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Summary

Open data science and algorithm development competitions offer a unique avenue for rapid

discovery of better computational strategies. We highlight three examples in computational biology

and bioinformatics research where the use of competitions has yielded significant performance

gains over established algorithms. These include algorithms for antibody clustering, imputing gene

expression data, and querying the Connectivity Map (CMap). Performance gains are evaluated

quantitatively using realistic, albeit sanitized, data sets. The solutions produced through these

competitions are then examined with respect to their utility and the prospects for implementation

in the field. We present the decision process and competition design considerations that lead to

these successful outcomes as a model for researchers who want to use competitions and non-domain

crowds as collaborators to further their research.
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1 Introduction

Crowdsourcing enables large communities of individuals to collectively address a common challenge or

problem. Mechanisms for crowdsourcing include tools to encourage voluntary work in data collection and

curation, gamification of scientific problems, and the use of open innovation competitions. Researchers

in computational biology increasingly rely on the first two mechanisms to tackle simple yet labor-

intensive tasks, such as annotating images [1] or predicting aspects of protein structure [2]. Additionally,

researchers use open innovation competitions to benchmark their solutions to a particular computational

problem, such as the algorithm MegaBLAST for comparing DNA sequences [3], or to generalize their

methodologies to instances of the problem for which a solution is unknown, such as inferring molecular

networks [4].

Past examples demonstrate that open innovation competitions possess considerable potential in ad-

dressing biology problems [5]. However, most applications are intended for a “crowd” of researchers in

communities that are most directly connected to the scientific problem at hand, such as the commu-

nity of computational biologists to predict drug sensitivity [6]. Less is known about the potential of

innovation competitions in biology when they are open to a crowd of non-experts, although there have

been promising examples in other domains [7, 8]. This suggests a need for methodological developments

on the use of competitions when the community of experts is small or nonexistent, or when it lacks

the necessary knowledge to solve the problem (e.g., rapidly evolving or emerging fields that depend

heavily on large amounts of data and computational resources but are deficient in experts in scientific

computing, data science or machine learning).

In this study, we focus on contests that involve participants outside the community of researchers

connected to the scientific problem, as in [3]. Rather than the prospect of advancing research in the field

or achieving a scientific publication, researchers have to incentivize participation with opportunities to

win cash prizes.1 Furthermore, they must articulate the problem in clear and easily-digestible language

and construct metrics to evaluate solutions that provide live feedback to participants. Although com-

petitors in these contests typically lack domain-specific expertise, they bring a breadth of knowledge

across multiple disciplines, which creates the opportunity for exploration and cross-fertilization of ideas.

Open innovation competitions of this nature allow members of the public to contribute meaningfully

to academic fields by providing incentives and easy access to problems and data that are otherwise

inaccessible to them.

1Although multiple motivations, such as the enjoyment for the competition itself, may be at play as well.
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We describe the design and outcomes of three contests in computational biology and bioinformatics

to address problems whose solutions were significantly improved using open innovation competitions.

These include algorithms for:

• clustering antibody sequences (Sec. 2.1);

• imputing gene expression measurements (Sec. 2.2);

• performing fast queries on the Connectivity Map dataset (Sec. 2.3).

The improvements achieved by these competitions focused on both optimization (reduction in speed

or memory footprint) and production of better models (higher accuracy in statistical inference) and

highlighted the versatility of crowdsourcing as an effective tool for researchers.

2 Results

The competitions discussed here were hosted on the platform Topcoder.com (Wipro, Bengaluru, India),

providing access to a community of approximately one million software engineers and data scientists.

They were held for a duration of two to four weeks, and they were structured so that each competitor

could make multiple submissions and receive continuous feedback on the performance of their solution

(based on objective metrics) summarized on a live public leaderboard. The purpose of such feedback was

essential to drive competition among the participants. Incentives for these competitions consisted of cash

prizes, ranging from $8,500 to $20,000. Specific payouts and participation levels for each competition

are summarized in Table 1.

We evaluated each submission using predetermined performance metrics (Online Methods, Sec. 6).

These are real-valued functions of one or more characteristics, such as computation time, memory use, or

accuracy, which targeted specific contest objectives. Three kinds of data sets were used for evaluation: a

training set, a validation set, and a test set. The training set and associated ground truth were provided

to participants for the purpose of understanding the properties of the data and for developing or training

their solutions. The validation data set (excluding ground truth) was used to provide real-time feedback

on the performance of their solution via submission of either source code or predictions produced by their

algorithms. The test set was reserved for the end of the competition and was used for final evaluation

of submissions; this data set was withheld from participants at all times. Note that for data science

competitions, the holdout test set is particularly important for determining the true performance of
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solutions, since continuous feedback of performance in the form of a real-time leaderboard raises the

prospect of model overfitting on the validation set.

2.1 Antibody Clustering Challenge (Scripps)

2.1.1 Motivation and Objective

In the process of immunotherapy and vaccine development, next-generation sequencing of antibody

repertoires allows researchers to profile the large pools of antibodies that comprise the immune mem-

ory formed following pathogen exposure or immunization. During the formation of immune memory,

antibodies mature in an iterative process of clonal expansion, accumulation of somatic mutations, and

selection of mutations that improve binding affinity. Thus, the memory response to a given pathogen

or vaccine consists of “lineages” of antibodies which can trace each of their origins to a single precursor

antibody sequence. Detailed study of such lineages can provide insight to the development of protective

antibodies and the efficacy of vaccination strategies. After the initial alignment and assembly of reads,

the antibody sequences can be clustered based on their similarity to the known gene segments encoding

heavy or light antibody chains. Clustering these antibody sequences allows researchers to understand

the lineage structure of all antibodies produced in individual B cells [9, 10, 11].

The number of antibody sequences from a single sample can easily reach to the millions; posing a

major computational challenge for clustering at such a large scale. The bottleneck lies at computing

a pairwise distance matrix and subsequently performing hierarchical clustering of the sequences. The

former task scales as O(N2) in both computational and space complexity, where N is the total number

of input sequences. The latter task, assuming a typical agglomerative hierarchical clustering algorithm,

has a computational complexity that scales as O(N2 logN). By comparison, the file I/O is expected to

scale as O(N).

2.1.2 Benchmarks and Methodologies Prior to the Competition

Prior to the competition, a Python implementation of the clustering algorithm was developed, utilizing

numpy, fastcluster, and scipy.cluster.hierarchy.fcluster modules (Online Methods, Sec. 6.1). The clus-

tering was performed using the average linkage criterion with a maximum threshold distance imposed.

The implementation utilized the Python built-in multi-processing module to parallelize the computa-

tions on multiple cores and required approximately 54.4 core-hours and 80GB of memory (computations
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were performed on a 32 core machine with 250GB RAM) for a dataset containing 100K input antibody

sequences. Empirically, the primary bottlenecks for this implementation and dataset were computation

time and storage of the distance matrix (note that the embarrassingly parallel nature of this task im-

plies a trivial cost conversion between single and multi-core computations). Full-hierarchical clustering

scales comparably in terms of computational complexity; with the threshold imposed, the relative cost is

approximately a factor of 50 less than the cost of constructing the distance matrix, however. Although

I/O was included in the timing estimates, its contribution in this case was negligible.

Extrapolating the computation to a typical antibody profiling sample containing one million input

sequences, the required computational time and storage is expected to reach around 5440 core-hours and

8TB, respectively. Given its poor scalability and efficiency limitations, this implementation is inadequate

for large-scale profiling, which for a small clinical vaccine evaluation may consist of dozens of subjects

with several longitudinal samples per subject. The goal of the challenge was to optimize and improve

the algorithm and its implementation, so that routine data analysis of a large-scale antibody profiling

study would become feasible given modest computational resources.

2.1.3 Problem Abstraction and Available Data Sets

A common optimization practice is to convert all or just the computationally-intensive parts of Python

codes to languages such as C/C++. We implemented a C++ version of our algorithm (directly trans-

lated) and used it in our post-challenge benchmarking analysis (Online Methods, Sec. 6.1). Although

the memory footprint for this implementation was comparable to that of the Python implementation,

it yielded approximately an order of magnitude reduction in computation time. This computational

cost reduction was primarily attributed to the construction of the distance matrix, whereas the com-

putational cost of the clustering itself was comparable in both implementations (this is not surprising,

given the underlying implementation of the scipy.cluster.hierarchy.fcluster is written in C). All contest

submissions were evaluated relative to the Python (A1) and C++ (A2) benchmarks described above,

and the code for both benchmark implementations was provided to the contestants.

We generated datasets of 1K, 5K, 10K and 100K input sequences sampled from true sequences

derived from a healthy adult subject and computed their corresponding clustering outputs using the

A1 baseline. The output results for these datasets served as the “gold standards” for evaluating the

accuracy of the solutions produced in the competition (Online Methods, Sec. 6.1). The training datasets

comprised one 1K and one 100K input sequences, the validation datasets comprised two 5K and three
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10K input sequences, whereas the testing datasets comprised four 10K and six 100K input sequences.

For the given threshold distance, the maximum cluster size for each dataset ranged from 1.6% to 4%

of the total number of antibody sequences in the set. The most probable cluster size for each set was

unity, however.

2.1.4 Competition Outcome

The competition lasted for 10 days, involved 34 participants, and averaged 6.91 submissions per par-

ticipant. All contest submissions were evaluated on a 32 core server with 64GB memory, although the

top four solutions utilized only a single core. For the given dataset, a majority of participants had

submitted solutions that were significantly more computationally efficient than the A2 benchmark, with

the winning solutions being orders of magnitude more efficient.

Fig. 1 illustrates the computational cost performance of the A1 and A2 benchmarks, along with the

performance envelope for the top four performing solutions as a function of the number of input antibody

sequences for N up to 1M input sequences. The winning solution was able to perform clustering of 100K

sequences in approximately 1.8s on a single core implying a total computational cost reduction (speed-

up) of 108,800 when compared to the A1 benchmark. Interestingly, the primary bottleneck for this

implementation was no longer clustering but rather file I/O. Neglecting file I/O, which accounted for

85% of the computation time, the effective speedup achieved for clustering over the A1 benchmark was

approximately 777,000 for 100K sequences2. For N up to 1M input sequences, the four solutions required

less than approximately 17GB memory, with the winning solution requiring only 0.7GB memory.

The winning solution achieved significant improvements in computational efficiency by abandoning

generic implementations of hierarchical clustering, which demand computing the full (or half) the dis-

tance matrix as input in favor of a problem-specific strategy. The solution exploited several important

properties of the data set to dramatically reduce the number of Levenshtein distances computed by

noting that:

1. Some families of antibodies are never clustered together implying a partitioning of the dataset.

2. Some antibodies are always clustered together, forming subclusters.

2Further improvement of the winning algorithm was achieved subsequent to the competition, in part by aggressively

optimizing the file I/O. The improvements resulted in another 30-fold reduction in the total computational cost of the

algorithm (including I/O) on the 100K dataset.
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3. Coarse “superclusters” can be quickly identified and formed from such subclusters.

Once coarse clusters were formed, a final exact clustering was performed for each of the superclusters.

In addition to these innovations, the solution exploited SIMD instructions to speed up the calcula-

tion, improved the management of memory, and simplified the parsing of input data to minimize I/O

operations.

2.2 The Connectivity Map Inference Challenge (Broad Institute)

2.2.1 Motivation and Background

The discovery of functional relationships among small molecules, genes, and diseases is a key challenge

in biology with numerous therapeutic applications. The Connectivity Map (CMap) allows researchers to

discover relationships between cellular states through the analysis of a large collection of perturbational

gene expression signatures [12, 13]. These signatures arise from the systematic perturbation of human cell

lines with a wide array of perturbagens, such as small molecules, gene knockdown, and over-expression

reagents; together, they constitute a massive dataset that can be “queried” by powerful machine learning

algorithms to identify biological relationships. Researchers can then use the outcomes of those queries

to form hypotheses to guide experimentation [14].

Despite the recent advancements in high-throughput technology, developing massive gene expres-

sion data repositories, such as the Connectivity Map, is still considerably challenging due to the cost

of doing systematic large-scale gene expression profiling experiments. These experiments typically in-

volve thousands of genes with complex cellular dynamics and nonlinear relationships, thereby usually

demanding large sample size. They also involve perturbations that can be performed with a wide array

of molecules, at different doses, and in different cellular contexts, thus producing an enormous space of

experimentation.

To address these difficulties, the CMap group at the Broad Institute has developed a novel high-

throughput profiling technology, called L1000, that makes the data generation process for The Con-

nectivity Map cheaper and faster [13]. This new technology is based on a reduced representation of

the transcriptome that combines direct measurement of a subset of approximately 1000 genes, called

landmarks, with an imputation approach to obtain the gene expression levels for the remaining (non-

landmark) genes.

The resulting combination of imputed and directly-measured genes enables the L1000 platform to
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report on approximately 12,000 genes with accuracy comparable to traditional profiling technologies

(e.g., RNA-Seq) but at a fraction of the cost [13]. This improvement has in a few years enabled the

Connectivity Map to grow from its initial 500 (Affymetrix) profiles to over one million (L1000) profiles.

While L1000 is a powerful and cost-effective tool, the comparability with externally-generated gene

sets remains an open issue. The practice of directly measuring only 1,000 genes (a small fraction of

the entire transcriptome) reduces the fidelity of comparisons with externally-generated gene sets, whose

overlap with the 1,000 landmarks may be minimal. Improving the imputation accuracy for non-landmark

genes is, thus, expected to facilitate comparisons between L1000 and external gene expression data and

gene sets, leading to higher-confidence hypotheses.

In addition, while the connectivity analysis of CMap signatures can be restricted to the landmarks

only, sometimes this restriction is unfeasible (queries containing no landmarks) or undesirable (leading

to poor outcomes, [13]). Improving the imputation accuracy is, therefore, expected to bear additional

benefits downstream, increasing the ability of CMap to detect biologically-meaningful connections.

With these goals in mind (improving comparability and the downstream connectivity analysis), the

“CMap Inference Challenge” solicited code submissions for imputation algorithms more accurate than

the present approach.

2.2.2 Problem Abstraction and Available Data Sets

The following describes the basic imputation approach currently in use by the Connectivity Map:

• Learn the structural correlations between non-landmark and landmark genes using Multiple Linear

Regression (MLR) on a reference dataset D with complete data on both landmarks and non-

landmarks;

• Perform out-of-sample predictions of the expression values of the non-landmarks in a different

target dataset T (i.e., apply the regression function as estimated from D to compute the fitted

values of the transcriptional levels for the non-landmark genes in T ), using these predictions for

imputation.

It has been shown that a MLR approach using L1000 data for imputation achieves considerable

accuracy when compared to RNA-Sequencing (RNA-Seq) on the same samples [13]. Nevertheless, al-

ternative imputation approaches could yield performance improvements (e.g., by exploiting possible

non-linearities in the data or a larger training dataset).
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Contest participants were tasked to explore alternative approaches using an eight-times-larger dataset

for their inferential models (Online Methods; Sec. 6.2) with the goal to predict 11,350 non-landmarks

from 970 L1000 landmarks. Their models were then evaluated using as ground truth RNA-Seq data

profiled on the same samples.

2.2.3 Competition Outcome

Eighty-eight competitors submitted their predictions for evaluation; fifty-five (62%) achieved an average

performance higher than the MLR benchmark, with improvements as high as 50%, and with little dif-

ference between provisional and system evaluations (Online Methods, Fig. 5), indicating no overfitting.

For the top five submissions, performance improvements were in absolute and relative accuracy (Fig.

2A-D). The median gene-level rank correlation between the predicted values and the ground truth was

70% higher than the benchmark. The gene-level relative accuracy (i.e., the rank of self-correlation

compared to correlations with other genes) was distributed with a lower dispersion (an interquartile

range 40-90% lower depending on the submission), resulting in a higher recall.3

Inspection of the methods used by the top five submissions reveals that 4 out of 5 of the top-

performing submissions converged to a K-Nearest Neighbors (KNN) regression, and only one used a

Neural Network approach. KNN regression is a non-parametric regression approach that makes predic-

tions for each case by aggregating the responses of its K most similar training examples. Compared

to MLR, KNN regression makes weaker assumptions about the shape of the “true” regression function

thereby allowing a more flexible representation of the relationship between landmark and non-landmark

genes.

Compared to a standard KNN-based imputation model, such as [15], the winning submission presents

a few innovations. First, it combines multiple predictions obtained by iteratively applying the same

regression function to different data normalization, such as scale, quantile, rank, and ComBat batch

normalization [16]. Second, within each iteration, it identifies and combines multiple sets of K nearest

neighbors using different similarity measures. These modifications present some potential advantages

over a standard KNN method. One potential advantage is to alleviate batch effects thereby controlling

for a source of non-biological variation in the data. Another advantage is the identification of the training

samples that are most biologically relevant for predicting a given test sample (e.g., same tissue). The

3All the above differences were highly statistically significant (p < 0.001), according to a pairwise paired Wilcoxon

Signed Rank Test with Bonferroni correction.
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net outcome is that the winning approach achieves ¿5% improvement in absolute accuracy and ¿2.6%

improvement in the recall over the other top KNN approaches.

We further examined key differences between the winning method and the MLR benchmark by

comparing performance on large (100,000) and small (12,000) sample size training datasets. We found

that the winning KNN approach outperforms the MLR, although the performance is sensitive to the

sample size. When trained on the smaller dataset, the overall performance of the winning KNN approach

was higher than the benchmark (10% higher absolute accuracy) but the recall was (5%) lower.

Clustering analysis of the gene-level scores (Fig. 2-E) suggested potential complementarities among

the top submissions. We tested this hypothesis by combining the predictions of the top five submissions

into an ensemble approach. We used the training dataset to select automatically the best predicting

method for each particular gene (the one with the highest combined score). By doing so, we found

a strong complementarity between the winning KNN and the Neural Network approach, which were

equally selected for over two-thirds of the genes (Fig. 2-F). We then evaluated the resulting predictions

on the test set, showing a 2% improved performance over the top performing submission (Fig. 2).

We then examined to what extent a better inference model affects the ability to recover expected

connections using CMap data [see 13, for a formal definition of connections]. To test this hypothesis,

the winning approach was used to impute non-landmark genes on a dataset of L1000 profiles from

about 46,000 samples of multiple perturbagens (Online Methods, Sec. 6.2). We then processed these

KNN-imputed data through the standard CMap pre-processing pipeline [13] and queried the resulting

signatures, and their MLR equivalents, with a collection of annotated pathway gene sets. Based on the

literature, each gene set was expected to connect to at least one of the perturbagens. We compared the

distribution of the connectivity scores and corresponding ranks generated using the predictions made

by the KNN approach and those made by the benchmark MLR approach. Results show no significant

difference in the distributions of these connectivity measures (according to Kolmogorov-Smirnov test).

In conclusion, the top submission achieved substantial improvements in performance over the MLR

benchmark, thus it succeeded in achieving a better comparability of CMap inferred data with external

data. To facilitate the use of the winning submission for this purpose, the winning code was deployed in

the “R” package (“cmapR’) and is currently available at github.com/cmap. At the same time, we found

no evidence that the better inference would translate into a more accurate downstream connectivity

analysis (higher ability to recover the expected connections), contrary to the initial hypothesis. However,

limitations in the contest configuration (scores were not directly based on connectivity) preclude a
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conclusive statement at the moment, and further investigation is ongoing.

2.3 CMap Query Speedup Challenge (Broad Institute)

2.3.1 Motivation and Objective

Researchers often use the Connectivity Map to compare specific patterns of up- and down-regulated

genes for similarity to expression signatures of multiple perturbagens (e.g., compounds and genetic

reagents) in order to develop functional hypotheses about cell states [13]. These hypotheses can be used

to inform areas of research ranging from elucidating gene function to identifying the protein target of a

small molecule to nominating candidate therapies for disease.

Given the high potential of this approach, many algorithms that assess transcriptional signatures for

similarity have been developed over the years. These algorithms are generally computationally expensive,

which may limit their use to relatively small-sized data. The principal problem is that computationally

efficient methods, such as cosine similarity, may be inadequate for interpreting gene expression data in

general. Moreover, more powerful methods, such as the Gene Set Enrichment Analysis [17], need to

perform computationally-expensive tasks, such as ranking genes in each signature by their expression

levels to compare gene rank positions individually across signatures. Given the Connectivity Map has

recently expanded to over one million profiles [13], this limitation is particularly problematic.

To address this problem, the CMap group developed a fast query-processing algorithm, called Sig-

Query. This tool was implemented in MATLAB incorporating a range of optimization techniques to

speed up queries on the Connectivity Map, and was available on the online portal CLUE.IO. Overall,

the algorithm achieves a good level of performance (in a preliminary analysis, it took about 120 minutes

to process 1000 queries with gene sets of size 100 against a signature matrix of 470,000 signatures). Even

so, execution time and memory requirements are still a potential barrier to adoption for the Connectivity

Map.

To further the development of query algorithms for CMap data, the “CMap Query Speedup Chal-

lenge” solicited code submissions for fast implementations of the present CMap query methodology.

2.3.2 Problem Abstraction and Available Data Sets

Following the query methodology described in Sec. 6, one bottleneck lies at rank-ordering all signature

values and subsequently walking down the entire list of G genes in a signature to compute the running
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sum statistics over all possible pairs of S signatures and queries. Using the quick-sort algorithm, this

task has a computational complexity of O(S × G log(G)) in the average case. To save time, however,

results can be stored on disk, as in the current implementation, with adjustments to try to minimize

the cost of access to disk memory. The other very burdensome task involves computing the running

sums for all genes in each signature, which has a computational complexity upper bound that scales as

O(S ×G) per query.

For this contest, participants had to address these problems and the performance of their methods

was evaluated on 1000 queries to be run on the whole CMap signature matrix, which has expression

values for > 470k signatures and > 10k genes (Online Methods, Sec. 6.3).

2.3.3 Competition Outcome

The competition resulted in 33 participants making 168 code submissions. All final submissions were

evaluated on the holdout query dataset on a server with 16 cores. Results showed significant speed

improvements over the benchmark: the median speedup was of 23× with at least two submissions

achieving speedups beyond 60×.

Comparison of performance between 16-core and single-core evaluations showed that multithreading

alone accounted for a large fraction of the gains in performance over the benchmark (Fig. 4-A): the

median speedup difference between single and multi core was 18×, accounting for 70% of the final

median speedup over the benchmark.

Beyond multithreading, analysis of the scaling properties of the winning submission showed a com-

putational time complexity that scales as the square-root of the number of queries (Figure 4-B), which

represents a major improvement compared to the benchmark’s linear scaling.

The winning submission also showed substantial performance improvements in the reading time

—the time to load in memory the absolute values and rank-ordered positions of genes in the CMap

signature matrix: the overall reading time of the winning submission was just below 10 seconds, which

represents a 50× speedup compared to the 500 seconds used by the benchmark (Online Methods, Fig

6).

Close examination of the codes of the top submission revealed multiple optimization adjustments

that can account for all these improvements. These adjustments often overlap with those of the other

submissions, thus making hard any clear-cut categorization. Consequently, we report instead the areas

of optimization that we believe are responsible for most of the performance improvement over the
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benchmark (beyond multithreading and the recourse to low-level programming languages, such as C++,

instead of MATLAB). Essentially, these are:

1. Efficient data storage techniques in order to maximize the available cache memory for each thread.

2. Streaming SIMD Extensions (SSE) technology to execute multiple identical operations simultane-

ously for each thread.

One of the ways by which the winning submission achieved its exceptional performance was by loading

the entire signature matrix in the cache memory. Cache memory is indeed the fastest memory in the

computer, albeit of very limited capacity. To minimize memory usage, the winning contestant stored

the CMap signature matrix at a lower precision than the benchmark (32-bit single precision floating for

the scores and 16-bit integers for the ranks), with essentially no loss in accuracy. Precision reduction

alone, however, was insufficient to fit level 1 cache memory (the fastest cache memory available) due to

the large extent of queries and gene sets to be processed per signature. So, it developed a clever system

of matrices to efficiently store the indexes and partial sums for each gene in a query. The resulting

algorithm made a much more efficient use of memory compared to the benchmark.

The other major improvement is related to SSE, which is a set of instructions that allows the processor

to compute the same operation on multiple data points simultaneously [18]. The winning submission

used SSE to form batches of 4 genes and simultaneously compute the rank positions of these genes, thus

reducing by approximately a factor of one-fourth the time of each query.

As a result, the winning code submission for the CMap Query Speedup Challenge was deployed in

the online portal CLUE.io and is now currently available as an option to users in the Query App (Online

Methods, Fig. 7). This improved algorithm has also enabled CLUE to support batch queries, allowing

users to execute multiple queries in a single job, all via the CLUE user interface.

3 Discussion

This work demonstrates how researchers in computational biology and bioinformatics have utilized open

innovation competitions to make inroads on a variety of computational roadblocks in their work. While

participants in these competitions may not possess the domain knowledge to solve every research problem

faced by scientists, their unique skills can be leveraged to attack well-defined tasks (e.g., algorithm
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improvement to maximize computational speed) resolving specific issues or bottlenecks to the research

process.

We highlight a few key advantages over traditional approaches. First, competitions enable rapid yet

broad exploration of the solution space of the problem. This broad exploration opens the possibility of

discovering high-performing solutions, which may lead to breakthroughs in the field. Second, competi-

tions give researchers access to multiple complementary solutions. Thus, they create opportunities to

boost performance even further with ensemble techniques whereby different approaches are combined

based upon their strengths in different regimes or for different subsets of data.

Our results indicate that these gains arise from the efforts of out-of-the-field participants instead of

the community of practitioners and domain experts. Thus, on the one hand, we know open innovation

competitions are a great tool to solicit community-based effort (e.g., Dream Challenges); on the other,

we show that the potential for their use in biology and other life sciences goes beyond the size and

availability of the community of researchers connected to the problem.

By defining appropriate objective functions to guide the competitors’ efforts, researchers have indeed

the flexibility to pursue vastly different problems or even decide to tackle multiple aspects of the same

problem concurrently via a composite objective function. This kind of problem definition, however,

can be difficult. It requires knowledge of the aspects that are critical to the problem and for which

improvements are quantifiable and achievable, understanding of ways to trade-off improvements in one

dimension for another, and the ability to abstract the original problem from its domain to attract broad

participation (knowing that domain-specific information hurts participation but also offers competitors

insights on how to solve the problem).

We have shown some of the challenges encountered in addressing these issues for two very general

types of computational problems: “code development” and “machine learning.”

Code development problems typically boil down to improving existing computational algorithms that

have well-defined inputs and outputs under a variety of constraints (e.g., speeding up the computation,

without exceeding memory limits). Here, although performance improvements are quantifiable and can

be checked by test cases, other relevant aspects (e.g., robustness) are less so. This restriction forces

researchers to take additional steps after the contest to validate methodologies and integrity of solutions

beyond the limited test cases considered during the competition. These steps typically include ensuring

security (understanding what the code does and ensuring it is not malicious) and legality of the produced

codes (that they are original or properly licensed) before integration and deployment.
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Machine learning problems focus on more exploratory questions, such as producing predictive mod-

els that describe an existing data set, yet are generalizable to new data. These problems are typically

multi-dimensional, given the wide range of potential applications, and are sometimes hard to quantify

(e.g., measurements that offer only a partial picture of biological states to model). As a result, competi-

tions addressing these problems typically involve interpretation and further evaluation of methodologies,

exploration of possible complementarities, and understanding strengths and pitfalls of solutions in com-

parison to known methodologies along dimensions not considered within the competition.

Our study suggests that although competitions offer the flexibility to address both kinds of problems,

the associated post-competition efforts can be quite different. In both cases, handling these additional

tasks requires expertise that itself may not be available to the end-user, although they may be addressed

in part by subsequent competitions; thus, keeping a modular design strategy appears beneficial. For

ML problems, further efforts (comparable to those devoted to replicating the methods used in another

study) are often needed to evaluate and assimilate the new knowledge produced. Further research to

examine the outer limits of scientific problem solving through contests is necessary.

We conclude by mentioning a few additional empirical contexts in which open innovation competi-

tions seem promising. One is the assignment of functional attributes of small molecules and genes, such

as predicting the mechanism of action of a compound. While many algorithms have been independently

developed for this purpose, a broad exploration is often out of reach to individual laboratories. On

the development side, research in biology is often impeded by bottlenecks in the memory storage and

transmission of genetic data, which are critical and quantifiable, thus an open innovation competition

seems an effective way to overcome these bottlenecks.
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5 DISPLAY ITEMS (MAIN TEXT)
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Contest Duration

(days)

Prize Pool ($1000)

(Distribution)

Participants Average Submissions

per Participant

Antibody Clustering 10 8.5 (5/2/1/0.5) 34 6.91

Connectivity Map 1 21 20 (10/5/2.5/1.5/1) 85 13.73

Connectivity Map 2 21 20 (9/5/3/2/1) 40 4.58

Table 1: Competition summary: Prize pools were distributed to the top-placing solutions, rank-ordered

by performance based on objective evaluation metrics. For these contests, we used a constant prize

pool over duration ratio (Prize Pool/Duration ∼ 1000 USD/day) and the prize distributions follow:

P (N) ∼ P (1)e−2/3(N−1) for places N = 1, 2, . . . and P (1) = Prize Pool/2.
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Figure 1: Antibody Challenge outcomes: (Left) Evaluation metric used for Antibody Clustering as a

function of time (t measured in units of t0 = 100ms) and accuracy (ACC), as determined during the

competition. Solutions lying on the isocurves are considered equivalent in quality, as defined by the

evaluation metric (see Sec. 6.1). Data points correspond to average performance based on up to four

10K test sets (failed test cases excluded). Also shown is the benchmark algorithm implemented in

Python (A1) and C++ (A2); note that benchmark algorithms A1 and A2 have perfect accuracy (ACC

equal to unity). (Right) Effective computational cost (excluding I/O) on a single core as a function

of test set size N for Antibody Clustering (t measured in units of t0 = 100ms). Dashed lines indicate

linear and quadratic scaling behaviors. Results are shown for the benchmark algorithms (A1 and A2)

and the top four performing solutions (top solution indicated by solid line and darker data points). The

benchmark algorithms exhibit quadratic scaling behavior with test set size, whereas the top algorithm

exhibits better than quadratic scaling behavior within the regime considered. The best performance

over the entire range of N can be achieved using an ensemble of solutions selected based upon whether

the test set size is either below or above the crossover value at approximately N ∼ O(104).
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Figure 2: CMap Inference Challenge outcomes: (A) Scatter plot showing the average performance of the

top 5 submissions, the benchmark, and an ensemble that takes the best-predicting algorithm from the

top 5, where the performance is represented in two dimensions: absolute accuracy (gene-level Spearman

correlation) and relative accuracy (gene-level relative rank); curves (light gray) represent locus of points

on the plane giving the same aggregate score (curves on the right of this plot represent higher aggregate

scores); (B) Boxplot showing absolute accuracy at the gene level for all the top 5 submissions, the

benchmark, and the ensemble; (C) Boxplot showing relative accuracy at the gene level for all the top 5

submissions, the benchmark, and the ensemble; and (D) Recall (defined as proportion of genes with a

relative accuracy below .95) for all the top 5 submissions, the benchmark, and the ensemble.

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/565481doi: bioRxiv preprint 

https://doi.org/10.1101/565481


●
●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PC1

P
C

2

K−NN1

Neural−Net

K−NN3

K−NN4

K−NN5

sub1
(n=3413)

sub2
(n=3519)

sub3
(n=1687)

sub4
(n=1422)

sub5
(n=977)

MLR
(n=332)

F
ra

ct
io

n 
be

st
 g

en
es

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 3: Left: Plot showing results of the Principal Component Analysis (PCA) of the gene-level com-

bined scores of all top five submissions for the CMap Inference Challenge. While all top submissions

are clustered together in the first factor of PCA, they differ in the second factor, separating into dif-

ferent “clusters” the Neural Network approach (submission 2) and the other KNN based approaches

(submissions 1, 3, 4, and 5). Right: Barplot showing the proportion (and count in parenthesis) of gene

predictions used to form the ensemble, which uses the training dataset to select the best predicting al-

gorithm from the MLR benchmark and the top 5 submissions (i.e., the algorithm achieving the highest

combined score for a particular gene) for the CMap Inference Challenge.
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Figure 4: CMap Query Speedup Challenge Results: (A) Scatter plot showing the relationship between

speedups computed on the participants’ last submission with one single core (x-axis) and those with

multiple cores (y-axis); observations lying on the 45 degrees line correspond to participants who did not

use multi-threading in their final submission (with small variation around the line due to differences in

the set of queries used to compute the speedups); (B) Plot showing differences in the scaling behavior

between the benchmark and the top submission (on a log-log scale); for both, the displayed computation

times are a median of 10 replicates.
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6 Online Methods

6.1 Antibody Clustering Challenge (Scripps)

6.1.1 Competition Evaluation

Evaluation of a multi-task challenge such as this, which aims to yield performance gains in speed and

memory use while maintaining a high degree of accuracy, requires some care due to the unavoidable

interplay between performance characteristics which is inherent to scalar metrics. Therefore, we devel-

oped a weighted scoring function to evaluate the contestants’ solutions against the gold standards. For

a given dataset, scores were assigned to each algorithm based on

S (t/t0, ACC) =

[
max(0, ACC − 1 + ε)

ε

]4
1

max(1, t/t0)
, (1)

where t is the computation time required for a given test set on a 32 core server, ACC is the associated

accuracy of the computation compared to the gold standards, ε = 10−2, and t0 = 100ms. Solutions that

exceeded a memory use threshold of 3GB received a score of zero. The accuracy (ACC) was determined

from the similarity between two clustering based on an adaptation of the Rand index [19]. The final

evaluation was based on the average performance on multiple test sets, after normalizing the scores

for each test set by the top-performing solution. Fig. 1 illustrates the average performance of all final

submissions as a function of computational cost and accuracy for 10K hold-out datasets, as compared

to the A1 and A2 benchmarks.

6.1.2 Data Access

The training, validation and test data sets,as well as the Python and C++ benchmark clustering algo-

rithms are available at https://github.com/SuLab/Antibody-Clustering-Challenge.

6.2 CMap Inference Challenge (Broad Institute)

6.2.1 Competition Evaluation

To assess imputation accuracy, we created an evaluation metric that balanced both absolute and relative

measures of accuracy. Let Pij represent the predicted expression levels for a set of samples, indexed

by i = 1, ..., N , and non-landmark gene labels, indexed by j = 1, ...,M (for this study, M = 11350).
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Similarly, let Gik represent the true (measured) expression levels for the same set of samples and non-

landmark genes, indexed k = 1, ...,. For each pair of gene labels j, k, construct the Spearman rank

correlation matrix elements ρjk(P,G) between prediction and truth data across all the samples. For

a given gene label j, let Rj(P,G) be the relative rank of the correlations ρij(P,G) where k = j with

respect to the remaining correlations k 6= j. The score attributed to each gene-level prediction is given

by an equally-weighted average of the Spearman correlation between prediction and truth data, and

the relative rank of the correlation when compared with the correlations associated with the remaining

genes:

Sj(P,G) =
1

2

[
ρjj(P,G) +

1

M
Rj(P,G)

]
For this competition, gene-level scores were normalized with respect to a benchmark algorithm,

which was based on a linear regression model. Let Bij represent the predictions made by the benchmark

algorithm and Sj(B,G) represent the gene-level scores associated with the benchmark predictions. The

final quality of the predictions was determined based on the average:

S̄(P,B,G) =
1

M

M∑
j=1

2− Sj(B,G)

2− Sj(P,G)
.

6.2.2 Data Access

All the datasets related to this challenge can be found at the Gene Expression Omnibus (GEO) data

repository, www.ncbi.nlm.nih.gov/geo/download/?acc=GSE92743. Test samples were generated in

collaboration with the Genotype Tissue Expression (GTEx) project (www.gtexportal.org/home/).

A brief description of the main files is as follows:

• Training: Affymetrix data of 12,320 gene expressions for 100,000 samples used by contestants for

building their models, ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/GSE92743/suppl/

GSE92743_Broad_Affymetrix_training_Level3_Q2NORM_n100000x12320.gctx.gz.

• All of the gene expressions (directly measured & inferred) of L1000 measurements on 3,176 GTEx

samples, ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/GSE92743/suppl/GSE92743_Broad_

GTEx_L1000_Level3_Q2NORM_n3176x12320.gctx.gz.

• Validation Set: Subset of L1000 measurements (directly measured & inferred) on 650 samples ran-

domly selected for provisional scoring, ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/

GSE92743/suppl/GSE92743_Broad_GTEx_L1000_Test_Level3_Q2NORM_n650x12320.gctx.gz.
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• Test Set (inputs): Subset of L1000 measurements (directly measured & inferred) on 1000 sam-

ples randomly selected for final scoring, ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/

GSE92743/suppl/GSE92743_Broad_GTEx_L1000_Holdout_Level3_Q2NORM_n1000x12320.gctx.gz.

• Test Set (ground truth): All of the RNA-seq measurements on 3,176 GTEx samples, which

were used as ground truth for provisional and final scoring, ftp://ftp.ncbi.nlm.nih.gov/geo/

series/GSE92nnn/GSE92743/suppl/GSE92743_Broad_GTEx_RNAseq_Log2RPKM_q2norm_n3176x12320.

gctx.gz.

• Matrix of weights used in current CMap L1000 inference model ftp://ftp.ncbi.nlm.nih.gov/

geo/series/GSE92nnn/GSE92743/suppl/GSE92743_Broad_OLS_WEIGHTS_n979x11350.gctx.gz.

The dataset with Affymetrix gene expressions that was used to train originally the CMap L1000

MLR inference model can be downloaded from the GEO data repository, https://www.ncbi.nlm.nih.

gov/geo/download/?acc=GSE92742

• File DS GEO n12031x22268.gctx in auxiliary dataset (ftp://ftp.ncbi.nlm.nih.gov/geo/series/

GSE92nnn/GSE92742/suppl/GSE92742_Broad_LINCS_auxiliary_datasets.tar.gz).

6.3 CMap Query Speedup Challenge (Broad Institute)

6.3.1 CMAP Query Methodology

To assess the similarity between a query and a signature, the methodology used by CMap is based on

the weighted Kolmogorov-Smirnov enrichment statistic [13]. This statistic reflects the degree to which

genes in the query q are overrepresented at the top or bottom of the signature s.

Let a signature s be a vector of G differential expression values xg for each gene g with g = 1, 2, ..., G.

Let a query q be a list q = {Gup, Gdown} of two disjoint gene sets Gup and Gdown indicating which

genes are expected to be up- and down-regulated (the biological state of interest).

The weighted Kolmogorov-Smirnov enrichment statistic is computed as follows:

1. For each gene set Gj, compute the sum of values at all positions of s that correspond to genes in

Gj:

ssum,j =
∑
g∈Gj

xg, j = {down, up};

2. Sort s in descending order to obtain a rank-ordered signature sr
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ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/GSE92743/suppl/GSE92743_Broad_OLS_WEIGHTS_n979x11350.gctx.gz
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE92742
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE92742
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/GSE92742/suppl/GSE92742_Broad_LINCS_auxiliary_datasets.tar.gz
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3. For each gene set Gj, compute a running sum statistic rssg,j that walks down the rank-ordered

signature sr and, at each rank position rg corresponding to a gene g, is incremented by a factor

rg/ssum,j when g ∈ Gj, otherwise is reduced by 1/(G− |Gj|);

4. Compute the maximum deviation of the running statistic rssgmax,j from zero for both gene sets

j = down, up

5. Finally, if the deviations corresponding to each gene set have a different sign, return the average

absolute deviation; otherwise return zero (i.e., no similarity is found).

Extending this procedure to a database with S signatures and Q queries is straightforward and it

consists of iteratively applying the above procedure to all pairs of signatures and queries.

6.3.2 Competition Evaluation

For a given set of queries, let sp = t/b be the speedup over the benchmark, which is defined by the ratio

between t the time (in seconds) a participant’s submission takes to complete all the queries and b the

runtime of the existing SigQuery tool for the same task. All code submissions were timed on the same

server and rank-ordered based on the score

score = (1 + 4/sp)−1.

The choice of using the runtime for scoring, instead of the process time (e.g., CPU time), deserves

further comment. If the scoring function was based on the process (or CPU) time, participants would

have had an incentive not to use multithreading techniques in their submissions, given the additional

inter-processor communication overheads. By contrast, a scoring function based on runtime speedups

would encourage competitors to use multithreading, which was available to everyone in the final evalua-

tion process (i.e., all codes were evaluated on the same machine with 16 cores). So, the choice of using

runtime for scoring was essentially to encourage implementations of multithreaded solutions.

In addition to speed, submissions had to be considered sufficiently accurate to be eligible for prizes.

We measured accuracy as the lowest absolute deviation in the Kolmogorov-Smirnov statistics between

those obtained by the competitor and those computed by the SigQuery tool. Submissions were thus

required to have their lowest absolute deviation below a given threshold (i.e., 0.0001). Note that we

focused on the lowest absolute deviation of all the Kolmogorov-Smirnov statistics that were computed

on each set of up- and down-regulated genes (i.e., before the possible normalization to zero, as described

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/565481doi: bioRxiv preprint 

https://doi.org/10.1101/565481


above) separately. This choice reflects considerations about the possibility that strategies for optimizing

data storage may result in small losses in precision that may, in turn, cause random changes in the sign

of the Kolmogorov-Smirnov statistics, when the absolute value of the statistic is low. An additional

requirement was, hence, to allow a maximum of 1000 such differences.

6.3.3 Data Access

The gene sets used for the queries in this challenge were obtained by downloading public Affymetrix data

from the National Center for Biotechnology Information’s GEO repository and performing comparative

marker selection between case and control samples in order to identify differentially expressed genes

[20]. For the convenience of analysis, we fixed the total size of the gene sets to 100, a number which was

intended to mimic the typical size of queries.

As with the other challenges, the dataset of queries was randomly split into training, validation, and

test sets of size 250, 250, and 500. Queries in the training and validation sets were provided as CSV

files, each containing gene set identifiers (rows) and a list of identifiers of individual genes contained in

the gene set (columns). The test dataset was withheld and used to validate the final submissions.

Competitors had access to the whole CMap signature matrix that was stored and distributed as

a series of CSV files containing the matrix of differential gene expression values and the rank-ordered

matrix that was pre-computed by sorting the signature matrix in descending order.
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7 DISPLAY ITEMS (ONLINE METHODS)
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Table 2: Dataset descriptives for the CMap Inference Challenge.

Dataset Size (genes× samples) Platform Source

Current 12, 320× 12, 000 Affymetrix GEO

Training 12, 320× 100, 000 Affymetrix GEO

Testing 970× 1, 600 L1000 GTEx

Ground 12, 320× 1, 600 RNA-Seq GTEx

Table 3: Top five submissions for the CMap Inference Challenge.

Rank Algorithm description

1 KNN (average over multiple normalizations)

2 Neural Net with batch normalization

3 KNN (average over random subsets)

5 KNN (average over random subsets)

5 KNN (average over random subsets)
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Figure 5: Plot showing the empirical distribution functions for the provisional and final scores computed

on all the final submissions for the CMap Inference Challenge. The two distribution curves overlap quite

well indicating no overfitting.
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Figure 6: Read time as a function of number of queries on a log-log scale; dots plot median time out of

10 replicates for each dataset for CMap Query Speedup Challenge.
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Figure 7: Screenshot of the implementation of the winning code submission for the CMap Query Speedup

Challenge in the online portal CLUE.io, where the code is currently available as an option to users in

the Query App (“compute with sig fastquery tool”).
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