes may not necessarily imply an 

increase in path usage. This is particularly relevant when considering systems over which the residue-to-

residue contacts and correlations may fluctuate significantly. It is again because current-flow betweenness 

score of an edge considers the contribution from all possible pathways between the source and sink nodes, 

and thus is more robust in capturing allosteric signaling transmission.  

The linear smoothing function, which certainly improves the stability of the contact map, has 

negligible effect on the edge ranking error (Figure 3), suggest that the fluctuation of the network topology 

is largely due to the fluctuation in the edge weights during the simulations. Figure 4 illustrated two 

network topology of apo IGPS generated using the same contact map with edges colored based on their 

pairwise correlation or current-flow betweenness scores. The flow betweenness clearly show more 

focused signal transmission between source and sink, while the correlation contains no information of 

source and sink. It is worth noting that the flow betweenness metric can be applied to any types of contact 

map and weighting schemes, and thus can be combined with other methodology, such as energy-based 

weighting scheme8.  

 

 
 

Figure 4. Projection of absolute Pearson correlation (left) and current-flow betweenness (right) edge 

weighted networks onto the structure for the apo IGPS protein backbone. Betweenness is calculated using 
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GLU 180 and LEU 50 as source and sink nodes. Source and sink residues are highlighted in red VDW 

mode. Edges are colored based on their correlation score or betweenness score.  

 

Comparison of distribution of path length between replicas of simulations 

Besides the edge ranking, the distribution of the path length among hundreds of suboptimal path is an 

important feature of the allosteric communication. For example, the allosteric communication may be 

altered by a shift in the path length distribution without altering the shortest path or the average suboptimal 

path length. We calculated the path length of the top 700 suboptimal paths ranked by their distance 

between source and sink for each replicas. The path length was calculated using either the sum of -

ln(|correlation|) over the edges connecting the path or using the sum of -ln(|betweenness|). Our results 

(Figure 5) clearly show that when using the correlation edge weighting, the path length distribution is not 

consistent between replicas, especially between replica 1 and replica 2. When using current-flow 

betweenness edge weighting,  the path length distributions are much more consistent among four replicas. 

All four replicas yield similar multimodal distribution in the apo and holo systems. While replica 1 

showing minimum shift in the distribution, all other replicas consistently show shorter path length in the 

holo than apo network. This observation is in agreement with a previous allosteric network study 

suggesting that the motions of the residues connecting the source and sink sites are more tightly correlated 

when the substrate PRFAR bound to IGPS, possibly indicating loss of entropy along the allosteric 

pathways7.  

Perhaps the most important message brought by this analysis is the importance of multiple replicas. 

Although we demonstrated that the flow-betweenness edge weighting provides much more stable 

allosteric network topology, our analysis still shows the fluctuation between independent replicas. The 

importance of replicas have been pointed out for conformational sampling and 10-20 replicas are 

necessary to produce more reliable conclusion than a single long simulation32-33. Although this is not the 

focus of current study, using just four replicas, we emphasize that multiple replicas are also important for 

dynamical network analysis, even in the situation when no large conformational change is expected from 

the perturbation of allosteric communication. 

 A general point worth discussing is the length of simulation needed for conducting dynamical 

network analysis. It has been shown that the activation of the IGPS is in millisecond timescale24. Even 

though the time required for motion to propagate a sufficient conformational change may span 

milliseconds, the timescale required to transmit motion between individual amino acids in close proximity 

to one another is on the order of picoseconds to nanoseconds. Thus, even relatively short (in reference to 
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the timescale of the larger conformational change) simulations could still allow one to reconstruct 

potential pathways along which relevant motion or energy transfer occurs. Dynamic network analysis 

based on correlations or pair-wise interactions is not suitable to apply directly to long-time scale 

trajectories that sample multiple states. This is because the time-averaged correlation or interaction is used 

to construct the adjacent matrix. Ideally, one would employ such long simulations in an endeavor to gather 

sufficient sampling to apply Markov State modeling or a similar method to determine relevant micro states. 

Network analysis could then be conducted over individual micro states instead of over the entire trajectory. 

 

 
Figure 5. Distribution of path length. Histogram of the top 700 shortest path between source and sink 

nodes are plotted for apo (red) and holo (green) trajectories for each replica of 50 ns simulation. The length 

of the path are measured by correlation edge weighting (A) or current-flow betweenness edge weighting 

(B). 

 

 

Delta-network between apo and holo systems  

To identify the changes between the allosteric network caused by the substrate binding, we first compared 

the frequency of each residue (node) that appeared in any of the top 700 paths in the apo and holo systems. 

Figure 6 shows all residues that have exhibited an average frequency of larger than 0.05 among the four 
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replicas, with the frequencies from each individual replica shown as dots. Once again, the fluctuations of 

the node frequencies between replicas are significantly lower in the suboptimal paths generated using 

current-flow betweenness edge weighting (bottom) than using correlation edge weighting (top).  

 

 
Figure 6: Node frequencies in the suboptimal pathways. The node frequency larger than 5% in top 700 

paths are shown for (Top) suboptimal paths ranked by correlation edge weighting; (Bottom) suboptimal 

paths ranked by flow-betweenness edge weighting. Triangle dots depict observed frequency for individual 

replicas, bars indicate mean frequencies over all replicas. Residues are labeled in the following color code: 

blue if the node frequency is higher in the holo than in apo systems, red if the frequency is lower in holo, 

in black if there is no frequency change. The letter A in front of the residue ID indicates domain HisF, and 

letter B indicates the residues in domain HisH. 
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 It is encouraging that among the nodes that appear more than 5% of the top 700 suboptimal paths, 

the current-flow betweenness captured, with much less noise, the conserved salt bridge residues K181-

D98, the cation-𝜋 interaction residues W123-R249, as well as the  majority of the conserved residues 

previously predicted to be involved in allosteric regulation (R5, D11, E46, P76, T78, D98, K99 in domain 

HisF, N15, W123, Y138, H178, E180, K181 in domain HisH).34 However, to compare the change between 

apo and holo networks rigorously, the node frequency change alone is not sufficient. This is illustrated in 

the following delta-network analysis. To generate a delta-network, the difference (apo minus holo) in edge 

frequency (η) are calculated from the flow-betweenness networks. The frequency difference for each edge 

can be loaded into VMD NetworkView plugin as a delta-edge frequency matrix in order to view the delta-

network directly on the protein structure. As shown in Figure 7, the average edge frequency difference 

Δη between apo and holo are plotted on IPGS holo structure with PRFAR substrate bound. Since we define 

Δη = η(apo) - η(holo), the edge with positive Δη (shown in red bond) is more important in signal 

transmission between source (binding site) and sink (catalytic site) for apo state, and the edge with 

negative Δη (shown in blue bond) means this edge frequency is increased in the suboptimal path when 

PRFAR bound, thus becomes more important in holo state. The nodes along the delta-network are also 

colored based on the change in the node frequency in Figure 6 (bottom).  

 It is interesting to note that our delta-network has successfully located a key domain (L50-

F49-V48-L47) associated with millisecond scale motions observed in NMR studies35. The other major 

cluster of nodes (D74-I75-P76-F77) represents a set residues at the interface between the HIF-HIS 

domains and is likely serving as a bridge. These domains are apparently located on a relatively flexible 

loop structure. We speculate that might be one of the reasons that those residues were not highlighted by 

the previous NMR observations aimed at identifying millisecond timescale motions, since motion of 

flexible regions will likely be somewhat more rapid. It is also important to note that although the Asp98-

Lys181 edge was captured among the top 700 suboptimal paths, the edge usage frequency is rather low. 

Previous studies aimed at connecting network analysis with NMR observations of millisecond scale 

motions identified a pair of communication pathways leading through separate regions of the IGPS 

protein24-25, 35. The network identified in current study probably represents only a subset of those 

communication pathways because our particular choice of source and sink node. Glu180 is only one of 

the three potential catalytic triad residue C84-H178-E180. Leu50 is one of the residues lies in close 

proximity to the PRFAR molecule in the holo form. It is likely that Asp98-Lys181salt-bridge, while 

known to be critical to allosteric interaction, was not central to transmission between the specific source-

target pair selected. Thus it should be noted that the set of paths presented here is by no means 
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representative of the full communication network of IGPs. This underscores the importance of selecting 

an accurate subset of source and sink target residues. Nevertheless, this shortcoming in fact highlights the 

key feature of the flow betweenness metric, namely that it is capable of reducing contributions from edges 

and nodes that are not directly involved in connecting the given source and target residues, yet does not 

eliminate their contributions entirely.  

Perhaps the most interesting point brought up by our delta-network concept is that nodes Leu47 

and Lys181 have negligible change in the node frequency between apo and holo states (colored in black 

in Figure 6 and 7). However, the edges connecting them have significant change. This is because the 

information transmitting through a node is the sum of the all the edges connecting to it. For node Leu47, 

the edges connecting Leu47-Phe49, Leu47-Val48, Leu47-Ile75 show decreased frequency in holo state 

(red color), but the edges connecting Leu47-Leu10, Leu47-Phe77, Leu47-Pro76 show increased frequency 

in holo state (blue). The sum of all edges’s Δη connecting Leu47 hence cancels out, leading to no change 

in the Leu47 node frequency. The same situation is seen for node Lys81. Therefore, even when a node is 

known to contribute the transmission of the allosteric signaling, a change in the node usage frequency is 

not a necessary condition for the change in the allosteric network. The delta-network introduced here is 

thus a more rigorous and quantitative way to detect subtle network changes caused by external 

perturbation.  
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Figure 7: Delta-network between apo and holo IGPS. The average edge frequency difference Δη 

between apo and holo are plotted on IPGS holo structure with PRFAR substrate bound. The edge is colored 

with Δη color scale. Since Δη = η(apo) - η(holo), red edge (positive) is more important in apo, and blue 

(negative) edge is important in holo state. The important nodes are represented as balls with the color code 

as in Figure 6. Edges with |Δη| less than 0.01 are omitted here for clarity. Nodes which exhibited a 

decreases path usage frequency in the holo state compared to the apo state are shown as red spheres while 

nodes that exhibit an increase in path usage frequency in the holo state are marked with blue spheres. This 

color scheme matches the edge coloring as depicted in the color scale bar to the left of the figure. The 

source and target nodes are marked with purple spheres. Finally, the Asp98 and Lys181 residues, for 

which no change was observed is marked with a black spheres. The PRFAR ligand is shown using the 

licorice representation.  
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Conclusion 

Network analysis is a highly sought-after method for investigating how binding or mutation changes the 

protein allosteric signaling propagation, or for identifying a druggable allosteric binding site. It was shown 

previously that the commonly utilized methods for network construction based upon pairwise correlation 

can suffer from instabilities when used in assessing the relative importance of residues and residue to 

residue interactions in a particular allosteric signal transmission. This is because changes in the correlation 

between a pair of residues, regardless the type of correlation, may not necessarily imply an increase in 

path usage. This is particularly relevant when considering systems over which the residue-to-residue 

contacts and correlations fluctuate during the simulation time even a system has reached the 

thermodynamic equilibrium.  

Inspired by electrical circuit analysis, we introduced current-flow betweenness metric that is robust 

in ranking how important each residue or residue-residue interaction is in propagating the allosteric signal 

in a protein dynamical network. Using a classic example of an allosteric enzyme IGPS, we calculated the 

current-flow betweenness network between a substrate binding site and a remote catalytic site more than 

20Å distance apart. Through a thorough comparison with suboptimal paths generated using pairwise 

correlation edge weighting, we demonstrate that current-flow betweenness metric yields significantly 

more stable edge ranking, path length distribution, and node frequencies, regardless the choice of contact 

map criteria or node representations. Moreover, current-flow betweenness provides a more theoretically 

sound assessment of the relative importance of edges or nodes in a network since it implicitly includes 

contributions from all possible paths connecting a given set of nodes. Since current-flow betweenness 

scores exhibit less pronounced fluctuations, they can allow for identification of subtle but relevant changes 

in edge or node path usage with greater sensitivity than when correlation is used directly as edge weighting. 

Therefore, current-flow betweenness can be seen to have great potential utility for future works in which 

allosteric signaling pathway analysis are needed for understanding the molecular mechanism of protein 

function or allosteric drug design.  

Very recently, a work by Negre et. al. reported using eigenvector centrality for identifying key 

amino acid residues for IGPS allostery25. Eigenvector centrality bears several similarities to flow 

betweenness. The former makes use of the eigen-decomposition of the network adjacency matrix. 

Specifically, the first eigenvector is utilized. Flow-betweenness, on the other hand, seeks to utilize the 

pseudo inverse of the matrix Laplacian, which is directly derived from, but is not equivalent to, the 

network adjacency matrix (Figure 2). While we here directly compute the Moore-Penrose pseudo inverse, 

it has also been suggested that a sufficient approximation would be the first few eigenvectors of the 
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Laplacian matrix eigenvector decomposition27. Given the relation that both methods have to eigen-

decomposition of similar matrix based network representations, it is likely that both methods will provide 

similar utility. While in this study we focus on determination of a robust allosteric network between a 

predefined residue pairs, how these two methods compare to each other, as well as to other betweenness 

and centrality metrics, both in mathematical underpinnings and their utility with respect to network 

analysis applications, may indeed be a good avenue for future study.  

 Finally, it should be noted that current-flow betweenness could be employed upon any topology 

and weighting scheme (provided that all edge weights are positive). For example, current-flow 

betweenness can be used with any correlation coefficients such as the commonly used Pearson correlation 

coefficients, or generalized correlation coefficients based on the mutual information concept.26 

Furthermore, this method could potentially yield improved results when coupled with interaction energy 

based network construction such as in the papers by Ribeiro and Ortiz6, 8, which also show to increase the 

stability of the network over contact based topology and correlation weighting schemes. For current IGPS 

simulations, the contact maps are relative stable between simulation replicas. In systems that contact map 

stability is an issue, for instance, in larger protein or longer simulation, the linear smoothing function 

introduced here can mitigate artifacts that arise due to the use of arbitrary cutoff distances and frequencies 

when constructing contact topologies. In such case, current-flow betweenness combined with linear 

smooth function can overcome, to a large extent, the loose topological definitions, thus could be extremely 

useful given the rapid rise in the application of network analysis methods to modeling and simulation 

investigations.  
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