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Abstract13

Genome-wide association (GWA) studies have generally focused on a single phenotype of in-14

terest. Emerging biobanks that pair genotype data from thousands of individuals with pheno-15

type data using medical records or surveys enable testing for genetic associations in each pheno-16

type assayed. However, methods for characterizing shared genetic architecture among multiple17

traits are lagging behind. Here, we present a new method, Ward clustering to identify Internal18

Node branch length outliers using Gene Scores (WINGS), for characterizing shared and divergent19

genetic architecture among multiple phenotypes. The objective of WINGS (freely available at20

https://github.com/ramachandran-lab/PEGASUS-WINGS) is to identify groups of phenotypes, or21

“clusters”, that share a core set of genes enriched for mutations in cases. We show in simulations22

that WINGS can reliably detect phenotype clusters across a range of percent shared architecture23

and number of phenotypes included. We then use the gene-level association test PEGASUS with24

WINGS to characterize shared genetic architecture among 87 case-control and seven quantitative25

phenotypes in 349,468 unrelated European-ancestry individuals from the UK Biobank. We identify26

10 significant phenotype clusters that contain two to eight phenotypes. One significant cluster of27

seven immunological phenotypes is driven by seven genes; these genes have each been associated28

with two or more of those same phenotypes in past publications. WINGS offers a precise and29

efficient new application of Ward hierarchical clustering to generate hypotheses regarding shared30

genetic architecture among phenotypes in the biobank era.31
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1 Introduction 32

Since the 2007 publication of the Wellcome Trust Case Control Consortium’s landmark genome-wide 33

association (GWA) study of seven common diseases using 14,000 cases and 3,000 common controls, GWA 34

studies have grown dramatically in scope. Much attention has been given to the increasing number 35

of individuals sampled in GWA studies (198 studies to date have analyzed over 100,000 individuals, 36

data accessed at https://www.ebi.ac.uk/gwas/docs/file-downloads on Jan. 5 2019), as well as to the 37

challenges of interpreting and validating the statistically associated variants identified in large-scale 38

studies (for recent examples, see [1, 2, 3, 4, 5, 6, 7]). However, as “mega-biobank” datasets (used here as 39

by Huffman [5] to mean “a study with phenotype and genotype data on >100,000 individuals. . . rather 40

than to the physical sample repository”) such as the UK Biobank [8] and BioVU at Vanderbilt University 41

[9, 10] are interrogated by medical and population geneticists, there is comparatively less discussion 42

surrounding approaches to analyze multiple phenotypes in a single genomic study. 43

In particular, a fundamental question mega-biobanks can answer is whether shared genetic architec- 44

ture among multiple phenotypes is detectable using summaries of germline genetic variation. Pickrell 45

et al. 2016 [11] explicitly tested for pleiotropy among 42 complex traits, focusing on identifying colo- 46

calized variants in GWA studies for pairs of traits (see also [12], which tests for colocalization between 47

eQTLs and associated variants for the same trait). While phenome-wide association studies (PheWAS; 48

[13, 14]) and multivariate GWA studies have tested for statistical association between variants and 49

multiple phenotypes [15, 16, 17, 18, 19], these studies, including [11, 12] share the central challenge of 50

single-phenotype GWA studies: they focus on single variants assumed to act independently, making 51

results difficult to interpret biologically for any complex traits. 52

As large-scale GWA studies find statistically associated variants spread uniformly throughout the 53

genome [2, 3, 20] and that effect sizes have reached diminishing returns [7], gene-level association tests 54

[21, 22, 23] can offer insight into gene sets and pathways that are enriched for mutations in cases 55

for a phenotype of interest. Gene-level association tests not only allow for different mutations to be 56

associated with the phenotype of interest in different cases, but also generate biologically interpretable 57

hypotheses regarding genetic interactions that the GWA framework ignores [24]. Despite this, gene-level 58

association tests have rarely been brought to bear on multivariate GWA datasets. One approach was 59

developed by Chang and Keinan (disPCA, [25]), who applied principal components analysis to a matrix 60

of gene-level association scores to detect clusters of phenotypes in two dimensions. However, their 61

dimensionality reduction of the gene score matrix ignored minor axes of variation across gene scores for 62
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ease of visualization and distances between phenotypes in PC space were difficult to interpret. Thus,63

identifying phenotypes significantly enriched for shared mutations in mega-biobanks remains an open64

challenge.65

In this study, we present Ward clustering to identify Internal Node branch length outliers using Gene66

Scores (WINGS), a flexible method for (i) computationally detecting phenotype clusters based on gene-67

level association scores, and (ii) ranking phenotype clusters based on their levels of significance. Given68

gene-level association test statistics for multiple phenotypes as input, WINGS enables the detection of69

a “core set” of genes — that is, genes enriched for mutations in cases — across multiple phenotypes.70

In order to identify genetic architectures shared across a set of phenotypes, we first use PEGASUS71

[26, 27] (see section 2.2 for more details) to assign a feature vector whose elements are gene-level72

association p-values scores, or “gene scores”, to each phenotype. Each such feature vector is an element73

of a high-dimensional vector space whose dimension is given by the number of genes included in the74

GWA study data. Given a list of N phenotypes, this approach therefore yields N feature vectors. The75

more significant genes two phenotypes share, the closer their features vectors will be. Choosing a norm76

on the vector space in which the feature vectors lie allows us to compute pairwise distances between77

any two feature vectors, resulting in an N × N matrix of pairwise distances – we note that different78

norms will result in different distance matrices, and we use this fact in this study to emphasize different79

parts of a feature vector when identifying clusters. Once a distance matrix has been computed, we can80

use clustering algorithms (in our case, Ward hierarchical clustering) to divide the set of phenotypes into81

disjoint groups that separate feature vectors based on their pairwise distances.82

While hierarchical clustering algorithms have proven effective across a range of applications [28, 29,83

30], the typical output of these clustering methods is a dendrogram illustrating the sequential formation84

of clusters starting with each cluster containing only a single data point and ending with a single cluster85

containing all of the data points. Consequently, it is unclear how to distinguish significant clusters from86

non-significant clusters and often this is done by choosing a single cutoff height in the dendrogram or87

predetermining the number of desired clusters [31, 32, 33]. WINGS, by contrast, implements a multi-step88

algorithm to systematically identify and rank significant clusters, described in detail in Section 2.89

We evaluate the performance of WINGS in simulations under a variety of genetic architectures within90

phenotypes and shared among phenotypes. Lastly, we apply WINGS to identify significant phenotype91

clusters across 87 case-control phenotypes and 7 quantitative phenotypes assayed in 349,468 unrelated92

European-ancestry individuals in the UK Biobank.93
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2 Materials and Methods 94

2.1 UK Biobank data processing 95

1. Genotype and phenotype data from the UK Biobank release [8] were extracted (488,377 individuals, 96

784,256 variants) and filtered as follows: 97

(a) Genotype data were extracted from the chrom*.cal files using the UK Biobank gconv tool 98

(b) Phenotype data were taken from our application-specific csv file for application 22419 99

2. Only individuals who self-identified as white British were included in the study cohort (57,275 100

individuals removed) 101

3. All monomorphic variants were removed (19,189 variants removed) 102

4. Individuals identified by the UK Biobank to have high heterozygosity, excessive relatedness, or 103

aneuploidy were removed (1,550 individuals removed) 104

5. Variants with a minor allele frequency less than 2.5% were not included (253,939 variants removed) 105

6. Only variants found to be Hardy-Weinberg Equilibrium (Fisher’s exact test p > 10−6) using plink 106

2.0 [34] were included (40,433 variants removed) 107

7. Variants with missingness greater than 1% were removed (60,523 variants removed) 108

8. Individuals with greater than 5% genotype missingness were removed (38 individuals removed) 109

9. Individuals who were third-degree relatives or closer were removed using the following process: 110

One individual was removed at random from any pair of individuals with a kinship coefficient 111

greater than 0.0442, calculated using KING (version 2.0; [35]) 112

Following these QC steps, 349,468 individuals who self-identified as British and 410,172 variants 113

remained for analysis. In order to control for population structure within the remaining cohort, principal 114

component analysis (PCA) was performed using flashpca (version 2.0; [36]) on SNPs passing QC that 115

were also in linkage equilibrium (SNPs with r2 > 0.1 removed, resulting in 104,834 SNPs for PCA). 116

We analyzed phenotypes in two stages. We selected an initial set of 26 case-control phenotypes based 117

on phenotypes that had been previously analyzed in Shi et al. [2] and Pickrell et al. [11] that also had 118

at least 100 cases in our cohort. Those phenotypes that did not have at least 100 cases in our cohort 119

after QC were not included in the analysis (Table S1). A genome-wide association (GWA) study was 120
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performed for each of these 26 case-control phenotypes using plink2 [34] including age, sex, and the first121

five principal components as covariates to control for population structure.122

We then expanded our analysis to include 61 additional case-control phenotypes and 7 quantitative123

phenotypes from the UK Biobank. These phenotypes were selected only if they had more than 1,000124

cases in the analyzed cohort.125

2.2 Overview of WINGS pipeline126

For each of the phenotypes being jointly studied (either in simulations, as detailed in the next subsec-127

tion, or in the UK Biobank), we used PEGASUS [26] to calculate gene-level association p-values for128

all autosomal genes in the human genome with at least one SNP within a +/-50kb window (17,651129

genes). PEGASUS, developed by our group [26, 27], models correlation among genotypes in a region130

using linkage disequilibrium, the same model as VEGAS [21] and SKAT without weighting rare vari-131

ants [22]. PEGASUS, by contrast, achieves up to machine precision in gene-level association statistic132

computations via numerical integration. In this study, we refer to the -log10 transformed PEGASUS133

gene-level association statistics as “gene-scores”.134

Ward hierarchical clustering [37, 38] was then applied to the phenotypes using the PEGASUS gene135

scores (-log10 transformed PEGASUS p-values) as feature vectors. We then concatenate together each136

phenotype’s feature vector to generate a phenotype by gene matrix, the ultimate input for the WINGS137

software. In our analyses of the UK Biobank, a set of 7 continuous phenotypes were clustered separately138

due to their comparatively much larger sample sizes (Supplementary Figure S9 shows how the continuous139

and binary phenotypes cluster when treated as a single data set). Significant clusters were identified140

and ranked using the WINGS branch length thresholding algorithm (described in the Section 2.3).141

2.3 WINGS, a new method for automatic phenotype cluster detection and142

ranking143

WINGS is a thresholded hierarchical clustering algorithm that takes a matrix of gene-level association144

test results as its input and outputs identified phenotype clusters ranked by their significance.145

First, WINGS applies Ward hierarchical clustering to the matrix of gene-level association test re-146

sults, which we compute using PEGASUS. Specifically, consider a data set with N data points. Ward147

hierarchical clustering is an agglomerative clustering algorithm: initially there are N clusters, each con-148

taining exactly one data point, and clusters are merged recursively in a hierarchical manner until there149
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is a single cluster containing all N data points [37, 38, 33]. 150

Using an objective function approach, at each stage in an agglomerative clustering algorithm the pair 151

of clusters that minimizes the merging cost are combined to form a single cluster. For Ward hierarchical 152

clustering, the merging cost for combining clusters R and S of size NR and NS respectively, is defined 153

as 154

d(R,S) =

√
NR ·NS

NR +NS
‖CR − CL‖2,

where CR and CL are the centroids of clusters R and L, respectively, and ‖ ·‖2 denotes the Euclidean 155

norm. Note, this merging cost is equivalent to minimizing the increased sum of squared errors [37, 38, 33]. 156

The choice to use Ward as the linkage criteria for WINGS was not arbitrary. Ward hierarchical clus- 157

tering focuses on minimizing differences within the clusters, rather than maximizing pairwise distances 158

between clusters. Previous work on comparing different agglomerative hierarchical clustering algorithms 159

suggests that Ward clustering performs the best when clustering high dimensional, noisy data as long as 160

cluster sizes are assumed to be approximately equal [39, 40]. We also note that we applied other linkage 161

criteria to the data for comparison (see Supplement Section 5.3 and Supplement Figures S10-S15 for 162

more details). 163

Hierarchical clustering results are often represented in a dendrogram, where each branch corresponds 164

to a cluster, but it is not clear how to extract the clusters that are most significant [33, 31, 32]. Intuitively, 165

significant clusters are those that form early on in the hierarchical clustering algorithm and do not merge 166

with other clusters until there are very few clusters left. This corresponds to clusters that form near the 167

bottom of the representative dendrogram tree and have long branch lengths. 168

To quantitatively define the notion of significantly long branch length we look at the consecutive 169

differences between branch lengths and search for large gaps in the branch length distributions. That 170

is, in the second step of WINGS we implement the following branch length thresholding algorithm to 171

identify significant phenotype clusters within a dendrogram: 172

1. Sort all the branch lengths corresponding to small clusters (we define small clusters to be those 173

with less than
⌈
N
3

⌉
members, but the user can adjust this threshold); 174

2. Calculate the consecutive differences between branch lengths to get the branch length gaps; 175

3. Identify branch length gaps that are more than three scaled median absolute deviations away from 176

the median and classify these as branch length gap outliers; 177
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4. Set the branch length threshold to be the minimum branch length such that the branch length is178

greater than the median of all branch lengths and its branch length gap is a branch length gap179

outlier. If this threshold does not exist, we conclude that there are no significant clusters.180

Finally, significant clusters are identified as the clusters whose corresponding dendrogram branch181

length is greater than or equal to the branch length threshold defined above.182

Note that the branch length thresholding algorithm in WINGS is a multi-step process for identifying183

significant clusters in a dendrogram that does not require prior knowledge of the number of desirable184

clusters and is more flexible than the traditional fixed branch cut methods [32]. Previous work in [31]185

similarly introduces a dynamic method for identifying clusters from a dendrogram tree. In contrast to186

the iterative tree-cut algorithms presented in [31], however, WINGS relies solely on the dendrogram187

branch lengths and does not rely on making any tree cuts.188

WINGS was implemented in MATLAB (R2017b) and applied to both simulated gene score matrices189

and empirical PEGASUS gene scores for phenotypes in the UK Biobank. These results are presented190

in the Section 3.191

2.4 Simulations of phenotypes with shared genetic architecture192

To test the sensitivity of WINGS when identifying both ground truth shared genetic architecture and193

varying levels of random noise in gene-level association p-values, we first applied WINGS to simulated194

gene score matrices. We also explored the differences between clusters identified by the raw PEGASUS195

p-values and clusters identified by the -log10 transformed PEGASUS p-values (“gene scores”). To ac-196

complish these tasks, we generated both “significant genetic architectures”, where shared genes have a197

PEGASUS gene-level p-value < 0.001, and “non-significant architectures”, where clusters share genes198

with a PEGASUS gene-level p-value > 0.7.199

Gene scores obtained as -log10 transformed PEGASUS gene-level p-values range from (0,∞), where200

the highly significant genes have high transformed gene scores. We expect that clusters in this space201

are driven by shared significant genetic architecture — that is, traits that have a high percentage of202

shared significant genes — since these features contribute the most to the pairwise distances between203

phenotypes. If we instead study the raw (untransformed) PEGASUS gene-level p-values, we expect to204

see clusters of shared non-significant genetic architecture, referring to traits that have a high percentage205

of shared non-significant genes.206

This distinction is illustrated in the synthetic example shown in Figure 1. As shown in Figure 1(A),207

groups of shared non-significant genetic architecture (shown in red) form clusters on the raw scale,208
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Figure 1: Synthetic clusters of traits with (A) shared non-significant genetic architecture
and (B) shared significant genetic architecture from the raw and -log10 scales, respectively.
Schematic example showing (A) simulated 2-dimensional gene-level p-values and (B) their corresponding
-log10 transformed gene-level p-values. The boxed groups of points represent clusters of shared non-
significant genetic architecture in (A) and clusters of shared significant genetic architecture in (B).

whereas traits with shared significant genetic architecture (shown in orange) reside as a large, and 209

therefore non-significant, group in the bottom left hand corner of the plot. In contrast, in Figure 1(B), 210

groups of shared significant genetic architecture form clusters on the − log10 scale since this transfor- 211

mation maps the small region of significant p-values (gene-level p < 0.001) to the much larger region of 212

(3,∞). 213

We now outline how we created simulated shared significant genetic architectures. Each simulated 214

matrix was generated by randomly selecting PEGASUS p-values from the empirical distribution of 215

PEGASUS p-values for Crohn’s disease (ICD10 code K50; 1,453 cases, 348,015 controls among the 216

cohort passing our QC steps detailed earlier). PEGASUS p-values were then partitioned into significant 217

(p < 0.001) and non-significant (p > 0.001) groups [41]. In the protocol described below, scores were 218

taken randomly from the empirical gene scores in each of these groups. All simulated matrices maintain 219

the same number of features (17,651 PEGASUS gene-level p-values, one for each autosomal gene) as 220

our empirical analyses. For each phenotype in the matrix, 1% (175) of genes were assigned a significant 221

value (p < 0.001). 222

We designed simulations that varied along two major parameters. We first set the number of phe- 223

notypes analyzed to either 25, 50, 75, or 100. Second, we set the percentage of the 175 significant genes 224
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that are shared between all cluster phenotypes to either 1% (2 genes), 10% (18 genes), 25% (44 genes),225

50% (88 genes), or 75% (131 genes) as shared genetic architecture. For every pair of the parameters226

above we performed 1,000 simulations as detailed below.227

In every simulation, the number and size of the clusters was determined using the following protocol:228

1. Choose M from a uniform distribution between 3 and 15% of the total number of phenotypes; M229

will be the number of ground truth clusters simulated (e.g. for simulations with 100 phenotypes230

they all contain between 3 and 15 clusters)231

2. For j = 1, 2, . . . ,M232

(i) Generate ground truth cluster j of randomly selected phenotypes whose size is drawn at233

random from a uniform distribution between 2 and 8234

(ii) Select the corresponding percentage of significant genes to be shared for all phenotypes in235

the ground truth cluster236

(iii) Remove phenotypes in ground truth cluster j and corresponding shared significant genes from237

their respective pools (a phenotype may only be in one ground truth cluster, and a gene can238

only be shared and significant in one ground truth cluster)239

(iv) Assign non-shared significant genes and non-significant genes to each phenotype in the ground240

truth cluster241

3. For all phenotypes not assigned to a ground truth cluster in Step 2, randomly draw 175 genes that242

remain in the pool to be significant and assign remaining genes as non-significant243

Next, we focus on shared non-significant genetic architectures. We generated 1,000 additional sim-244

ulations containing 75 phenotypes, using the same parameters for number of clusters and cluster size245

as described above, with the exception that we partitioned genes into those with PEGASUS gene-level246

p-values > 0.7 and those that have p-values < 0.7 and use the former to create clusters. Each of these247

simulations had the number of shared significant genes within a given cluster set to 75% (131 genes)248

of the 175 significant genes. We then analyzed each of the 1,000 simulations using the untransformed249

PEGASUS p-values and -log10 transformed data. We use the significant and non-significant genetic250

architecture simulations in tandem to better understand the driving factor of clusters identified by251

WINGS.252
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2.5 Gene Set Enrichment Analysis 253

Gene set enrichment analysis was performed for all significant empirical clusters. Genes that were 254

significant (gene p-value < 0.001) for all cluster phenotypes were used as input into the EnrichR database 255

[42]. The results from pathway analysis were used to annotate genes that WINGS identifies as associated 256

with multiple traits. 257

2.6 Data Availability 258

Shared significant gene lists for each of the significant clusters in Figure 4, as well as scripts that were 259

used to generate the simulated matrices and implement WINGS are available at https://github.com/ 260

ramachandran-lab/Pegasus-WINGS/. 261

3 Results 262
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Figure 2: WINGS sorted branch lengths from a standard simulation identifies significant
clusters on (A) raw and (B) -log10 scales. The sorted branch lengths corresponding to the dendro-
gram branches generated by WINGS when applied to the (A) raw PEGASUS gene-level p-values and
(B) -log10 transformed PEGASUS gene scores from a simulation with 75 phenotypes, 75% (131) shared
genes. For this simulation the ground truth clusters are [CN, CP], [AJ, CH, CL, DF], [AL, CK, CG,
CQ, BW, AP, AU], [AC, CS, AS, BF, CT], and [AQ, BE, BG, BS, CW]. The dashed red horizontal
line corresponds to the branch length threshold, where the identified significant clusters are those lying
above the dashed line. The ground truth clusters are correctly identified as the significant clusters on
the -log10 scale (boxed). These figures have been truncated on the right (removing some clusters that
are not identified as significant) for better visualization purposes.
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Phenotypes
in Simulation

Shared Genetic Architecture

A: Power B: Precision
0.01 0.1 0.25 0.5 0.75 0.01 0.1 0.25 0.5 0.75

25 0.08 52.79 98.85 100 100 0.08 33.84 63.06 69.49 71.08
50 0.07 55.64 99.10 100 100 0.04 27.53 48.02 53.71 56.70
75 0.11 54.08 98.85 100 100 0.08 21.63 40.10 45.90 46.07
100 0.06 51.66 98.81 100 100 0.06 17.85 35.11 39.62 43.10

Table 1: Power (A) and precision (B) of WINGS across a range of phenotypes included as
well as shared genetic architecture. “Shared genetic architecture” denotes the percentage of the
175 significant genes in each phenotype that are shared across all phenotypes in a cluster. Every entry
in the table represents 1,000 simulations under the corresponding parameters. The power of WINGS
for identifying ground truth clusters in simulations is defined as the percentage of ground truth clusters
across these 1,000 simulations that were identified as significant by WINGS. The precision of WINGS is
defined as follows: in a simulation with x ground truth clusters and a given number of phenotypes and
proportion of shared genetic architecture, precision is the percentage of ground truth clusters that were
identified as significant and within the x most significant clusters ranked by the branch thresholding
step in WINGS.

3.1 Performance on simulated data263

In Table 1, we report power as the percentage of ground truth simulated clusters that WINGS correctly264

labels as significant across the 1,000 simulations, for a fixed number of phenotypes in analysis and265

percent shared significantly mutated genes (“shared genetic architecture”). We define shared genetic266

architecture for a cluster to be the percentage of genes that are significant (p-value < 0.001) across all267

member phenotypes of the cluster. We also measure the precision of WINGS in identifying simulated268

clusters. We define precision for a given simulation as the number of ground truth clusters that were269

correctly identified as significant and that further fell within the top x significant clusters in that270

simulation. For example, if a simulation has five ground truth clusters, the power of WINGS for that271

simulation would be the percentage of those five clusters that are identified as significant. The precision272

of WINGS is the percentage of those five ground truth clusters that have been both correctly identified273

and are within the five most significant clusters identified in that simulations. Table 1 reports the274

precision of WINGS on the standard simulations across varying parameter values for both the number275

of phenotypes analyzed and shared genetic architecture using PEGASUS p-values. We additionally276

generated simulations using the same protocol but substituting the PASCAL (sum) [23] and SKAT [43]277

gene-level association test results for PEGASUS gene-level association p-values to illustrate that WINGS278

can be used with any gene-level association metric. The results for the simulations using PASCAL and279

SKAT are shown in Table S2 and Table S3, respectively.280

One sample output of WINGS applied to a standard simulation is presented in Figure 2. On the281
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Power Precision

Raw PEGASUS p-values 100 78.37
-log10 PEGASUS p-values 0.32 0.26

Table 2: WINGS power and precision when applied to “non-significant architecture” simulations (see
Methods, section 2.4); these simulations had 75 phenotypes and 75% (131 genes) shared genetic archi-
tecture.

-log10 scale, the thresholded hierarchical clustering algorithm within WINGS identifies the ground truth 282

clusters as the top five most significant clusters, whereas the clusters identified using raw gene-level 283

p-values do not include the ground truth clusters. These results suggest that WINGS applied to -log10- 284

transformed gene-level association statistics captures groups of phenotypes that have a high percentage 285

of shared significant genes, but these ground truth clusters are not captured by the raw gene-level 286

p-values. 287

Using the protocol described in section 2.4, we applied WINGS to 1,000 non-significant architecture 288

simulations to test its sensitivity to shared non-significant genetic architecture and analyzed the results. 289

We find that WINGS is also robust to detecting shared levels of non-significant architecture using raw 290

PEGASUS gene-level p-values (Table 2). 291

One sample output of WINGS applied to a non-significant architecture simulation with four ground 292

truth clusters is presented in Figure 3. On the raw scale, the thresholded hierarchical clustering algorithm 293

identifies the ground truth clusters as the top four most significant clusters, whereas the algorithm fails to 294

identify the ground truth clusters when applied to the matrix of -log10 transformed PEGASUS gene-level 295

p-values. These results suggest that clustering applied to raw PEGASUS gene-level p-values identifies 296

clusters of phenotypes that have a high percentage of shared non-significant genes, while clustering using 297

the -log10 transformed PEGASUS gene scores captures phenotype clusters that share a high percentage 298

of significant genes. 299

3.2 Analysis of 87 case-control phenotypes 300

We first applied WINGS to the 26 case-control phenotypes analyzed in Pickrell et al. 2016 [11] and Shi 301

et al. 2016 [2]. We provide the results of the analyzing these 26 phenotypes in 5. The focus of this paper 302

is on the application of WINGS to 87 case-control phenotypes form the UK Biobank. We use the 26 303

phenotpypes from our initial analysis and add 61 case-control phenotypes that had at least 1,000 cases 304

in our cohort from the UK Biobank (see Methods for QC details). The additional 61 phenotypes and 305
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Figure 3: WINGS sorted branch lengths from a non-significant architecture simulation
identifies significant clusters on (A) raw and (B) -log10 scales. Sorted branch lengths from the
dendrogram output of WINGS when applied to (A) raw PEGASUS gene-level p-values and (B) -log10-
transformed PEGASUS gene scores from a non-significant architecture simulation with 75 phenotypes
and 75% shared non-significant genes. For this simulation the ground truth clusters are [AK, AO, CY,
BX, BM, BR], [AP, BO, BV, BG, AB, CU, BU], [AY, BF, BN, CG], and [BW, CL, BC, CE, CJ, AI].
The dashed red horizontal line corresponds to the branch length threshold, above which the identified
significant clusters lie. The ground truth clusters are correctly identified as the significant clusters on
the raw scale (boxed). These figures have been truncated on the right (removing some clusters that are
not identified as significant) for better visualization purposes.

their corresponding case numbers are provided in Table S1. We then applied WINGS to the resulting 87306

phenotype by 17,651 gene matrix. In this expanded set of phenotypes, WINGS identifies 10 significant307

clusters, some of which contain smaller subclusters of phenotypes that are also significantly clustered.308

For instance, in Figure 4, the Immunological cluster 2 contains 7 phenotypes but many of the individual309

phenotype clades within it are additionally significant, including Type 1 diabetes mellitus (E10) and310

Seronegative rheumatoid arthritis (M06). For an exhaustive list of significant sub-clusters see Table 3.311

The ten significant clusters as well as their phenotypes are shown in the WINGS dendrogram in Figure 4312

with the corresponding sorted branch length plots presented Figure S1. We find that the case number of313

a phenotype is not significantly correlated with that phenotype being in a significant cluster (Kendall’s314

τ , p-value < 0.2625). As expected, we found that whether a phenotype was in a significant cluster or315

not is significantly correlated with the number of significant gene scores (Kendall’s τ , p-value < 0.0002)316

when testing correlation between case number and number of significant PEGASUS gene scores after317

Bonferroni correction for 17,651 autosomal genes.318
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In addition to only including genes and their +/- 50kb regions as features, we also computed PEGA- 319

SUS scores for intergenic regions and observe that the topology of the tree is highly similar (dissimilarity 320

index from [44] between Figure 4 and Figure S16 is Z = 0). We believe a more rigorous definition of 321

intergenic regions may lead to a more informed tree. 322

3.3 Gene-Set Enrichment Analysis and Network Propagation 323

For each cluster, gene set enrichment analysis was performed using all genes that had a PEGASUS 324

p-value < 0.001 [41] for every phenotype in a cluster. Significant genes shared by all phenotypes in the 325

cluster of immunological phenotypes include several located in the MHC region: BAT1,BAT3,BAT5 326

as well as HLA-DOA and HLA-DRA (See Supplementary Data on github for list of shared significant 327

genes by cluster). Using the KEGG pathway database, Enrichr [45, 46] identified significant enrichment 328

for genes that play a role in networks associated with Type I Diabetes mellitus, allograft rejection, and 329

graft-versus-host disease. 330
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Cluster Color Cluster Label

Metabolic

Immunological 1

Immunological 2

Osteoarthritis

Polyp

Unconnected

Pulmonary

Alzheimer’s/Dementia

Kidney

Liver

Number of shared
 signi�cant genes (p <0.001)

24

140

103

2

22

6

6

8

4

9

Fibrosis and cirrhosis of the liver (K74)
N80

400600800100012001400 200

I10

M72

M10
N40
K21

M19
H40
H25
M13
J34
K50
Z880
K58
K30
F32
F41
F31
D68
M81

I50

G47
K25
G40
N28
I42
F10
M65
G43
R00
I95
R35
Z886
M41
H35
F20
N41

M89
M62

L93
K922
K86
Z887
H54
Z885
Z882
D70

K82
K26
G20

Chronic obstructive pulmonary disease (J44)
Emphysema (J43)
Atherosclerosis (I70)

Other anemias (D64)
Other disorders of the urinary system (N39)
Other disorders of pancreatic secretion (E16)
Sarcoidosis (D86)
Iron de�ciency anemia (D50)

Polyp of colon (K635)
Rectal polyp (K621)

Osteoarthritis of knee (M17)
Osteoarthritis of hip (M16)
Overweight and obesity (E66)

Asthma (J45)
Enteropathic arthropathies (M07)
Seropositive rheumatoid arthritis (M05)
Multiple sclerosis (G35)
Seronegative rheumatoid arthritis (M06)
Type 1 diabetes mellitus (E10)
Other hypothyroidism (E03)

Psoriasis (L40)
Celiac disease (K900)
Disorders of mineral metabolism (E83)

Diverticular disease of the large intestine (K573)
Ulcerative Colitis (K51)
Varicose veins of lower extremeties (I83)
Acute myocardial infarction (I21)
Chronic ischemic heart disease (I25)
Angina pectoris (I20)
Disorders of lipoprotein metabolism (E78)
Type 2 diabeted mellitus (E11)

Alzheimer’s disease (G30)
Vascular dementia (F01)

Chronic kidney disease (N18)
Hypertensive chronic kidney disease (I12)

Other diseases of the liver (K76)

Figure 4: WINGS dendrogram from 87 case-control phenotypes in the UK Biobank reveals
clusters of traits with shared significant genetic architecture. Dendrogram output from WINGS
analysis of − log10 transformed PEGASUS scores of 87 case-control phenotypes in the UK Biobank.
Listed are the ICD10 codes and common names of each phenotype that belongs to a significant cluster,
grouped by cluster. Table insert: Each significant cluster’s color, assigned label, and number of shared
significant genes (p < 0.001).
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4 Discussion 331

Although biobank-scale datasets — in which multiple phenotypes are assayed and/or surveyed in tens 332

of thousands to hundreds of thousands individuals — are becoming increasingly available to medical 333

genomics researchers, approaches for leveraging these datasets to identify shared architecture among 334

phenotypes are still in their infancy. Existing approaches for analyzing the shared genomic underpinnings 335

of multiple phenotypes focus on colocalizing variant-level signals [14, 11], but these results overlook the 336

role that genetic heterogeneity and interactions among genes may play in generating multiple complex 337

traits and diseases. 338

Here, we present a new method, Ward clustering to identify Internal Node branch length outliers 339

using Gene Scores (WINGS), for identifying phenotypes that share significant genetic architecture based 340

on germline genetic data matched with binary or quantitative phenotypes for mega-biobanks. WINGS 341

leverages Ward hierarchical clustering applied to gene scores for the phenotypes of interest, and further 342

goes beyond past clustering applications to GWA studies of multiple phenotypes (e.g., disPCA; [25]) 343

by providing a thresholding algorithm for identifying significantly clustered phenotypes. We note that 344

the thresholding step in WINGS offers a useful visualization for interpreting results: while dendrograms 345

depict the hierarchical architecture of clusters (Figures 4, S7- S8), the sorted branch lengths WINGS 346

provides as output are intuitive to read, demonstrate a clear ranking of clusters, and identify significant 347

clusters (Figures S1, S6). 348

Given concerns over whether GWA data contain signals of genetic architecture, we note that our 349

simulations indicate that WINGS is sensitive to both shared significant genes (that is, genes enriched 350

for trait-associated mutations) and shared non-significant genes (genes depleted for trait-associated 351

mutations) (Figures 1-3; Tables 1,2). Figures 4, S6-S8 suggest that WINGS can offer insight into shared 352

genetic architecture underlying comorbid phenotypes, or phenotypes that may often be misdiagnosed 353

for one another such as vascular dementia and Alzheimer’s disease [47, 48]. Our results from applying 354

WINGS to European-ancestry individuals sampled in the UK Biobank show that such relationships 355

among phenotypes are not apparent from the taxonomy of ICD10 codes, where codes with the same 356

letter prefix are considered related in their etiology. 357

Clustering of high-dimensional features will always be relative to the input data. In this case, an 358

analysis of a subset of the phenotypes studied in the UK Biobank (Figures 4 and S8; Table S1) will 359

alter results. Still, we underscore that our analysis of 26 phenotypes in the UK Biobank (chosen based 360

on having been studied by both Pickrell et al. ([11]) and Shi et al. ([2]), as well as having over 100 cases 361
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in the UK Biobank) also recovers multiple significant clusters of phenotypes identified in our full set of362

87 phenotypes: Alzheimer’s/Dementia, Metabolic and Immunological 2, Figure S8.363

Next, we offer some caveats for future applications of WINGS and potential future directions for the364

development of methods to identify shared genetic architecture among multiple phenotypes in mega-365

biobanks. First, our goal here was to validate WINGS with simulations and to generate hypotheses366

regarding shared genetic architecture among complex traits in the UK Biobank. We do not seek to367

replicate our results from applying WINGS to data, an increasingly common challenge for mega-biobank368

analyses [5]. However, our validation with simulations and annotation of previously identified genes369

reinforces that we are reliably detecting true genetic architecture (see Supplementary File 1 for an370

extensive list of replication citations). Second, based on Figure S9, we do not suggest jointly studying371

traits with widely varying case numbers, in particular quantitative traits and binary phenotypes in372

mega-biobanks. One approach that could help overcome this challenge is the development of a gene373

score that incorporates both effect sizes and their standard errors into calculation [49], but this is outside374

the focus of our study.375

Third, WINGS is sensitive to parameter choices: the clustering distance metric, the gene scores used376

as input, the upper-bound set for cluster size, and the branch length gap outlier criterion, which we377

will now discuss in more detail. We explored different clustering approaches beyond Ward hierarchical378

clustering using simulated data, and find that the choice of clustering method produces little change for379

results using raw gene-level p-values, but it does have a significant impact on clusters identified using380

-log10-transformed gene scores (Figures S10-S15). We focused on Ward hierarchical clustering here381

partly due to its performance on simulated phenotype clusters (Tables 1, 2), and due to its assumption382

that clusters are round; because clusters are hard to find in a high-dimensional space, this may be383

a conservative choice. We chose PEGASUS gene-level p-values as input to WINGS due to (i) our384

previous exploration of the power of PEGASUS ([26]); in particular PEGASUS is not biased by gene385

length, and computes more precise p-values than VEGAS [21] and SKAT [22]), and (ii) because the386

model of correlated SNP-level p-values underlying PEGASUS is the same as that of a number of gene-387

level association methods, Tables S2, S3. We set the upper bound on cluster size in our analyses to388

be N/3, where N is the number of phenotypes being analyzed, effectively discounting the potential for389

relatively large clusters, which we think is appropriate for analyses of mega-biobanks; future users may390

alter this threshold.391

Future applications and extensions of WINGS may choose to explore a number of questions regard-392

ing shared genetic architecture among phenotypes. For example, [11] tested variants for true pleiotropy,393
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while our current implementation of WINGS cannot differentiate between phenotypic relationships de- 394

fined by clinical comorbidity versus causal dependence (see also [14]). We also assume that ICD10 395

codes are reliable indicators of disease status, which may not be the case [50, 51]. WINGS is sensitive 396

to identifying shared mutated genes from -log10-transformed gene scores, and we interpret the genes 397

underlying significant clusters in the output of WINGS as core genes underlying the clustered pheno- 398

types [3]. Integrating results from WINGS with tissue-specific expression data would further test this 399

hypothesis. WINGS could also be extended to test for differential genetic architecture among ancestries 400

[52], a fundamental question to which mega-biobanks can offer unique insight in the coming years. 401

Table 3: Comparison of raw and -log10 significant phenotypes in the analysis of 87 case-control pheno-
types. Clusters appearing on the same row have at least two common phenotypes in their intersection.

Cluster Classification Raw Scale -log10 Scale
Kidney Cluster I12, N18 I12, N18
Liver Cluster K74, K76 K74, K76
Polyp Cluster K621, K635 K621, K635

Osteoarthritis Cluster M13, M16, M17 E66, M16, M17
Metabolic Cluster I20, I25 I20, I25

I20, I21, I25 I20, I21, I25
E78, I10

E11, E78, I10 E11, E78
E11, E66, E78, I10, J45 E11, E78, I20, I21, I25

K51, K573
I83, K51, K573

E11, E66, E78, I10, I20, I21, I25, J45 E11, E78, I20, I21, I25, I83, K51, K573
Immunology2 Cluster E10, M06

G35, M05, M07
M05, M06 E10, G35, M05, M06, M07

E10, G35, J45 M05, M06, M07
E03, E10, G35, J45 M05, M06, M07

Unconnected Cluster D50, D86, E12
D50, D64 D50, D64, D86, E12, N39

Immunology1 Cluster K900, L40
E83, K900, L40

Alzheimer’s/Dementia Cluster F01, G30
Pulmonary Cluster I70, J43, J44

No name E03, M19
No name D70, G35
No name E83, Z882
No name L40, M07
No name J44, N39
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5 Supplemental Material573

In this section we present the dendrogram outputs of WINGS applied to simulations presented in the574

main text and the branch length outputs applied to the -log10 transformed PEGASUS gene scores from575

87 case-control phenotypes in the UK Biobank. Note, while the dendrograms contain information about576

the hierarchical architecture of the clusters, the sorted branch lengths presented in the paper are more577

intuitive to read, demonstrate a clear ranking of clusters, and identify the subset of highly significant578

clusters.579

The branch length outputs outputs applied to the -log10 transformed PEGASUS gene scores from 87580

case-control phenotypes in the UK Biobank. The corresponding dendrogram for this figure is presented581

in Figure 4 in the main text.582

The dendrograms corresponding to clusters from the example simulation with 75% shared genes583

are presented in Figures S2-S3; and, the dendrograms corresponding to clusters from the example non-584

significant architecture simulation with 75% shared non-significant genes are presented in Figures S4-S5.585

Analysis of 26 case-control phenotypes586

Here we present results from applying WINGS to 26 binary chronic illness phenotypes in the UK587

Biobank. Figure S6 displays the branch length outputs of WINGS (see Methods, section 2) applied to588

the raw and -log10-transformed PEGASUS gene scores computed using cases and controls from the UK589

Biobank for 26 binary chronic illness phenotypes that were also studied by Shi et al. [2] and Pickrell et590

al. [11].591

On the raw scale, Figure S6(A) reveals that the significant clusters identified are [J45, E11, 125,592

E78], [M07, L40], and [M05, M06]. The significant -log10 clusters identified by WINGS in Figure S6(B)593

can be annotated as metabolic [E11, I25, E78], immunological [K900, J45, K51, L40, M06, G35, M05,594

M07], and Alzheimer’s/dementia [G30, F01] (see Table S1 for common disease names, as well as the595

shared significant genes in a cluster). On both scales, the clusters identified from WINGS applied to596

these 26 phenotypes in the UK Biobank are similar to the clusters identified from WINGS applied to597

87 case-control phenotypes in the UK Biobank (see Table 3 and Figure 4 in the main text).598

The dendrogram corresponding to clusters from the 26 phenotypes from the UK Biobank is presented599

in Figure S7. Figure S8 displays the dendrogram output of WINGS applied to the -log10-transformed600

PEGASUS gene scores for these 26 binary chronic illness phenotypes in the UK Biobank. The dendro-601

gram displays the hierarchical nature of the immunological cluster (orange branches in Figure S8), and602
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it demonstrates the proximity of the [G30, F01] cluster to other phenotypes. 603

WINGS applied to 87 continuous and 7 binary phenotypes in the UK Biobank 604

Figure S9 displays results from simultaneously applying WINGS to 7 continuous and and 87 binary 605

phenotypes. The binary traits and continuous traits cluster separately with the exception of nucleated 606

red blood cells (NRB). We note that the NRB phenotype is only partially continuous in that there is a 607

continuous spectrum of nucleated red blood cells for unhealthy individuals, but all healthy individuals 608

will have a zero value. Thus, it is not surprising that NRB trait does not belong to a significant cluster. 609

Ignoring the NRB trait, the cluster of continuous phenotypes (represented in yellow on the far left 610

of the dendrogram in Figure S9) remains completely disjoint from the discrete traits until there is 611

only a single cluster containing all traits. We observe that the [BMI, WHR] cluster has 6,781 shared 612

significant genes (p < 0.001); the [PLC, MCV, MCV] cluster has 3,553 shared significant genes; and, the 613

full continuous cluster with traits [BMI, WHR, PLC, MCV, MCV, Height] has 1,685 shared significant 614

genes. This is unsurprising as complex continuous phenotypes have been shown to be highly polygenic 615

[3, 53, 54]. 616

Robustness to clustering criterion 617

In this paper, we present WINGS, a thresholded clustering algorithm based on Ward Hierarchical Clus- 618

tering. While the Ward linkage criterion works well to cluster phenotypes, other linkage criterion may 619

be used. To test the robustness of WINGS with respect to the choice of linkage criterion, we applied 620

our method using single linkage, average linkage, and complete linkage clustering to the 26 phenotypes 621

we analyzed from the UK Biobank in Section 5 (see [33] for more information on single linkage, aver- 622

age linkage, and complete linkage clustering). Here, we used the same branch thresholding algorithm 623

described in Section 2.3 with each linkage criterion to identify significant clusters. For reference, the 624

Ward-based WINGS results are presented in Figures S6-S8. 625

We observe that the significant clusters remain robust with respect to the linkage criterion when 626

using raw PEGASUS gene-level p-values. When applied to -log10-transformed PEGASUS gene scores, 627

however, the clusters appear to be more sensitive to the choice of linkage criterion. Future studies will 628

be dedicated to fully understanding the differences between the clusters identified by WINGS, single 629

linkage clustering, average linkage clustering, and complete linkage clustering on the -log10 scale. 630

The dendrograms and sorted branch length plots for these results are demonstrated in Figures S10- 631

S15. 632
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WINGS clustering of 87 phenotypes using all genomic regions633

In order to test if additional information about shared genetic architecture across phenotypes exists in634

intergenic region we performed an additional analysis. Using the bounds of the 17,651 genes (accounting635

for overlap) in our initial analysis to define 2,961 intergenic regions that were not included in the initial636

analysis. For each of these regions we performed a PEGASUS gene-level association test to generate a637

p-value for the region. We then pooled the p-values from our initial analysis with those of the intergenic638

regions to create a matrix of 87 phenotypes with 20,116 features (regional statistics). The resulting tree639

topology is shown in S16.640
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Supplemental Tables and Figures 641

Table S1: Phenotypes analyzed in this study sorted by International Classication of Disease (ICD10)
codes. * denotes that the phenotype was included in the initial analysis of 26 case-control traits that
were also studied by Pickrell et al. [11] and Shi et al. [2]

Disease ICD10 Code Number of Cases
Iron deficiency anemia D50 6284

Other anemias D64 9522
Other coagulation defects D68 809

Neutropenia D70 2636
*Sarcoidosis D86 449

Other hypothyroidism E03 11691
Type 1 diabetes mellitus E10 2373
*Type 2 diabetes mellitus E11 15080

Other disorders of pancreatic internal secretion E16 764
Overweight and obesity E66 8950

*Disorders of lipoprotein metabolism and other lipidemias E78 29778
Disorders of mineral metabolism E83 1758

*Vascular dementia F01 156
Alcohol related disorders F10 4313

*Schizophrenia F20 425
*Bipolar disorder F31 791

*Major depressive disorder F32 9714
Other anxiety disorders F41 4881

*Parkinson’s disease G20 972
*Alzheimer’s disease G30 331
*Multiple sclerosis G35 1124

Epilepsy and recurrent seizures G40 3071
*Migraine G43 2263

Sleep disorders G47 4410
Age-realted cataract H25 6814

Other retinal disorders H35 2872
Glaucoma H40 3729

Blindness and low visions H54 728
Hypertension I10 64135

Hypertensive chronic kidney disease I12 1274
Angina pectoris I20 15063

Acute myocradial infarction I21 6655
*Chronic ischemic heart disease I25 20958

Cardiomyopathy I42 1035
Heart failure I50 4423

Atherosclerosis I70 1025
Varicose veins of lower extremities I83 8988

Hypotension I95 4072
Other and unspecified disorders of nose and nasal sinuses J34 5393

Emphysema J43 1388
Other chronic obstructive pulmonary disease J44 6833

*Asthma J45 21758
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Gastro-esophageal reflux disease K21 19132
Gastric ulcer K25 3467

Duodenal ulcer K26 2517
Functional dyspepsia K30 9696

*Crohn’s disease K50 1436
*Ulcerative colitis K51 2661

Diverticular disease of large intestine without perforation or abscess K573 19462
Irritable bowel syndrome K58 4563

Rectal polyp K621 5210
Polyp of colon K635 9306

Fibrosis and cirrhosis of liver K74 676
Other diseases of liver K76 2791

Other diseases of gallbladder K82 1482
Other diseases of pancreas K86 896

*Celiac disease K900 1522
Gastrointestinal hemorrhage K922 4387

*Psoriasis L40 1836
*Lupus erythematosus L93 105

*Rheumatoid arthritis with rheumatoid factor M05 465
*Other rheumatoid arthritis M06 3581
*Enteropathic arthropathies M07 591

Gout M10 2661
Other arthritis M13 9500

Osteoarthritis of hip M16 9876
Osteoarthritis of knee M17 16612

Other and unspecified osteoarthritis M19 13548
Scoliosis M41 838

Other disorders of muscle M62 746
Synovitis and tenosynovitis M65 4311

Fibroblastic disorders M72 3267
Osteoporosis M81 4884

Other disorders of bone M89 1261
Chronic kidney disease N18 3714

Other disorders of kidney and ureter N28 1996
Other disorders of urinary system N39 15870

Benign prostatic hyperplasia N40 9471
Inflammatory diseases of prostate N41 1334

Endometriosis N80 3235
Abnormalities of heart beat R00 7018

Polyuria R35 3191
*Allergy status to penicillin Z880 13436

*Allergy status to sulfonamides status Z882 712
*Allergy status to narcotic agent status Z885 983
*Allergy status to analgesic agent status Z886 3586

*Allergy status to serum and vaccine status Z887 157
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Phenotypes
in Simulation

Shared Genetic Architecture

A: Power B: Precision
0.01 0.1 0.25 0.5 0.75 0.01 0.1 0.25 0.5 0.75

25 0.08 77.08 99.92 100 100 0.04 51.31 71.22 75.30 77.56
50 0.11 78.08 99.98 100 100 0.07 38.57 57.14 62.14 65.36
75 0.12 76.74 99.97 100 100 0.07 31.20 51.36 53.97 56.73
100 0.04 74.99 99.98 100 100 0.04 28.17 46.33 50.66 54.12

Table S2: WINGS performance on simulated data generated using the empirical distribution of PAS-
CAL [23] sum gene scores for Crohn’s disease (17,582 genes). Power (A) and precision (B) of WINGS
across a range of phenotypes included as well as shared genetic architecture. ”Shared genetic architec-
ture” denotes the percentage of the 175 significant genes in each phenotype that are shared across all
phenotypes in a cluster. Every entry in the table represent 1,000 simulations under the corresponding
parameters. Power and precision are defined explicitly in Table 1.

Phenotypes
in Simulation

Shared Genetic Architecture

A: Power B: Precision
0.01 0.1 0.25 0.5 0.75 0.01 0.1 0.25 0.5 0.75

25 0.01 12.94 91.43 99.96 100 0.04 8.63 61.65 74.44 77.59
50 0.02 9.11 90.79 99.95 100 0.02 5.37 48.47 63.24 66.73
75 0.01 7.19 90.14 99.97 100 0.01 3.47 42.06 57.78 61.07
100 0.01 6.74 89.41 99.95 99.99 0.01 3.00 35.35 53.89 58.69

Table S3: WINGS performance on simulated data generated using the empirical distribution of SKAT
[43] sum gene scores for Crohn’s disease (11,518 genes). Power (A) and precision (B) of WINGS across
a range of phenotypes included as well as shared genetic architecture. ”Shared genetic architecture” de-
notes the percentage of the 175 significant genes in each phenotype that are shared across all phenotypes
in a cluster. Every entry in the table represent 1,000 simulations under the corresponding parameters.
Power and precision are defined explicitly in Table 1.
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WINGS dendrogram from simulated data  (raw scale)                                   

Groud truth: [CN,CP], [AJ,CH,CL,DF],  [AL,CK,CG,CQ,BW,AP,AU], [AC,CS,AS,BF,CT], [AQ,BE,BG,BS,CW]                                  

Figure S2: WINGS dendrogram from a standard simulation on the raw scale. The dendrogram
output of Ward hierarchical clustering applied to the raw PEGASUS scores of a simulation with 75
traits, 75% shared genes. The branches are color coded by the largest significant clusters identified by
the branch thresholding algorithm. The corresponding sorted branch lengths are presented in Figure 2
in the paper.

Figure S3: WINGS dendrogram from a standard simulation on the -log10 scale. The dendro-
gram output of Ward hierarchical clustering applied to the -log10 transformed PEGASUS scores of a
simulation with 75 traits and 75% shared genes. The branches are color coded by the largest significant
clusters identified by the branch thresholding algorithm. The corresponding sorted branch lengths are
presented in Figure 2 in the paper.
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 WINGS dendrogram from reversed simulation data (raw scale)                                 

Ground truth: [AK,AO,CY,BX,BM,BR], [AP,BO,BV,BG,AB,CU,BU], [AY,BF,BN,CG], [BW,CL,BC,CE,CJ,AI]            

Figure S4: WINGS dendrogram from a non-significant architecture simulation on the raw
scale. The dendrogram output of Ward hierarchical clustering applied to the raw PEGASUS scores
of a non-significant architecture simulation with 75 traits and 75% shared genes. The branches are
color coded by the largest significant clusters identified by the branch thresholding algorithm. The
corresponding sorted branch lengths are presented in Figure 3 in the paper.
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Figure S5: WINGS dendrogram from a non-significant architecture simulation on the -
log10 scale. The dendrogram output of Ward hierarchical clustering applied to the -log10 transformed
PEGASUS scores of a non-significant architecture simulation with 75 traits and 75% shared genes.
The branches are color coded by the largest significant clusters identified by the branch thresholding
algorithm. The corresponding sorted branch lengths are presented in Figure 3 in the paper.
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WINGS sorted branch length outputs from 26 Phenotypes in the UK Biobank
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Figure S6: WINGS sorted branch lengths applied to 26 binary chronic illness phenotypes
from the UK Biobank on the (A) raw and (B) -log10 scales. The sorted branch lengths corre-
sponding to the branches in the dendrogram output of WINGS applied to the raw PEGASUS gene-level
p-values (A) and -log10-transformed PEGASUS gene scores (B) for 26 case-control phenotypes in the
UK Biobank. The dashed red horizontal line corresponds to the branch length threshold, where the
identified significant clusters are those lying above the dashed line (boxed). Here, the x-axis shows the
ICD10 codes; see Table S1 for the corresponding common disease names.

5.1 WINGS sensitivity to other gene level-association statistics 643

To showcase how WINGS can be used with any gene level association statistic we designed a similar set 644

of simulations as outlined in 2.4 for two additional methods PASCAL (sum) [23], shown in Table S2, 645

and SKAT [43], shown in Table S3. 646
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WINGS dendrogram from 26 Phenotypes in the UK Biobank (raw scale)

Figure S7: WINGS dendrogram applied to raw PEGASUS scores for 26 binary chronic ill-
ness phenotypes from the UK Biobank. The dendrogram output of WINGS to the raw PEGASUS
scores of the 26 binary chronic illness phenotypes from the UK Biobank data. The color coded branches
correspond to significant clusters identified by WINGS. The corresponding sorted branch lengths are
presented in Figure S6(A) in the paper.

Figure S8: WINGS dendrogram applied to -log10 transformed PEGASUS scores for 26
binary chronic illness phenotypes from the UK Biobank. The dendrogram output of WINGS
to the -log10 transformed PEGASUS scores of the 26 binary chronic illness phenotypes from the UK
Biobank data. The color coded branches correspond to significant clusters identified by WINGS. The
corresponding sorted branch lengths are presented in Figure S6(B) in the paper
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Figure S9: WINGS dendrogram from 94 case-control phenotypes in the UK Biobank sepa-
rates continuous and binary traits. The dendrogram output of Ward hierarchical clustering applied
to the -log10 transformed PEGASUS scores of the empirical continuous and binary traits. The branches
are color coded by the largest significant clusters identified by the branch thresholding algorithm. The
continuous phenotypes cluster together on the right of the dendrogram (in yellow), remaining disjoint
from the remaining binary phenotypes until there is a single cluster.
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Single linkage hierarchical clustering outputs applied to 26 Phenotypes from the UK Biobank (raw scale)
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Figure S10: Single linkage clustering applied to PEGASUS p-values of 26 phenotypes from
the UK Biobank (raw scale). (A) The dendrogram and (B) sorted branch lengths corresponding
to the output of single linkage hierarchical clustering applied to the raw PEGASUS scores of the 26
phenotypes from the UK Biobank. The dashed red horizontal line on the right figure corresponds to the
branch length threshold, where the identified significant clusters are those lying above the dashed line.
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Average linkage hierarchical clustering outputs applied to 26 Phenotypes from the UK Biobank (raw scale)
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Figure S11: Average linkage clustering applied to PEGASUS p-values of 26 phenotypes from
the UK Biobank (raw scale). (A) The dendrogram and (B) sorted branch lengths corresponding
to the output of average linkage hierarchical clustering applied to the raw PEGASUS scores of the 26
phenotypes from the UK Biobank. The dashed red horizontal line on the right figure corresponds to the
branch length threshold, where the identified significant clusters are those lying above the dashed line.
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Complete linkage hierarchical clustering outputs applied to 26 phenotypes from the UK Biobank (raw scale)

M
0
7

L
4
0

G
3
5

M
0
5

M
0
6

K
9
0
0

K
5
0

K
5
1

G
3
0

Z
8
8
7

F
0
1

L
9
3

F
3
3

G
4
3

Z
8
8
2

Z
8
8
0

G
2
0

F
3
1

F
2
0

D
8
6

Z
8
8
5

Z
8
8
6

J
4
5

I2
5

E
7
8

E
1
1

48

50

52

54

56

58

60

A. Dendrogram

Figure S12: Complete linkage clustering applied to PEGASUS p-values of 26 phenotypes
from the UK Biobank (raw scale). (A) The dendrogram and (B) sorted branch lengths correspond-
ing to the output of complete linkage hierarchical clustering applied to the raw PEGASUS scores of the
26 phenotypes from the UK Biobank. The dashed red horizontal line on the right figure corresponds to
the branch length threshold, where the identified significant clusters are those lying above the dashed
line.
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Single linkage hierarchical clustering outputs applied to 26 Phenotypes from the UK Biobank (-log
10

 scale)

Z
8
8
2

Z
8
8
5

Z
8
8
6

L
9
3

Z
8
8
7

F
2
0

F
3
3

F
3
1

G
3
0

F
0
1

G
4
3

G
2
0

D
8
6

K
5
0

Z
8
8
0

M
0
5

M
0
7

G
3
5

M
0
6

L
4
0

K
5
1

K
9
0
0

J
4
5

E
1
1

I2
5

E
7
8

90

100

110

120

130

140

150

160

170
A. Dendrogram

Figure S13: Single linkage clustering applied to -log10 transformed PEGASUS p-values of 26
phenotypes from the UK Biobank. (A) The dendrogram and (B) sorted branch lengths correspond-
ing to the output of single linkage hierarchical clustering applied to the -log10 transformed PEGASUS
scores of the 26 phenotypes from the UK Biobank. The dashed red horizontal line on the right figure
corresponds to the branch length threshold, where the identified significant clusters are those lying above
the dashed line.
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10

 scale)

Z
8
8
2

Z
8
8
5

L
9
3

Z
8
8
7

Z
8
8
6

F
2
0

F
3
3

F
3
1

G
4
3

G
3
0

F
0
1

G
2
0

D
8
6

K
5
0

Z
8
8
0

E
1
1

J
4
5

M
0
5

M
0
7

G
3
5

M
0
6

L
4
0

K
5
1

K
9
0
0

I2
5

E
7
8

100

120

140

160

180

A. Dendrogram

Figure S14: Average linkage clustering applied to -log10 transformed PEGASUS p-values
of 26 phenotypes from the UK Biobank. (A) The dendrogram and (B) sorted branch lengths
corresponding to the output of average linkage hierarchical clustering applied to the -log10 transformed
PEGASUS scores of the 26 phenotypes from the UK Biobank. Here, there is no significant branch length
threshold and consequently there are no significant clusters.
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Figure S15: Complete linkage clustering applied to -log10 transformed PEGASUS p-values
of 26 phenotypes from the UK Biobank. (A) The dendrogram and (B) sorted branch lengths
corresponding to the output of complete linkage hierarchical clustering applied to the -log10 transformed
PEGASUS scores of the 26 phenotypes from the UK Biobank. The dashed red horizontal line on the
right figure corresponds to the branch length threshold, where the identified significant clusters are those
lying above the dashed line.
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Figure S16: WINGS dendrogram from 87 case-control phenotypes using both genes and
intergenic regions as features. We analyzed a matrix of PEGASUS p-values on the -log10 scale using
both genes and intergenic regions as features. The topology of the tree is highly preserved compared to
the dendrogram shown in Figure 4.
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