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Abstract: 
 
Autofluorescence is a long-standing problem that has hindered fluorescence microscopy 
image analysis. To address this, we have developed a method that identifies and removes 
autofluorescent signals from multi-channel images post acquisition. We demonstrate the 
broad utility of this algorithm in accurately assessing protein expression in situ through the 
removal of interfering autofluorescent signals. 

 
Availability and implementation: https://ellispatrick.github.io/AFremover 
Contact: ellis.patrick@sydney.edu.au 
Supplementary information: Supplementary Figs. 1-13 
 
Immunofluorescence microscopy (IF) is a powerful tool for simultaneously visualising the 
localisation of multiple proteins in situ. Additionally, several methods have been developed 
that push the number of parameters visualised in a single section to well beyond traditional 
3-4 colour IF1–7. This allows for the definition of multiple cell types, complex subsets, and 
also cellular states in situ. Despite these advances the utility of IF, particularly in the clinical 
setting, has been hampered by the longstanding issue of autofluorescence. 
 
Autofluorescence is present in all tissues and has many sources including components of 
structural and connective tissues, cellular cytoplasmic contents and also fixatives used to 
preserve tissue 8–11. Autofluorescent substances have their own excitation and emission 
profiles that can span the entire visible and even infra-red spectrum and therefore 
significantly overlap with standard microscope excitation/emission filter setups10 
(Supplementary Fig. 1). This presents a major obstacle to image analysis, particularly any 
kind of automated analyses, as ‘real’ vs ‘autofluorescent’ regions of interest (ROIs) cannot 
be readily distinguished.  An example of this is shown (Supplementary Fig. 2) where the 
accurate quantification of CD3 labelling in human colon tissue is severely hampered by 
autofluorescent signals. 
 
Several methods have been developed to address the issue of autofluorescence. The oldest 
and most widely used are chemical methods to quench autofluorescence. These include 
exposing samples to either UV radiation or a chemical solution prior to or during staining9,12–

14. Although these methods can be effective, there are several disadvantages including 
quenching of desired signal from endogenous reporters or fluorescent probes, and also that 
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there is no general recipe with specific protocols required to quench specific types of 
autofluorescence 9,14. However, the primary limitation is that the quenching must take place 
prior to imaging, so if autofluorescence is detected after image acquisition it is too late to 
remove it. This can be frustrating as autofluorescence is highly variable between tissue 
sections.  
 
Digital methods of autofluorescence removal have also been developed such as spectral 
unmixing and algorithmic subtraction of a background reference image acquired prior to 
staining2,15,16. These methods are robust and have the capacity to resolve signal vs 
autofluorescence. However, they require specialised microscopes, considerable extra 
staining and imaging steps and also proprietary software. Importantly, these methods also 
need to be run at the time of image acquisition. These obstacles prevent generalised use. As 
such there is an urgent need for effective and open source methods to tackle the issue of 
autofluorescence after image acquisition.  
 
Here we describe Autofluorescence Remover, a fast and effective method for automated 
detection of autofluorescent regions of interest (ROIs) in IF images of tissue. The algorithm 
requires only the information from two fluorescent channels, where bright fluorescent ROIs 
are located and classified as ‘real’ or ‘autofluorescent’ based on measures of pixel 
correlation, distribution and dynamic range. We then employ a novel dilation function that 
works to outline the full body of autofluorescent ROIs. A key advantage of this method is 
that it is applied to images post-acquisition and can therefore be used to filter existing 
image data sets. 
 
The steps for the Autofluorescence Remover algorithm are summarised in Fig. 1. First, 
thresholds are applied to the two fluorescent channels and an ‘intersection mask’ is created 
to detect the ROIs that are fluorescing in both channels (Fig. 1a, left). Second, we then 
measure ROIs in the ‘intersection mask’ for multiple textural features (Fig. 1a, middle). To 
select these features, we make a key assumption that the fundamental topology of pixel 
intensities for an autofluorescent ROI is conserved across channels. This makes sense as 
sources of autofluorescence tend to have long excitation and emission profiles. As such, any 
measure of pixel behaviour within an ROI will be linearly correlated across channels 
(Supplementary Fig. 3a-c). Therefore, to identify autofluorescence we measure multiple 
features including pixel correlation (Pearson’s correlation coefficient), dynamic range 
(Standard Deviation) and distribution (Kurtosis). Third, ROIs can be clustered using the 
textural features as inputs to identify a distinct cluster with high correlation values that 
consists mainly of autofluorescent ROIs (Fig. 1a, right). Here we have used a k-means 
clustering algorithm with automated choice of k. Finally, these autofluorescent ROIs can be 
excluded from downstream analysis or can be subtracted from the raw images for 
visualisation (Fig. 1b,c). 
 
For optimal visualisation, and to aid in downstream analysis, we have also developed a 
novel algorithm for removing the identified autofluorescence. Due to variations in intensity 
scale within an image and across different images, conventional thresholding algorithms 
rarely capture the correct perimeter of autofluorescent ROIs (Supplementary Fig. 4a-c). This 
can represent a limitation for automated autofluorescence removal, as several threshold 
parameters need to be tested beforehand for each image, and then assessed by eye to 
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determine appropriateness. To overcome this limitation we developed a custom dilation 
function that works in tandem with thresholding to automatically outline the full body of 
autofluorescent ROIs, regardless of shape and intensity (Fig. 1c). In brief this works by 
skeletonising ROIs and evenly distributing points throughout the skeleton (Supplementary 
Fig. 4d). We then expand from these points until the gradient of pixel intensities from the 
ROI boundary outwards begins to increase, indicating the end of the object or the beginning 
of a neighbouring object (Supplementary Fig. 4e). We find that this method accurately 
captures the full perimeter of autofluorescent ROIs with minimal effect to neighbouring 
signals (Supplementary Fig. 4f). The final result is an image retaining only non-
autofluorescent ROIs, which can then be used for visualisation and downstream analysis 
(Fig. 1c). 
 
In order to establish both the efficacy and scope of utility for Autofluorescence Remover we 
tested the algorithm with multiple types of input images. First, we tested whether the 
markers for detection in each channel could influence autofluorescence identification. To 
this end we defined three use-cases where input channels contained (1) non-co-expressed 
markers (CD11c and CD3), (2) a marker expressed on autofluorescent cells (FXIIIA+ 
Macrophages) and (3) co-expressed markers (CD3 and CD4). These three use-cases are 
shown for human colorectal tissue where sections were imaged before (Fig. 2a,d,g) and 
after staining (Fig. 2b,e,h). The unstained image was used for manual annotation of 
autofluorescent ROIs providing a ground truth for our classifier, and not used in the removal 
process. We found that in all three use-cases the autofluorescence cluster was highly 
enriched for autofluorescent ROIs (mean =98.4%, SD = 1.6%, n=9). (Supplementary Fig. 5a). 
We also achieved good coverage identifying on average 96.0% (SD = 4.0%, n=9) of all 
annotated autofluorescence, with a low false positive rate of 1.7% (SD = 1.7%, n=9) 
(Supplementary Fig. 5b). 
Pairwise plots for each use case are shown (Supplementary Fig. 6-8), demonstrating good 
separation of autofluorescence (yellow) from non-autofluorescence (grey) by k-means. The 
final result of autofluorescence removal, after applying the custom dilation function is 
shown (Fig. 2c,f,i), demonstrating near complete removal of autofluorescence in all three 
use cases.  
 
We also show that Autofluorescence Remover successfully removes autofluorescence 
across various tissue-types, including heart, skin and brain tissues where autofluorescence is 
a well-known problem (Supplementary Fig. 9). Autofluorescence identification worked 
similarly across images of varying quality, including variations in resolution, (Supplementary 
Fig. 10) and on images both pre- and post- deconvolution (Supplementary Fig. 11). Further, 
our algorithm is compatible with very large images that are inundated with 
autofluorescence, which allows large data sets with significant noise to be rescued for 
analysis (Supplementary Fig. 12).  
 
Finally, we show that the presence of autofluorescence and its removal can have a major 
impact on down-stream analysis. In our own studies, we are interested in the early HIV-
target cell interactions that occur in human colorectal explants that we topically infect with 
HIV. However, these explants are prone to significant amounts of autofluorescence. To 
examine the localisation of HIV with CD11c+ cells we divide an image into 100x100um2 
quadrats and classify each as HIV- or HIV+ and then measure the density of CD11c labelling 
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in each area to quantify expression. Prior to autofluorescence removal, the apparent CD11c 
expression did not significantly differ between HIV- and HIV+ areas (Fig. 3a), whereas after 
removal CD11c expression was revealed as significantly higher in HIV+ areas compared to 
HIV- areas (Fig. 3b). This was due to a large amount of measured CD11c expression being 
derived from autofluorescence (Fig. 3c). Further, we found that CD11c, HIV and 
autofluorescent cells were differentially located. CD11c and HIV clustered toward the tip of 
the lamina propria where the majority of interactions took place (Fig. 3c, zoomed images), 
whilst autofluorescent cells were particularly clustered toward the base of lamina propria, 
thus skewing the results. These data demonstrate the importance of autofluorescence 
removal to facilitate accurate image analysis.  
 
Here we have presented a first of its kind method for the post-acquisition, automated 
detection and removal of autofluorescence in multi-channel images post-acquisition. This 
approach overcomes many of the limitations of existing methods that have prohibited their 
widespread use. Autofluorescence Remover is capable of removing autofluorescence that is 
stand-alone or nearby/touching non-autofluorescent signals. However, our approach does 
have limitations. It is unable to remove autofluorescence that mostly overlaps with a 
fluorescently stained object of interest. This can be an advantage in that stained cells of 
interest which exhibit autofluorescence are not removed, as shown for Macrophages in Fig. 
2. Nevertheless, it does present limitations when precise measurements of fluorescent 
signals are required. Furthermore the algorithm requires that autofluorescent signals are 
present, even if only faintly, across at least two acquired channels. In our experience this 
was true of all bright interfering autofluorescence in the various tissues used for this study 
and fits in with the well-known broad spectra of autofluorescence10. However we cannot 
discount the possibility of specific types of autofluorescence having narrow emission 
profiles that might appear in only one channel. The diversity of biological samples means 
that no one approach can offer a complete solution. However, Autofluorescence Remover 
provides a major leap forward in extracting useful data from images plagued by 
autofluorescence by offering an approach that is easily incorporated into existing workflows 
in ImageJ, Matlab and R, and that can generalise to various samples, staining panels and 
image acquisition methods.  
 
 
Methods: 
 
Immunofluorescence staining. Tissues were fixed in 4% paraformaldehyde (Electron 
Microscopy Sciences) for 18-24h at room temperature then immersed in 70% ethanol prior 
to paraffin embedding. 4um paraffin sections were adhered to glass slides (SuperFrost Plus, 
Menzel Glazer), baked at 60°C for 40 min, dewaxed in xylene followed by 100% ethanol then 
air dried. All wash steps described herein were carried out by immersing slides in three 
successive Coplan Jars of Tris-buffered saline (Amresco, Cat: 0788) on a rotator for a total of 
10 minutes. Antigen retrieval was then performed using a pH9 antigen retrieval buffer 
(DAKO) in a decloaking chamber (Biocare) for 20 min at 95oC. Slides were then washed in 
TBS. To acquire unlabelled background images (Fig. 2, Supplementary Figs. 2 and 9), 
sections were stained with 1ug/ml DAPI (Roche) for 3 minutes, mounted under coverslips 
with SlowFade-Diamond Antifade (Molecular Probes) and the whole section imaged on an 
Olympus VS120 microscope (see Image acquisition below). Coverslips were then floated 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 3, 2019. ; https://doi.org/10.1101/566315doi: bioRxiv preprint 

https://doi.org/10.1101/566315


away in TBS and sections on slides were blocked for 30 min (0.1% saponin, 1% BSA, 10% 
donkey serum, diluted in TBS) at room temperature. Sections were then washed in TBS and 
incubated with primary antibodies overnight at 4oC. Antibodies for primary detection 
include: Abcam: - rabbit CD11c (EP1347Y), mouse CD3 (F7.2.38), rabbit CD8 (polyclonal, 
ab4055); DAKO – rabbit CD3 (polyclonal, A045229-2); Affinity Biologicals – sheep FXIIIA 
(polyclonal). Sections were then washed in TBS and incubated with secondary antibodies for 
30min at room temperature. Donkey secondary antibodies (Molecular Probes) against 
rabbit, mouse or sheep were used and were conjugated to either Alexa Fluor 488 or 546. 
Sections were stained with DAPI (if not already performed in a previous step) and mounted 
with SlowFade-Diamond Antifade. 
 
HIV explant infection. Healthy Inner foreskin explants were infected with either HIVBal or 
Transmitted/Founder HIV-1 Z3678M using an explant setup as previously described17. A 
TCID50 of 3500 (titrated on TZMBLs as previously described18) was used to infect all explants. 
Tissues were then fixed and paraffin embedded as described above. 
 
RNAScope. Detection of HIV RNA was performed using the ‘RNAscope 2.5HD Reagent Kit-
RED’ and following the manufacturer’s protocol (Cat: 322360, ACD Bio) with custom probes 
(consisting of 85 zz pairs) against HIV-1BaL (REF: 486631, ACD Bio) spanning base pairs 1144-
8431 of HIV-1BaL sequence. Following the RNAscope protocol, sections were stained from 
the blocking step as detailed above.  
 
Microscopy. Imaging was performed using an Olympus VS120 Slide Scanner with ORCA-
FLASH 4.0 VS: Scientific CMOS camera. VS-ASW 2.9 Olympus software was used for 
acquisition of images and conversion of raw vsi files to tiff format for downstream 
processing. Objectives used are indicated in figure legends and include: x10 (UPLSAPO 10X/ 
NA 0.4, WD 3.1 / CG Thickness 0.17), x20 (UPLSAPO 20X/ NA 0.75, WD 0.6 / CG Thickness 
0.17) and x40 (UPLSAPO 40X/ NA 0.95, WD 0.18 / CG Thickness 0.11–0.23). Channels used 
include: DAPI (Ex 387/11-25 nm; Em: 440/40-25 nm), FITC (Ex:485/20-25 nm; Em: 525/30-25 
nm), TRITC (Ex:560/25-25 nm; Em: 607/36- 25 nm) and Cy5 (Ex: 650/13-25 nm; Em: 700/75-
75 nm). For x40 images, Z-stacks were acquired 3.5um above and below the plane of focus 
with 0.5um step sizes. Huygens Professional 18.10 (Scientific Volume Imaging, The 
Netherlands, http://svi.nl) CMLE algorithm, with SNR:20 and 40 iterations, was used for 
deconvolution of Z-stacks. For images where the unstained background was acquired prior 
to staining, images were aligned using the ImageJ plugin multiStackReg vs1.45 with the DAPI 
channel serving as a reference for alignment. 
 
Acquisition of Autofluorescence Spectra. Autofluorescence spectra of unstained tissue 
samples (Supplementary Fig. 1) were acquired using an Olympus FV1000 laser scanning 
confocal microscope with a x20 objective. The excitation lasers lines 405nm, 473nm and 
559nm were used and emission spectra were acquired using a 20nm wide bandpass filter, 
shifted in 20nm intervals from 415-795nm, 490-790nm and 575-795nm respectively.  
 
Generation of Intersection Mask. A mask of the intersection of the two channels was used 
for autofluorescence removal. This is termed the ‘intersection mask’. The intersection mask 
contains only signals present in both channels and therefore contains the autofluorescent 
ROIs among other objects such as co-stained markers and dim background stromal 
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fluorescence. The intersection mask was generated by the following procedure. Each 
channel was Gaussian blurred with a  sigma of 2. A Niblack threshold was then applied to 
each channel (threshold radius 30 pixels) to generate binary masks. The intersection (‘AND’ 
operation) of these masks was then taken and used for autofluorescence classification by 
clustering as detailed below. 
 
Clustering for autofluorescence identification. Within the objects defined by the 
intersection mask we measured multiple features in each of the two channels on non-
Gaussian blurred images. These features included standard deviation, kurtosis, as well as 
the inter-channel Pearson’s correlation coefficient of corresponding pixels. These features 
were transformed by taking the natural log (standard deviation, skewness and kurtosis) or 
the inverse tanh transformation (correlation). All features were standardised by dividing by 
the standard deviation of the transformed feature values. k-means clustering was then 
performed on these features to identify a cluster of ROIs which are likely to be 
autofluorescent. The cluster with the highest average correlation value was defined as the 
cluster containing autofluorescent ROIs. A well-chosen number of clusters (k) is important 
for detecting a homogeneous cluster of autofluorescent ROIs. As such we developed an 
automated approach for optimal choice of k (high sensitivity and specificity). The procedure 
is as follows. 1. k-means is performed iteratively with 3-20 clusters 2. A two-tailed t-test is 
performed on the arctanh transformed correlation values of the two clusters with highest 
average correlation values. 3. The test statistic values are then plotted against k, which 
produces an asymptotically decreasing function (Supplementary Fig. 13). 4. We developed 
an ‘elbow method’ approach to finding the optimal cluster number. A straight line is drawn 
connecting the statistic value for the lowest k, to that of the highest k. The perpendicular 
distance of each plotted point to the line is measured and the optimal k is estimated to 
correspond to the point with the greatest distance below the line. This method is illustrated 
in (Supplementary Fig. 13). The intersection mask is then modified, keeping only the objects 
identified as autofluorescence. 

 
Custom dilation thresholding to outline autofluorescent ROIs. After clustering and creating 
a mask of autofluorescent objects we then employed a custom dilation function to outline 
the full body of autofluorescent objects for removal. The essence of the algorithm is to 
evenly distribute points within an amorphous object and then to expand out from these 
points in all directions until a halting condition is met.  
To distribute points the following approach was developed: 1. ROIs in the autofluorescence 
mask were skeletonised, reducing objects to a line of 1 pixel-width that follows the 
morphological gradient of the original object. 2. End-node pixels for each object in the 
image were first identified, defined as having only one neighbour. If there were no end-
nodes for an object, as in the case of an annulus, the top-left-most pixel was defined as the 
end-node. 3. A skeleton tracing algorithm was employed that starts from the end nodes and 
moves throughout the skeleton, distributing centres for expansion every 20 pixels 
(illustrated in Supplementary Fig. 4d). Tracing of pixels to neighbours occurred as long as 
the neighbouring pixel was in the skeleton and had not yet been traced by another point. 
Once these conditions were no longer met, tracing for a given object was halted. 
Expansion from distributed centres was carried out as follows: 1. Lines of length 60 pixels 
emanating from centres were drawn in all directions separated by an angle of theta where  
theta was defined by the law of cosines. 2. Pixel values of the Gaussian blurred image  
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for each channel were measured beginning from the point of intersection of the line and  
perimeter of the object in the intersection mask, to the end of the line. 3. The co-ordinates  
of the first point where pixel values increased were recorded for each line. 4. A new outline  
of the object was created by combining these co-ordinates (Supplementary Fig. 4e). 5. Pixel 
values of the new outline of the object were set to 0. 
 
 
Algorithm performance assessment. The performance of our algorithm was tested using 
three different staining panels on human colonic tissue as shown in Fig. 2. To benchmark 
performance assessment, we manually annotated regions of the intersection mask (see 
‘Generation of Intersection Mask’ above) as belonging to ‘real’ or ‘autofluorescent’ signals. 
Delineation of the two types of signal was achieved using the ‘unstained background image’ 
as a reference (see ‘Immunofluorescent Staining’ above). In total 400 ROIs, 200 for each 
category, were annotated. The actual annotation was performed using the Cell Counter 
Plugin in ImageJ. Results were exported as a csv file, where each row indicated an individual 
ROI, its category and x,y co-ordinates. 
The two fluorescent channels, intersection mask and spreadsheet of annotated ROI co-
ordinates were fed in to R. k-means clustering with estimated k was then performed as 
described above. The true positive rate and false positive rate were thus determined as the 
proportion of ROIs in each category that resided in the ‘autofluorescence cluster’, which 
was the cluster with highest average correlation values (Supplementary Fig. 5 and 13).  
 
Code availability 
 
This algorithm has been implemented with user interfaces in ImageJ, R and Matlab to 
accommodate the diverse image analysis community. The code and user documentation are 
available https://ellispatrick.github.io/AFremover. 
 
Data availability 
 
Data sets used in this study are available from the corresponding author upon reasonable 
request. 
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Fig. 1: Steps of the autofluorescence remover algorithm. a, k-means clustering on a set of 
textual features of objects in an intersection mask of two channels. Autofluorescent ROIs 
can then be tagged for exclusion in downstream analysis (b), or a custom dilation function 
can be employed to estimate the perimeter of autofluorescent ROIs, which are then digitally 
removed from the image (c). 
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Fig. 2: Removal of autofluorescence from multiple staining panels. Sections of fixed human 
colorectal tissue prior to (a,d,g) and after labelling (b,e,h) with antibodies targeting the 
indicated markers. c,f,i, labelled images after autofluorescence removal. White arrows 
indicate some autofluorescent objects that have been removed by the algorithm. In the 
middle row ‘FITC’ is the FITC channel, which was imaged but not used to detect any 
markers. Images are representative of 3 donors for each staining panel. 
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Fig. 3: Autofluorescence removal facilitates analysis of early HIV-target cell interaction. 
Human colorectal explants were topically infected with HIVBal for 30min, fixed, sectioned 
and then stained for CD11c, HIV RNA and DAPI. a,b, A whole tissue image from one donor 
was divided into 100x100um2 quadrats, each classified as HIV- or HIV+, and CD11c labelling 
was measured before (a) and after (b) autofluorescence removal. CD11c expression was 
measured per um2 of DAPI. Quadrats with DAPI staining less than 1/10th their area (non-
tissue areas) were excluded. Boxplots show the min, first quartile, median, third quartile 
and max values.  c, A cropped area of a whole-tissue image of HIV-infected colorectum 
before (left) and after (right) autofluorescence removal. Zoomed images of the boxes show 
interactions of HIV with CD11c+ cells (white arrows) in the image after autofluorescence 
removal. The broken white line indicates the base of the lamina propria. A two-tailed Mann 
Whitney test was performed in part a and b. ns =  not significant; ***p=0.0002.  
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Supplementary Figure 1: Excitation and emission spectra of autofluorescence in various 
tissues. The intensity of pixels corresponding to autofluorescent structures measured at 
20nm intervals upon excitation with laser lines 405nm, 473nm or 559nm in human colon, 
skin and brain tissues, as well as rat heart tissue. Results shown as the intensity of the 
autofluorescent object minus the intensity of the stromal background for each wavelength. 
Results are shown for a single image for each tissue type.  
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Supplementary Figure 2: Autofluorescence inhibits assessment of CD3 labelling in the 
human colorectum. Fixed human colorectal tissue sections imaged prior to (left) and after 
labelling with mouse anti human CD3 and donkey anti-mouse AF488 (right). Red arrows 
indicate some autofluorescent cells and white arrows indicate CD3+ cells. Images are 
representative of 6 unique donors where CD3 staining was performed.  
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Supplementary Figure 3: Features of autofluorescence are highly correlated between 
fluorescent channels. Fixed human colorectal tissue sections were stained for mouse anti 
CD3 and and rabbit anti CD4, detected using donkey anti-mouse AF488 and donkey anti-
rabbit AF546 respectively. An intersection mask was created using the two fluorescent 
markers (Fig. 1) and measurements performed on objects in the intersection mask. An 
unstained background image was used as a reference to manually annotate autofluorescent 
objects in the stained image. a, The arctanh transformed Pearson’s correlation coefficient 
values of autofluorescent objects vs non-autofluorescent objects within the intersection 
mask. The boxplots contain data from thousands of individual objects for each category. b,c, 
standard deviation and kurtosis measurements of autofluorescent objects in each channel 
used to create the intersection mask. A subsample of 200 autofluorescent objects, among 
thousands, is shown. These graphs are representative of 13 total images used for this work.  
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Supplementary Figure 4: Custom dilation function to estimate the correct perimeter of 
autofluorescent ROIs. a, Fixed colorectal tissue sections were stained for rabbit CD11c and 
mouse CD3, followed by donkey anti rabbit AF488 and donkey anti mouse AF546. b, 
Fluorescent channels used to detect CD11c and CD3 were thresholded, binary masks 
created and the composite image displayed. Yellow indicates the overlapping area 
corresponding to the intersection mask. c, Image from part a with the pixels in the 
intersection mask from part b set to 0. d, Identified autofluorescent objects within the 
intersection mask in part b are skeletonised and points for outward expansion (blue) are 
distributed along the skeleton every 20 pixels. e, Thousands of equiangular lines are drawn 
outwards from the expansion centres identified in part d, each line propagating until it 
encounters a pixel brighter than the previous pixel, as measured in either the CD11c or CD3 
channel. A mask of the identified autofluorescence body is thus generated for each 
fluorescent channel. f, Pixels corresponding to the identified AF body in each channel in part 
e, are set to 0. Yellow arrows indicate some autofluorescent objects. 
 
 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 3, 2019. ; https://doi.org/10.1101/566315doi: bioRxiv preprint 

https://doi.org/10.1101/566315


 
 
 
 
 

 
 
Supplementary Figure 5: Specificity and sensitivity of autofluorescence removal for 
various use-cases in Figure 2. Fixed human colorectal sections were imaged prior to, and 
after labelling with antibodies against markers for three separate panels, CD11c/CD3, 
FITC/FXIIIA and CD3/CD4. FITC indicates an unstained open channel that was imaged. An 
intersection mask was created using the two fluorescent channels for each panel (as in 
Figure 1). Textural features of objects within the intersection mask were then measured for 
each channel, including standard deviation, kurtosis, as well as the inter-channel Pearson’s 
correlation coefficient of corresponding pixels. k-means clustering was then performed 
using these features and the cluster with the highest average correlation values was defined 
as the cluster containing autofluorescent ROIs. A ground truth for the classification of 
objects as autofluorescence or real signals (stemming from antibodies) was established by 
manually annotating a subset of up to 200 ROIs each, using the unlabelled background 
image as a reference. a, percentage of the ‘autofluorescence cluster’ comprised of 
autofluorescent ROIs (specificity), where the total number of ROIs in the cluster is defined 
as the sum of autofluorescent ROIs and ROIs stemming from real signal. Each data point 
represents counts performed on a unique donor for each panel. Mean values across the 
three donors are indicated above each column. b, table summarising the proportion of 
manually annotated autofluorescence or real signal assigned to the ‘autofluorescence 
cluster’ (sensitivity). The last two columns indicate the total number of ROIs and the total 
number of ROIs classified as autofluorescence respectively. Each row corresponds to results 
for unique donors for each use-case.  
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Supplementary Figure 6: Pairwise plots of textural features used for k-means clustering of 
the non-co-expressed markers use-case. ROIs from k-means clustering on the CD11c/CD3 
use-case in Supplementary Figure 5 are shown. In the bottom half, ROIs in the 
autofluorescence cluster are coloured yellow, whilst non-autofluorescent ROIs (real signal + 
dim stromal background fluorescence) are coloured grey. The top half shows paired plots as 
a heatmap of correlation values. FCorr = Arctanh transformed Pearson’s correlation 
coefficient values. SD1, SD2, Kurt1, Kurt2 = Standard deviation or Kurtosis values of ROIs in 
channels 1 or 2. The plot is representative of clustering performed on 3 independent 
donors.  
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Supplementary Figure 7: Pairwise plots of textural features used for k-means clustering of 
the autofluorescent cells use-case. ROIs from K-means clustering on the FITC/FXIIIA use-
case in Supplementary Figure 5 are shown. In the bottom half, ROIs in the autofluorescence 
cluster are coloured yellow, whilst non-autofluorescent ROIs (real signal + dim stromal 
background fluorescence) are coloured grey. The top half shows paired plots as a heatmap 
of correlation values. FCorr = Arctanh transformed Pearson’s correlation coefficient values. 
SD1, SD2, Kurt1, Kurt2 = Standard deviation or Kurtosis values of ROIs in channels 1 or 2. 
The plot is representative of clustering performed on 3 independent donors.  
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Supplementary Figure 8: Pairwise plots of textural features used for k-means clustering of 
the co-expressed markers use-case. ROIs from K-means clustering on the CD3/CD4 use-case 
in Supplementary Figure 5 are shown. In the bottom half, ROIs in the autofluorescence 
cluster are coloured yellow, whilst non-autofluorescent ROIs (real signal + dim stromal 
background fluorescence) are coloured grey. The top half shows paired plots as a heatmap 
of correlation values. FCorr = Arctanh transformed Pearson’s correlation coefficient values. 
SD1, SD2, Kurt1, Kurt2 = Standard deviation or Kurtosis values of ROIs in channels 1 or 2. 
The plot is representative of clustering performed on 3 independent donors.  
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Supplementary Figure 9: Autofluorescence removal on various tissue types. Unlabelled 
sections of fixed rat heart, human abdominal skin and human brain tissue are shown, prior 
to autofluorescence removal (left panel), with the boundary of autofluorescent structures 
identified by the algorithm (middle panel), and after setting pixel values to 0 (right panel). 
Note that the images the skin and brain samples were counterstained with DAPI for 
visualisation. The images are representative areas from one whole-tissue image for each 
tissue type that was used for autofluorescence removal.  
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Supplementary Figure 10: Autofluorescence removal at varying image resolutions. Fixed 
colorectal tissue sections were imaged prior to labelling (left, unlabelled image) and after 
labelling for rabbit anti CD11c and mouse anti CD3, followed by donkey anti rabbit AF488 
and donkey anti mouse AF546. Images of the same area were taken with x10, x20 and x40 
objectives with an image resolution of 1.54, 3.08 and 6.17 pixels per um respectively. 
Images before autofluorescence removal (left panel), with a mask of the identified 
autofluorescence overlaid (middle panel) and after removal by setting pixel values to 0 
(right panel) are shown. Images are representative of 3 unique donors where CD11c/CD3 
staining was carried out and imaged at various magnifications.  
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Supplementary Figure 11: Autofluorescence removal before and after deconvolution. 
Fixed colorectal tissue sections were labelled with a sheep anti FXIIIA antibody followed by 
donkey anti sheep AF546. ‘FITC’ is the FITC channel, which was imaged but not used to 
detect any markers. Images are shown of the same area before (bottom row) and after (top 
row) deconvolution using Huygens deconvolution software, CMLE algorithm. Images before 
(left panel) and after (right panel) autofluorescence removal are shown. White arrows 
indicate some autofluorescence removed by the algorithm. Images are representative of 3 
unique donors stained for FXIIIA and processed for autofluorescence removal before and 
after deconvolution. 
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Supplementary Figure 12: Autofluorescence removal on large images. Fixed colorectal 
tissue sections were imaged prior to and after labelling for rabbit anti CD11c and mouse anti 
CD3 antibodies, followed by donkey anti rabbit AF488 and donkey anti mouse AF546. A 
large area of tissue was imaged and the results before (top panel) and after (middle panel) 
autofluorescence removal are shown. Zoomed in images of the area outlined are shown 
with an additional image of the unlabelled section outlining the distribution of 
autofluorescence. Image is representative of 3 unique donors where CD11c/CD3 staining 
was carried out.  
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Supplementary Figure 13: Estimation of optimal cluster number for k-means. k-means 
clustering as described in supplementary figure 5 was performed iteratively for 3-20 clusters 
and the distribution of paired true positive rate (TPR) and false positive rate (FPR) values for 
each cluster number is indicated by the red line for each use-case (top row). A high TPR or 
FPR corresponds to a high proportion of the ‘autofluorescence cluster’ comprising manually 
annotated autofluorescence or real signals respectively. The bottom row shows plots of the 
cluster number (k) versus, test statistic of a t-test (two-tailed) comparing Pearson’s 
correlation coefficient values of clusters with the highest (‘autofluorescence cluster’) and 
second highest average correlation values. An elbow method approach for estimation of 
optimal K is illustrated in the bottom left plot. A line (L) is drawn between the first and last 
plotted values. The line M indicates the plotted value that is below the line L, and has the 
greatest perpendicular distance to that line. The cluster number corresponding to this 
plotted point is estimated as the optimal cluster number. The points with optimal cluster 
number for each plot are indicated as a red *. The TPR/FPR of the optimal cluster number 
for each use-case is indicated by the black dot in the top row of plots. Data are 
representative of analysis performed on 3 unique donors for each use-case.  
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