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Abstract 17 
Broad spectrum antibiotics can cause both transient and lasting damage to the ecology of the 18 
gut microbiome. Loss of gut bacterial diversity has been linked to immune dysregulation and 19 
disease susceptibility. Antibiotic-resistant populations of cells are known to arise spontaneously 20 
in single-strain systems. Furthermore, prior work on subtherapeutic antibiotic treatment in 21 
humans and therapeutic treatments in non-human animals have suggested that entire gut 22 
communities may exhibit spontaneous resistance phenotypes. In this study, we validate the 23 
existence of these community resistance phenotypes in the murine gut and explore how 24 
antibiotic duration or diet influence the frequency of this phenotype. We find that almost a third 25 
of mice exhibit whole-community resistance to a therapeutic concentration of the β-lactam 26 
antibiotic cefoperazone, independent of antibiotic treatment duration or xenobiotic dietary 27 
amendment. These non-responder (i.e. resistant) microbiota were protected from biomass 28 
depletion, transient ecological community collapse, and lasting diversity loss seen in the 29 
susceptible microbiota. There were no major differences between non-responder microbiota and 30 
untreated control microbiota at the community structure level. However, gene expression was 31 
vastly different between non-responder microbiota and controls during antibiotic treatment, with 32 
non-responder communities showing an upregulation of antimicrobial resistance genes and a 33 
down-regulation of central metabolism. Thus, non-responder phenotypes appear to combat 34 
antibiotic assault through a combination of efflux transporter upregulation and a reduced growth 35 
rate across the entire gut community. Future work should focus on what factors are responsible 36 
for tipping entire communities from susceptible to resistant phenotypes so that we might 37 
harness this phenomenon to protect our microbiota from exposure to therapeutic antibiotic 38 
treatment regimes.  39 
 40 
 41 
 42 
 43 
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Introduction 45 

Despite the clear public health utility of antibiotics, there is an undeniable cost to their 46 

widespread use in medicine and agriculture1. Antibiotic resistance in pathogens is on the rise 47 

and evidence is mounting that antibiotic treatments cause damage to our commensal 48 

microbiota2–4.  The gut microbiome is an integral component of the human body, helping with 49 

nutrient absorption, pathogen resistance, and immune system education2. When the ecology of 50 

the gut is compromised by antibiotics, host health can suffer5–7.   51 

Previous work in humans has shown that one round of antibiotic treatment can 52 

temporarily alter the taxonomic composition of the gut microbiome, increase the prevalence of 53 

antibiotic resistance genes, and lead to a permanent loss of species diversity8–14. The steady 54 

decline of gut bacterial diversity in developed nations over the last century, likely due in part to 55 

antibiotic use, has been implicated in the rise of chronic immune dysfunction3,13,15. Thus, finding 56 

ways to prevent or mitigate the ecological damage done by antibiotics is an important public 57 

health priority13. For example, strategies have been developed to introduce activated carbon 58 

into the lower gut during antibiotic exposure to protect colonic bacteria16 or to use autologous 59 

fecal transplants to replenish gut diversity following treatment17. In addition to these therapeutic 60 

strategies, the microbiome appears to exhibit natural antibiotic-resistance under certain 61 

conditions. Sup-therapeutic doses of antibiotics in animal models have been shown to 62 

substantially reduce gut microbiome diversity and biomass in some hosts but not others, 63 

indicating that these communities vary in their capacity for resistance18–20.  In single-strain 64 

systems, sub-populations of antibiotic-resistant cells arise spontaneously due to stochastic 65 

apportionment of efflux transporters between daughter cells21,22 or due to the spontaneous 66 

amplification of antimicrobial resistance genes in mutant sub-populations23. Analogous 67 

symmetry-breaking processes21,22,24 may contribute to observed community-level antibiotic 68 

resistance in the microbiome18,20. 69 
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Heterogeneous responses of gut microbiota to therapeutic antibiotic treatments have 70 

been reported in the literature10,18,25,26. For example, while antibiotic exposure is a risk factor for 71 

Clostridium difficile carriage and infection in hospitals, not all antibiotic-treated patients exposed 72 

to C. difficile become infected27,28. To investigate this phenomenon in a controlled system, 73 

Schubert et al. (2015) looked into how the type and concentration of antibiotic treatment 74 

influenced C. difficile colonization of the murine gut29. The authors built a Random Forest (RF) 75 

regression model that could accurately predict C. difficile colonization levels from the 76 

composition of the gut microbiome. Cefoperazone, a broad-spectrum β-lactam antibiotic, had a 77 

large effect on the composition of the gut microbiome across most mice, lowered bacterial 78 

biomass by three orders of magnitude, and made mice susceptible to C. difficile colonization 79 

and infection29. Interestingly, several mice that received relatively high concentrations of 80 

cefoperazone were not colonized by the pathogen29. These resistant mice were also not 81 

predicted to be colonized by the RF model and thus appeared to maintain a gut microbiome 82 

similar in composition to the control mice. Based on these results, we hypothesized that whole-83 

community antibiotic resistance to therapeutic levels of antibiotics might be a common 84 

phenomenon in the mammalian gut. 85 

In this study, we explore the potential mechanisms underlying the cefoperazone non-86 

responder phenotype (i.e. cefoperazone resistant microbiomes) and look at how the prevalence 87 

of this phenotype varies across treatment regimes. Although it was not a focus of their work, 88 

Schubert et al. (2015) showed that the frequency of non-responder phenotypes decreased with 89 

higher concentrations cefoperazone,29 which comports with prior work on sub-therapeutic 90 

antibiotic treatments in mice18,19. Other important factors that could influence the frequency of 91 

these non-responder phenotypes are the duration of antibiotic exposure30 and host diet31,32. We 92 

designed and carried out two independent mouse experiments to explore the reproducibility and 93 

frequency of non-responder phenotypes to a therapeutic dose of cefoperazone (100-175 94 

mg/kg/day) across duration and dietary treatments. For the diet experiment, we included a 1% 95 
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seaweed amendment to normal mouse chow, as used previously by our group32. We 96 

hypothesized that previous exposures to plant-derived secondary compounds might influence 97 

subsequent responses to antibiotics33,34, and raw seaweed is a rich source of these 98 

compounds35,36. In addition to measuring community composition and biomass, we sequenced 99 

community transcriptomes in non-responder and control microbiomes to characterize the gene 100 

expression profiles underlying community-wide resistance.  101 

Overall, we found that 31% (i.e. 10 out of 32) of singly-housed mice exposed to 102 

therapeutic levels of cefoperazone were protected from antibiotic-induced collapse of the gut 103 

microbiome, independent of duration or dietary treatments. The community structure, species 104 

diversity, and biomass of non-responder microbiomes were similar to untreated controls and 105 

reproducible across both experiments. Despite little-to-no change in community composition, 106 

non-responder microbiota showed dramatic differences in community transcriptional profiles 107 

when compared to untreated mice (i.e. > 25% of all gene functions were differentially 108 

expressed). Gene functions involved in growth and motility were downregulated and 109 

antimicrobial resistance (efflux transporters, in particular) was upregulated in non-responder 110 

microbiomes. Together, these results indicate that entire bacterial communities can 111 

spontaneously protect themselves from collapse in the presence of a broad-spectrum antibiotic, 112 

likely through a combination of quiescence and antimicrobial resistance.  113 

 114 

Results and Discussion 115 

Antibiotic duration experiment 116 

28 week old female C57BL/6J mice from the same birth cohort were cohoused (5-6 mice per 117 

cage) prior to beginning the experiment, and then separated into individual cages 1 week prior 118 

to antibiotic treatments. Singly-housed mice were exposed to 0.5 mg/mL29 cefoperazone in their 119 

drinking water for 0, 2, 4, 8, or 16 days (Fig. 1A).  C57BL/6J mice drink an average of 6 mL of 120 

water each day37, so the dosage of cefoperazone was well within the therapeutic range (100-121 
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150 mg/kg/day). 16S amplicon sequencing showed the majority of cefoperazone-treated mice 122 

experienced dramatic restructuring of their microbiome composition in response to antibiotics 123 

(Fig. 1B).  However, 6 of the 16 cefoperazone-treated mice in this duration experiment did not 124 

exhibit a drastic change in microbiome composition over the course of the experiment.  Thus, 125 

the microbiota in these mice were resistant. The only duration treatment where all mice 126 

responded to antibiotic treatment was the 4-day duration. Overall, duration of exposure had no 127 

significant influence over the frequency of non-responder phenotypes (Fisher’s Exact Test 128 

p=0.44). The microbiome composition of non-responder mice was indistinguishable from 129 

untreated control mice at the phylum level (Fig. 1C), but there were detectable differences in 130 

Bacteroides, Akkermansia, and Lachnospiraceae at the amplicon sequence variant (ASV) level 131 

(see Methods and Fig. 1B). Susceptible mice showed a major turnover in community 132 

composition at the phylum level, with a near-complete loss of Bacteroides and Firmicutes and a 133 

dramatic enrichment of Proteobacteria and Cyanobacteria. Proteobacteria and Cyanobacteria 134 

reads were identified as being derived largely from mitochondria (likely from host) and 135 

chloroplasts (likely from plant-based diet), respectively. Initially, we had predicted that duration 136 

of exposure would be positively correlated with ASV extinction rates (i.e. ASVs present within a 137 

mouse initially, but not at the end of the experiment). Treatment duration had no significant 138 

effect on loss, gain (i.e. absent initially within a mouse, but present at the end of the 139 

experiment), or persistence (i.e. present within a mouse at the beginning and end of the 140 

experiment) of ASVs across the entire data set (ANOVA p > 0.1). There was a clear significant 141 

increase in species extinctions and a decrease in persistent ASVs in antibiotic susceptible mice 142 

compared to control mice (Fig. 1D). Non-responder mice, however, showed no significant 143 

differences from controls in ASVs gained, lost, or persistent (Fig. 1D). Thus, non-responder 144 

microbiota were protected from phylum-level collapse of gut bacterial community structure 145 

following antibiotics and from antibiotic-associated diversity loss. 146 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/566190doi: bioRxiv preprint 

https://doi.org/10.1101/566190
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

147 
 148 
Figure 1. Effect of antibiotic exposure duration on non-responder phenotype. Table in the center 149 
denotes number of non-responder and responder mice in each treatment duration group. (A) 150 
Experimental design for the duration experiment. Circles denote sampled time points. (B) Principal 151 
coordinate analysis (PCoA) of samples during and after antibiotic exposure (n=143, day >= 0). Ellipses 152 
denote 95% confidence intervals from a Student t-distribution. Each point denotes a sample and 153 
annotated numbers denote days after antibiotics treatment. ASV abundances were rarefied to 10K reads 154 
for each sample and percentages in brackets denote the explained variance. (C) Relative abundance of 155 
phyla at the last day of antibiotics treatment. The control panel is an average over all untreated controls. 156 
Only phyla with a relative abundance of at least 0.1% are shown. (D) Dynamics of amplicon sequence 157 
variants (ASVs). Gained ASVs are variants that were not present before antibiotics treatment but are 158 
present after. Similarly, lost ASVs were present before treatment but not after, and persistent ASVs were 159 
present before and after. 160 

 161 

Seaweed diet experiment 162 

14 seven-week-old female C57BL/6J mice from the same birth cohort were cohoused prior to 163 

beginning the experiment (5-6 mice per cage), and then separated into individual cages 1 week 164 

prior to dietary treatments. Half of the mice were given a 1% seaweed in normal chow diet and 165 

the other half received a normal chow diet for 20 days (Fig. 2A). All mice were put on a normal 166 

chow diet for six days prior to antibiotic treatment. On day 26, all mice continued on a normal 167 

chow diet and replicate mice from each dietary treatment group were given 0.5 mg/mL 168 

cefoperazone in their drinking water for a period of 6 days (Fig. 2A). On most sampling days, 169 

only the first three replicates from each treatment group were sampled for 16S sequencing. 170 

 

k 
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However, on the final day of antibiotic treatment, the full set of replicate mice were sampled (16 171 

antibiotic-treated mice and 12 control mice). Seaweed treatment had a very minor impact on the 172 

composition and diversity of the microbiome (Fig. S1), similar to what we had observed 173 

previously32. We found the same non-responder and responder phenotypes as in the duration 174 

experiment, with 4 of the 16 mice exhibiting the non-responder phenotype (Fig. 2B-C). The 175 

seaweed diet had no effect on the frequency of the non-responder phenotype (Fisher’s Exact 176 

Test p = 1.0). We measured total 16S copy numbers for each sample (i.e. a proxy for bacterial 177 

biomass) and found that antibiotic susceptible mice showed a dramatic drop in fecal bacterial 178 

biomass following cefoperazone treatment, while non-responder microbiomes did not differ 179 

significantly from controls in biomass levels (Fig. 2D). Similar to the first study, we saw an 180 

enrichment in mitochondrial and chloroplast sequences in the susceptible mice, which also 181 

corresponded to the drop in bacterial biomass (Fig. 2D-E). Thus, it appears that the absence of 182 

appreciable bacterial biomass in a mouse stool results in an enrichment for host and dietary 183 

contaminants in 16S amplicon sequencing data. 184 

 185 

186 
Figure 2. Effect of seaweed diet on non-responder phenotype. Table in the center denotes number of 187 
non-responder and responder mice in each diet group. (A) Design of the diet experiment. White circles 188 
denote 16S samples and are filled with the number of biological replicates for each sampling point. Black 189 
circles denote RNA-seq samples. (B) PCoA of 16S samples after diet (n=60, day >= 20). Symbol fill 190 
denotes sampling time relative to antibiotic treatment. Ellipses denote 95% confidence interval from a 191 

e 
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Student t-distribution. ASV abundances were rarefied to 5K reads for each sample and percentages in 192 
brackets show explained variance. (C) Relative phyla abundances across diet and response groups. Only 193 
phyla with a relative abundance larger than 0.1% are shown.  (D) qPCR biomass estimates (1/Ct) for 194 
samples across response groups. (E) Percentage of mitochondria and chloroplast sequences in 16S 195 
amplicon data across response groups. Triangles indicate samples below dashed line in panel D, 196 
considered to be low-biomass, while circles indicate high biomass samples  197 

 198 

Temporal dynamics following antibiotic treatment 199 

Despite greater loss of species in susceptible mice (Fig. 1D), overall alpha diversity tended to 200 

recover over time in these mice after cessation of antibiotic treatment. Non-responder and 201 

control mice maintained relatively stable alpha diversities over time, although antibiotic-treated, 202 

non-responder microbiota showed slightly lower alpha diversities than controls (Fig. 3A). 203 

Despite the resilience of Shannon diversity in the susceptible mice over time, only a small 204 

number of these mice showed recovery in Bacteroidetes ASVs (Fig. 3B). In control and non-205 

responder mice, Bacteroidetes was the dominant phylum over the entire time series. However, 206 

Firmicutes became the dominant phylum in responder mice following antibiotics and in many 207 

mice there appeared to be a permanent loss of the Bacteroidetes phylum following recovery 208 

(Fig. 3B). Seaweed dietary treatment appeared to contribute to a loss in resilience, with none of 209 

the seaweed-fed susceptible mice showing recovery of the Bacteroides phylum (Fig. S1). 210 

Post-antibiotics, the susceptible microbiomes were dominated by Firmicutes (Figure 3B).  211 

In the diet experiment, in which mice were sampled on the last day of antibiotics and then 4 212 

days post-antibiotics, most Firmicutes ASVs belonged to the order Clostridiales. In the duration 213 

experiment, however, mice were sampled 2 days post-antibiotics.  At the 2-day timepoint, some 214 

Firmicutes populations were dominated by ASVs from the order Lactobacillales, while the rest 215 

showed the familiar Clostridiales-dominated signature.  By 4-days post-antibiotics, however, 216 

Clostridiales had reached greater than 82% relative abundance in all mice, and the 217 

Lactobacillales population had uniformly dwindled to less than 3.4% relative abundance. Thus, 218 
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Lactobacillales ASVs appear to be involved in rapid recovery following cessation of antibiotic 219 

treatment, but are quickly displaced by Clostridiales ASVs. 220 

 Despite the fact that we saw no major differences in the gut microbiomes between 221 

control diet (i.e. normal chow) mice and 1% seaweed-fed mice (Figs. 2C and S1), we did 222 

observe a difference in mouse weight loss (Fig. 3C). All antibiotic susceptible mice that were fed 223 

seaweed showed a large, transient weight-drop a few days following the cessation of antibiotics 224 

(Fig. 3C). Antibiotic-treated mice that did not receive seaweed also showed a mild drop in 225 

weight, but the effect was weaker (Fig. 3C). This weight loss phenotype was not observed in 226 

control mice that were not treated with cefoperazone and was also not observed in antibiotic 227 

non-responder mice from both diet treatment groups (Fig. 3C). We do not have an explanation 228 

for this synergistic effect between seaweed diet and cefoperazone treatment on transient weight 229 

loss in mice, but we believe this to be an interesting research avenue to explore further. 230 

 231 

232 
Figure 3. Temporal dynamics in non-responder and responder mice following antibiotic and diet 233 
treatments. (A) Alpha diversity (Shannon index) dynamics after antibiotics treatment in the duration 234 
experiment. Each point denotes mean of all samples regardless of duration and error bars denote 235 
standard deviation. (B) Dynamics of Bacteroidetes and Firmicutes phyla in the antibiotic duration 236 
experiment. (C) Mouse weights in the diet experiment. Green areas denotes seaweed diet treatment 237 
windows and red area denotes antibiotics treatment windows. The blue arrow indicates transient weight 238 
loss in seaweed-fed mice a few days following the end of antibiotic treatment. 239 
 240 
 241 
Non-responder microbiomes exhibit an antimicrobial resistance transcriptional program 242 

To evaluate whether the occurrence of the non-responder phenotype might be associated with 243 

changes in gene transcription in the gut, we performed RNA sequencing on samples from 10 244 
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mice before antibiotic treatment (days 20 and 25) and 7 mice during antibiotic treatment (day 245 

29). Because there was close to no biomass in responder fecal samples after antibiotics 246 

treatment, we compared non-responders to untreated controls on day 29. After RNA extraction, 247 

ribosomal depletion, and sequencing to a mean of 20 million reads per sample, we identified 248 

around 800,000 unique transcripts by de novo assembly (see Material and Methods) ranging 249 

from 111 to >26,000 bp lengths (longer contigs were polycistronic; see Fig. S2 for length and 250 

coverage distributions). Non-summarized transcript abundances were sufficient to distinguish 251 

non-responder communities from controls after antibiotic treatment (Fig. 4A). However, that may 252 

be due to the high specificity of transcripts for each sample since we found that, on average, 253 

each transcript only appeared in 3 of the 17 total samples (Fig. S3A). Thus, we also also 254 

assigned functional annotations to transcripts by aligning them to the M5NR database38. We 255 

were able to assign 61% of the original transcripts to functions in the SEED subsystem 256 

database39. This allowed us to collapse transcript counts for each sample into SEED functions, 257 

which yielded a total of 53,877 unique functions. The majority of SEED functions were detected 258 

in all 17 RNA-seq samples (see Fig. S3B). Control and non-responder communities could be 259 

easily distinguished by functional counts (see Fig. 4B). In particular, about 45% of the variance 260 

in functional expression could be explained by non-responder vs. control status (Euclidean 261 

PERMANOVA p = 0.036) compared to only 6.7% of explained variance in 16S beta diversity 262 

(Bray-Curtis PERMANOVA p = 0.027). Thus, transcriptional differences capture the non-263 

responder phenotype much better than changes in community composition. 264 

 265 
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266 
Figure 4. Global transcriptional response to antibiotics in non-responder phenotypes. (A) Principal 267 
component analysis (PCA) of post-treatment samples based on abundances of de novo assembled 268 
transcripts. Percentages in brackets denotes explained variance. (B) PCA of post-treatment samples 269 
based on abundances of functional groups. (C) Volcano plot of untreated vs. non-responder differential 270 
abundance tests (functional groups). Percentages for each day denote positive tests rate (number of 271 
significant tests / total tests) and colors denote day the samples were taken (20 and 25 were before 272 
antibiotic treatment and day 29 was after). Tests with FDR q-values < 0.05 are shown as larger dots, 273 
whereas non-significant results are shown as small dots.  274 
 275 

After filtering out low abundance functions, differential expression testing between 276 

controls and non-responder communities was performed for each of the three time points 277 

sampled (see Materials and Methods). We observed that less than 5% of the observed 278 

functions were differentially expressed at an FDR q ≤ 0.05 before antibiotic exposure (days 20 279 

and 25), which fits our null-expectation. However, following antibiotic exposure (day 29), 27% of 280 

all functions were differentially expressed between untreated controls and non-responder 281 

communities (see Fig. 4C). This indicated a global transcriptional shift in non-responder 282 

microbiomes, mostly characterized by a up-regulation of several functional groups in the non-283 

responder mice (blue dots on left side of Fig. 4C). 284 

The transcriptional program was most prominently characterized by an upregulation of 285 

efflux transporters and other antibiotic resistance defense mechanisms, and a down-regulation 286 

of motility and respiratory functions. For instance, the SEED sub-pathway “Transporters in 287 

Models” was the most prominent subpathway in the differentially expressed functions, 288 

containing 82 significant hits (FDR q ≤ 0.05). Most of the significantly upregulated functions in 289 

the “Virulence, Disease and Defense” superpathway were also related to efflux pumps and their 290 

 
al 

of 

ir 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/566190doi: bioRxiv preprint 

https://doi.org/10.1101/566190
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

regulation (Fig. 5A). We also found large differences in of respiratory pathways, albeit with a 291 

mixed pattern of up- and down-regulation (Fig. 5B). The most striking respiratory difference we 292 

observed was the down-regulation of three acetyl-CoA synthases which were some of the most 293 

highly expressed functions in the untreated mice (Fig. 5E). These pathways were down-294 

regulated by one to two orders of magnitude in the non-responder mice, which suggests a 295 

down-regulation of central metabolism. Additionally, we observed a consistent down-regulation 296 

of flagellar motor proteins in the non-responder mice (Fig. 5C). All differentially expressed 297 

functions in the “Membrane Transport” superpathway were strongly upregulated in the non-298 

responder mice, including components of TonB, which is known to be necessary for efflux 299 

transporter function40 (Fig. 5D).  Together, these data are consistent with previous reports that 300 

upregulation of efflux transporters is accompanied by a concomitant reduction in growth 301 

rate21,41. Finally, we observed the upregulation of the entire vancomycin resistance locus, 302 

including the three efflux pumps Vex1-3 and the two-component system VncR and VncS (Fig. 303 

5E). The induction of vancomycin cross-resistance by β-lactams has been described before42,43 304 

and might indicate that these loci confer general efflux-based resistance to a range of 305 

antibiotics.  306 
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307 

Figure 5. Differentially abundant pathways in non-responder phenotypes. (A-D) Heatmaps 308 
showing differentially abundant (FDR < 0.05) functional groups grouped by SEED 309 
superpathway. Heatmap color scale shows normalized reads on a log10 scale with a pseudo 310 
count of 1. (E) Normalized expression of genes on the vancomycin tolerance locus and three 311 
Acetyl-CoA synthase genes between non-responders and controls.    312 
 313 

Conclusion 314 
 315 
We found that nearly one third of mice exposed to therapeutic levels of the β-lactam antibiotic 316 

cefoperazone were protected from gut microbiome community turnover, biomass collapse, and 317 

diversity loss. The frequency of this non-responder phenotype does not depend on duration of 318 

antibiotic exposure or on seaweed being added to the diet, but does appear to increase as the 319 
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concentration of cefoperazone in drinking water declines, as shown previously29. Despite very 320 

minor changes in community composition and diversity between untreated and non-responder 321 

mice, we observe a striking difference in microbiome gene expression between these groups of 322 

mice. Non-responder microbiomes show down-regulation of central metabolism and motility and 323 

upregulation of antimicrobial resistance. This combination of increased resistance and 324 

quiescence appears to protect gut communities from the extensive ecological damage observed 325 

in antibiotic-susceptible microbiomes. While prior work has shown how isogenic sub-populations 326 

of cells and two-species communities can exhibit heterogeneous responses to antibiotics20–23, 327 

the exact mechanisms underlying transitions into whole-community resistance phenotypes in 328 

the mammalian gut are not yet clear and will require further study. Future work should focus on 329 

what factors tip microbiomes between non-responder and responder phenotypes, potential 330 

hysteresis of these phenotypes, and whether or not this transition point can be manipulated to 331 

protect commensal microbiota from antibiotic assault. 332 

 333 
 334 
  335 
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Materials and Methods 336 
Animal care  337 

5- to 6-week-old female C57BL/6J mice ordered from Jackson Laboratories (Bar Harbor, ME) 338 

were housed were housed and handled in Association for Assessment and Accreditation of 339 

Laboratory Animal Care (AAALAC)-accredited facilities using techniques and diets specifically 340 

approved by Massachusetts Institute of Technology’s Committee on Animal Care (CAC) (MIT 341 

CAC protocol no. 0912-090-15 and 0909-090-18). The MIT CAC (Institutional Animal Care and 342 

Use Committee [IACUC]) specifically approved the studies as well as the single-housing and 343 

handling of these animals. Mice were euthanized using carbon dioxide at the end of the 344 

experiment. 345 

Antibiotic duration experiment  346 

For this 34-day experiment, 20 mice were assigned randomly and evenly to 5 treatment groups: 347 

control, 2 days of antibiotic exposure, 4 days of antibiotic exposure, 8 days of antibiotic 348 

exposure, and 16 days of antibiotic exposure.  The β-lactam antibiotic cefoperazone was 349 

administered through drinking water at a concentration of 0.5 mg/mL, as in prior work29.  Fecal 350 

samples were collected on the 2 days preceding antibiotic exposure, the last day of antibiotic 351 

exposure, and select timepoints following antibiotic exposure.  Mice were weighed each 352 

sampling day. Fresh fecal samples were obtained within an hour of one another each day from 353 

all animals. Fecal samples were collected into 2 mL freezer tubes with 100 uL of anaerobic 40% 354 

glycerol containing 0.1% cysteine and transferred immediately to dry ice before being stored at -355 

80° C prior to nucleic acid extraction. 356 

Seaweed diet and antibiotic experiment 357 

A new cohort of 28 mice were split randomly into two diet treatment groups and were fed with 358 

either a custom chow diet (Bio-Serv, Flemington NJ) containing 1% raw seaweed nori (Izumi 359 

Brand) or a standard control diet (product no. F3156; AN-93G; Bio-Serv, Flemington NJ). Prior 360 

to the experiment, animals were co-housed for 10 days and then singly housed for 7 days prior 361 
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to separation into the seaweed treatment and control groups. After 20 days of dietary treatment, 362 

all mice resumed the standard diet.  From day 26 to day 31, 8 mice from each diet group were 363 

administered 0.5 mg/mL cefoperazone in their drinking water as in the duration experiment. 364 

Mice were weighed daily. Fresh fecal samples were obtained within an hour of one another 365 

each day from all animals in all groups. Fecal samples were collected into anaerobic 40% 366 

glycerol containing 0.1% cysteine and transferred immediately to dry ice before being stored at -367 

80° C prior to nucleic acid extraction. 368 

 369 

16S amplicon sequencing 370 

DNA extractions 371 

DNA from fecal samples and bacterial cultures was extracted using the MoBio High Throughput 372 

(HTP) PowerSoil Isolation Kit (MoBio Laboratories; now QIAGEN) with minor modifications. 373 

Briefly, samples were homogenized with bead beating and then 50 μL Proteinase K (QIAGEN) 374 

added, and samples were incubated in a 65°C water bath for 10 min. Samples were then 375 

incubated at 95°C for 10 min to deactivate the protease.  376 

Amplicon sequencing library preparation and biomass quantification 377 

Libraries for paired-end Illumina sequencing were constructed using a two-step 16S rRNA PCR 378 

amplicon approach as described previously with minor modifications44. The first-step primers 379 

(PE16S_V4_U515_F, 5′-ACACG ACGCT CTTCC GATCT YRYRG TGCCA GCMGC CGCGG 380 

TAA-3′; PE16S_V4_E786_R, 5′-CGGCA TTCCT GCTGA ACCGC TCTTC CGATC TGGAC 381 

TACHV GGGTW TCTAA T-3′) contain primers U515F and E786R targeting the V4 region of the 382 

16S rRNA gene, as described previously44. Additionally, a complexity region in the forward 383 

primer (5′-YRYR-3′) was added to help the image-processing software used to detect distinct 384 

clusters during Illumina next-generation sequencing. A second-step priming site is also present 385 

in both the forward (5′-ACACG ACGCT CTTCC GATCT-3′) and reverse (5′-CGGCA TTCCT 386 

GCTGA ACCGC TCTTC CGATC T-3′) first-step primers. The second-step primers incorporate 387 
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the Illumina adaptor sequences and a 9-bp barcode for library recognition (PE-III-PCR-F, 5′-388 

AATGA TACGG CGACC ACCGA GATCT ACACT CTTTC CCTAC ACGAC GCTCT TCCGA 389 

TCT-3′; PE-III-PCR-001-096, 5′-CAAGC AGAAG ACGGC ATACG AGATN NNNNN NNNCG 390 

GTCTC GGCAT TCCTG CTGAA CCGCT CTTCC GATCT-3′, where N indicates the presence 391 

of a unique barcode). 392 

Real-time qPCR before the first-step PCR was done to ensure uniform amplification, 393 

avoid overcycling templates, and to provide a basic estimate of bacterial biomass for each 394 

sample (i.e. total copies of the 16S gene per volume of DNA extraction from a single mouse 395 

fecal pellet). Both real-time and first-step PCRs were done similarly to the manufacturer’s 396 

protocol for Phusion polymerase (New England BioLabs, Ipswich, MA). For qPCR, reactions 397 

were assembled into 20 μL reaction volumes containing the following: DNA-free H2O, 8.9 μL; 398 

high fidelity (HF) buffer, 4 μL; dinucleotide triphosphates (dNTPs), 0.4 μL; PE16S_V4_U515_F 399 

(3 μM), 2 μL; PE16S_V4_E786_R (3 μM), 2 μL; BSA (20 mg/mL), 0.5 μL; EvaGreen (20×), 1 400 

μL; Phusion, 0.2 μL; and template DNA, 1 μL. Reactions were cycled for 40 cycles with the 401 

following conditions: 98°C for 2 min (initial denaturation); 40 cycles of 98°C for 30 s 402 

(denaturation); 52°C for 30 s (annealing); and 72°C for 30 s (extension). Samples were diluted 403 

based on qPCR amplification to the level of the most dilute sample and amplified to the 404 

maximum number of cycles needed for PCR amplification of the most dilute sample (18 cycles, 405 

maximally, with no more than 8 cycles of second-step PCR). For first-step PCR, reactions were 406 

scaled (EvaGreen dye excluded; water increased) and divided into three 25-μL replicate 407 

reactions during both first- and second-step cycling reactions and cleaned after the first and 408 

second step using Agencourt AMPure XP-PCR purification (Beckman Coulter, Brea, CA) 409 

according to manufacturer instructions. Second-step PCR contained the following: DNA-free 410 

H2O, 10.65 μL; HF buffer, 5 μL; dNTPs, 0.5 μL; PE-III-PCR-F (3 μM), 3.3 μL; PE-III-PCR-XXX (3 411 

μM), 3.3 μL; Phusion, 0.25 μL; and first-step PCR DNA, 2 μL. Reactions were cycled for 10 412 

cycles with the following conditions: 98°C for 30 s (initial denaturation); 10 cycles of 98°C for 30 413 
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s (denaturation); 83°C for 30 s (annealing); and 72°C for 30 s (extension). Following second-414 

step clean-up, product quality was verified by DNA gel electrophoresis and sample DNA 415 

concentrations determined using Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher 416 

Scientific). The libraries were multiplexed together and sequenced using the paired-end with 417 

250-bp paired-end reads approach on the MiSeq Illumina sequencing machine at the BioMicro 418 

Center (Massachusetts Institute of Technology, Cambridge, MA). 419 

16S amplicon sequencing data analysis 420 

Amplicon sequencing data was processed using DADA245 and a custom 16S analysis pipeline 421 

available at https://github.com/gibbons-lab/mbtools. After performing general quality 422 

assessment, raw reads were filtered using the “filterAndTrim” method from DADA2 using a left 423 

trim of 10bp to avoid low complexity 5’ sequences and a maximum of 2 expected errors per 424 

read under Illumina model. Length truncation was performed based on the quality profiles and 425 

ensuring that sufficient overlap for merging remained. Reads in the duration experiment were 426 

truncated at 240 and 150 bps for forward and reverse reads respectively, and reads in the diet 427 

experiment were truncated at 240 and 170 bps.  More than 88% of the reads in the duration 428 

experiment and 93% of the reads in the diet experiment passed quality filtering and were 429 

passed on to downstream processing with DADA2. Error rates were learned on a sample of 250 430 

million bases and most of the inferred sequence variants could be merged across forward and 431 

reverse reads (>95% of preprocessed reads remaining). Less than 7% of all reads from both 432 

experiments were classified as chimeric and removed as well. Taxonomy was assigned to the 433 

sequence variants using the DADA2 Naive Bayes classifier with a bootstrap agreement of >50% 434 

and using the SILVA ribosomal database46 version 132. Species were assigned by exact 435 

alignment where possible. PERMANOVA was performed using the Bray-Curtis distance on 436 

rarefied read counts with the “adonis” function from the “vegan” package (https://CRAN.R-437 

project.org/package=vegan). Amplicon sequence variants contributing to the separation of 438 
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variances were identified from the coefficients of individuals regressions against the target 439 

variable (returned by the “adonis” function as well). 440 

All workflows (as R notebooks), installation instructions and additional metadata are 441 

provided at https://github.com/gibbons-lab/mouse_antibiotics and allow reproduction of all 442 

results and figures from the manuscript starting from the raw data. More complex functionality is 443 

provided in a dedicated R package (“mbtools”) which is provided along with documentation at 444 

https://github.com/gibbons-lab/mbtools. Raw sequencing data can be found on the Sequence 445 

Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) under accession numbers 446 

SRRXXXXXX, SRRXXXXX, and SRXXXXXX (Bioproject ID BXXXXXXXX) [RAW DATA WILL 447 

BE MADE PUBLIC PRIOR TO PUBLICATION]. 448 

 449 

RNA extraction, RNA sequencing, and RNAseq data analysis 450 

RNA extraction 451 

RNA was extracted from a total of 17 samples from Experiment 2 with the AllPrep PowerFecal 452 

DNA/RNA Kit (Qiagen USA, Cat. No. 80244). The 17 samples included 7 target samples taken 453 

during antibiotic treatment (4 untreated and 3 non-responder) and 10 negative controls prior to 454 

antibiotic treatment (day 20 and 25, 6 susceptible and 4 non-responder). RNA integrity numbers 455 

(RIN) were obtained using a 2100 BioAnalyzer (Agilent USA) with the Eukaryote Total RNA 456 

Nano Series II chip (Agilent USA). The majority of samples showed RINs above 5 and samples 457 

with lower RIN (5 of the control samples) were included in sequencing while controlling for the 458 

effect of low integrity in downstream analyses by explicitly including RIN as a confounder, as 459 

described previously47. 460 

Library preparation and RNA sequencing 461 

Ribosomal RNA was depleted from the 17 RNA-seq samples using the Ribo-Zero Gold rRNA 462 

Removal Kit (Illumina USA, Cat. No. MRZE724) and final concentrations were measured using 463 

the Qubit RNA HS Assay Kit (ThermoFisher Scientific USA, Cat. No. Q32852). Library 464 
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preparation was performed using the TruSeq Stranded mRNA LT Sample Prep Kit (Illumina 465 

USA, Cat. No. RS-122-2101) and all samples were sequenced in single end mode in one run on 466 

an Illumina NextSeq (NS500720) for 85 cycles, which yielded a total of 464 million reads. 467 

Data analysis 468 

Raw sequencing reads were quality filtered using the “filterAndTrim” function from DADA2 with 469 

a left trim of 5bp and a maximum expected error (maxEE) of 1. More than 95% of the raw reads 470 

passed those filters and were used for all downstream analyses. No length truncation was 471 

performed due to the short length and high 3’ quality scores of the reads. 472 

Transcripts were assembled de novo from the filtered reads with RNA Spades (version 473 

3.12.0) across the full set of reads (http://cab.spbu.ru/software/rnaspades/)48 using the default 474 

parameters. Transcript abundances for each sample were quantified by aligning the filtered 475 

reads to the assembled transcripts with Bowtie2 version 2.3.4.349. Mapping of unique reads to 476 

several transcripts was resolved by allowing up to 60 alternative alignments per read and 477 

counting the transcript abundances with an transcript length-aware Expectation-Maximization 478 

algorithm as used by Kallisto50.  479 

Functional annotations for the de novo assembled transcripts were obtained by first 480 

aligning the transcripts to the M5NR database38 using DIAMOND version 0.9.2151. Functional 481 

annotations were then obtained by using the existing mapping between M5NR and the SEED 482 

subsystems database39 as downloaded from the MG-RAST FTP 483 

(ftp://ftp.metagenomics.anl.gov/data/misc/JGI/). Finally, abundances for functional groups were 484 

calculated by summing the reads for each unique SEED subsystem ID in each sample.   485 

Normalization, differential abundance testing and false discovery rate (FDR) adjustment 486 

for assembled transcripts or functional groups were performed using DESeq2 version 1.18.152. 487 

To avoid a bimodal p-value histogram, this was preceded by a prefiltering step removing 488 

features with an average abundances <10 reads or not appearing in at least two of the samples. 489 

 490 
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Supplemental Material 620 

621 
Figure S1.  Alpha and beta-diversity trends for the diet study. (A) There were no significant 622 
differences in alpha diversity (Shannon index) over time between control mice (no antibiotics) 623 
fed a normal diet and mice fed a 1% seaweed diet for 20 days (Wilcoxon rank sum p > 0.1, for 624 
each day). All rarefied to 10000 reads each. (B) Community composition of control mice was 625 
slightly influenced by seaweed diet (7.7% explained variance, PERMANOVA p = 0.01) and this 626 
was mostly due to higher Bacteroides/Firmicutes ratio in mice fed the seaweed diet. Susceptible 627 
mice showed little differences before treatment but Bacteroidetes were completely lost in the 628 
seaweed treated susceptible mice (8% explained variance, PERMANOVA p = 0.01).  Resistant 629 
mice did not show differences based on diet. 630 
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641 
Figure S2. De novo assembly summaries for transcripts. (A) Length distribution of 642 
assembled transcripts. (B) Approximate coverage for assembled transcripts as estimated from 643 
k-mer coverage. Real coverage will always be larger than k-mer coverage. 644 
 645 
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664 
Figure S3. Distribution of transcripts and gene functions across RNA-seq samples. (A) 665 
Sample-specificity of assembled transcripts. Each bar denotes the number of transcripts 666 
observed in exactly k samples, where k is denoted on the x axis. (B) Sample-specificity of gene 667 
functions. Same as in A after collapsing transcripts to unique functional groups (unique IDs from 668 
the SEED database).  669 
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