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Abstract: 

We present a general numerical approach for solving the forward problem in high-resolution. 

This approach can be employed in the analysis of noninvasive electroencephalography (EEG) and 

magnetoencephalography (MEG) as well as invasive electrocorticography (ECoG), 

stereoencephalography (sEEG), and local field potential (LFP) recordings. The underlying 

algorithm is our recently developed boundary element fast multipole method (BEM-FMM) that 

simulates anatomically realistic head models with unprecedented numerical accuracy and speed. 

This is achieved by utilizing the adjoint double layer formulation and zeroth-order basis functions 

in conjunction with the FMM acceleration. We present the mathematical formalism in detail and 

validate the method by applying it to the canonical multilayer sphere problem. The numerical error 

of BEM-FMM is 2-10 times lower while the computational speed is 1.5–20 times faster than those 

of the standard first-order FEM. We present four practical case studies: (i) evaluation of the effect 

of a detailed head model on the accuracy of EEG/MEG forward solution; (ii) demonstration of the 

ability to accurately calculate the electric potential and the magnetic field in the immediate vicinity 

of the sources and conductivity boundaries; (iii) computation of the field of a spatially extended 

cortical equivalent dipole layer; and (iv) taking into account the effect a fontanel for infant EEG 

source modeling and comparison of the results with a commercially available FEM. In all cases, 

BEM-FMM provided versatile, fast, and accurate high-resolution modeling of the electromagnetic 

field and has the potential of becoming a standard tool for modeling both extracranial and 

intracranial electrophysiological signals.  
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1. Introduction 
Electroencephalography (EEG) (Schomer & Lopes da Silva, 2017; Nunes & Srinivasan, 2006) 

and magnetoencephalography (MEG) (Hämäläinen et al., 1993) record electric potentials and 

magnetic fields due to neural currents non-invasively. These methods can be used as tools in basic 

neuroscience, in clinical research, and as diagnostic and monitoring tools in clinical practice. In 

addition, EEG as well as invasive electrocorticographic (ECoG) recordings can be used in brain-

computer interfaces or BCIs (see, e.g., Semprini et al., 2018; Al-Qaysi et al., 2018; Leuthardt et 

al., 2004) with the goal of mitigating various neurological disabilities (Wolpaw et al., 2002). 

Due to the geometry and electrophysiological characteristics of the cortical neurons, a current 

dipole is used as the elementary source model in the analysis of EEG and MEG (Schomer & Lopes 

da Silva, 2017; Nunes & Srinivasan, 2006; Hämäläinen et al., 1993; Malmivuo & Plonsey, 1995). 

Estimation of the distribution of the sources underlying the measured EEG and/or MEG signal 

patterns, i.e., the solution of the inverse problem, invariably involves comparison of the measured 

data and those predicted by the sources. Therefore, a sufficiently accurate solution to the 

electromagnetic forward problem is a prerequisite. Since the EEG/MEG inverse problem is ill-

posed, additional constraints are required to render the solution uniqueness (see, e.g., Baillet, 

Mosher, and Leahy, 2001). In principle, the same procedure applies for the invasive recordings. 

These recordings contain more detailed spatial information but the locations of the current sources 

still need to be computationally inferred from the electric/magnetic field data. An additional 

challenge in the analysis of invasive data is that the set of recording locations is typical sparse and 

non-uniform. 

Several comprehensive and user-friendly open-source software packages for EEG/MEG analysis 

are currently available, including Brainstorm (Tadel et al., 2011), FieldTrip (Oostenveld et al., 

2011), and MNE (Gramfort et al., 2014). However, the corresponding forward-problem solution 

still offers significant room for improvement. All of the three above-mentioned packages offer the 

analytical spherically symmetric conductor model and the boundary-element method (BEM) as 

options for the solution of the forward problem. Additionally, there are “standalone” packages 

such as Helsinki BEM MATLAB library (Stenroos, Mäntynen, and Nenonen, 2007) and 

OpenMEEG (Gramfort et al., 2010) that contain the core routines that can be utilized to perform 

the necessary forward modeling calculations in various cases. The standard boundary element 

method (BEM) implementations employ three low-resolution layers extracted from the subject's 

MRI: scalp, outer skull, and inner skull. The resolution of the scalp, outer skull, and inner skull 

layers cannot be made very high; it is limited to approximately 7,000 triangles per layer (2,000 

default) when Brainstorm is used (Tadel, Bock, and Mosher, 2018). Furthermore, other tissue 

compartments including cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) that 

require a large number of triangular elements for accurate geometric description are not routinely 

included. As result, significant errors may be generated for the forward problem. This may become 

increasingly important for the future MEG/EEG modeling, considering the recent technical 

development of the Optically Pumped Magnetometer (OPM)-based MEG systems (Sander et al., 

2012; DARPA, 2018; Iivanainen, Stenroos, and Parkkonen, 2017) . 

The conventional BEM approach has been extended to include CSF for MEG/EEG forward 

models (Stenroos & Nummenmaa, 2016). Promising modern techniques include development of 

a symmetric BEM formulation which significantly improves the accuracy of the BEM method 

based EEG imaging (Rahmouni, Adrian, Cools, and Andriulli, 2018; Ortiz, Pillain, Rahmouni, and 

Andriulli, 2018) as well as using a volume integral equation (Rahmouni, Mitharwal, and Andriulli, 

2015) to handle anisotropic conductivities in the EEG forward problem (Pillain, Rahmouni, and 
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Andriulli, 2019), which is one major challenge of the boundary element method. However, it is 

unlikely that the standard BEM approach (Barnard, Duck, and Lynn, 1967; Geselowitz, 1967; 

Sarvas, 1987; Hämäläinen and Sarvas, 1989; Meijs, Weier, Peters, and van Oosterom, 1989; de 

Munck, 1992; Hämäläinen et al., 1993; Ferguson, Zhang, and Stroink, 1994; Stenroos, Mäntynen, 

and Nenonen, 2007; Salinas, Lancaster, and Fox, 2009; Tadel et al., 2011; Stenroos & Sarvas, 

2012; Stenroos & Nenonen, 2012; Nummenmaa et al., 2013; Stenroos & Nummenmaa, 2016) 

could overcome the model size limitation outlined above since its computational burden increases 

very rapidly with increasing the model resolution. Namely, the BEM matrix is dense with 𝑁2 

elements and the direct BEM solution (LU factorization) requires 𝑂(𝑁3) operations where 𝑁 is 

the number of facets. To overcome this issue, the fast multipole method (FMM) has been 

previously adopted to the MEG/EEG forward problem (Kybic et al., 2005b). Perhaps surprisingly, 

this approach has not been widely applied for practical MEG/EEG forward modeling problems. 

The main challenge is to select the optimal BEM formulation and devise an accurate numerical 

integration scheme for the solution, as well as to couple these with the proper FMM algorithm in 

an efficient way. Recently, a solution to this problem has been proposed (Makarov, Noetscher, 

Raij, and Nummenmaa, 2018; Htet et al., 2019) that combines the adjoint double layer formulation 

of the boundary element method (Barnard, Duck, and Lynn, 1967; Kybic et al., 2005a; Makarov, 

Noetscher, and Nazarian, 2016; Rahmouni, Adrian, Cools, and Andriulli, 2018) which utilizes 

surface charges at the boundaries, the zeroth-order (piecewise constant) basis functions, the 

Galerkin method with accurate near-field integration of the double surface integrals, and the 

proven FMM accelerator (Gimbutas & Greengard, 2015). This approach does not require the BEM 

matrix to be formed and inverted explicitly; an iterative solution with 𝑀 iterations requires 𝑂(𝑀𝑁) 

operations. It has been applied to modeling the transcranial magnetic stimulation (TMS) fields and 

has demonstrated a fast computational speed and superior accuracy for high-resolution head 

models as compared to both the standard boundary element method and the finite element method 

of first order (Makarov, Noetscher, Raij, and Nummenmaa, 2018; Htet et al., 2019). These results 

have been further confirmed in (Gomez, Dannhauer, Koponen, and Peterchev, 2018). 

In this study, the general formalism of the BEM-FMM approach is developed and subsequently 

applied to numerically challenging forward problem scenarios for electromagnetic recording 

techniques such as EEG/MEG. The main challenge is to model a large number of internal singular 

current sources close to tissue conductivity boundaries. The advantage of BEM-FMM is the 

capability to handle models with accurate conductivity boundaries comprising of up to 50 millions 

of triangular elements and the generality of the approach including applicability to cases when the 

conductivity boundaries are not nested and/or may contain “holes” such as skull openings that 

previously has required a separate formalism to be applied (Stenroos, 2016). The ability of BEM-

FMM to overcome these challenges is established with a set of simulations. First, we compare the 

results given by BEM-FMM with those reported by others authors using the first-order finite 

element method (Engwer, Vorwerk, Ludewig, and Wolters, 2017; Piastra et al., 2018) in a 

spherically symmetric case and demonstrate the advantages of our approach. Second, we illustrate 

the generality and usefulness of our approach in four practical case studies. These examples 

include: (i) evaluation the effect of a detailed head model on the accuracy of EEG/MEG forward 

solution; (ii) demonstration of the ability to accurately calculate the electric potential and the 

magnetic field in the immediate vicinity of the sources and conductivity boundaries; (iii) 

computation of the field of a spatially extended cortical equivalent dipole layer; and (iv) taking 

into account the effect a fontanel for infant EEG source modeling and comparison of the results 

with a commercially available FEM (ANSYS® Maxwell 3D Electromagnetics Suite 2019 R1). 
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2. Materials and Methods 
2.1 Charge-based formulation of the boundary element method for the secondary field 

Two main types of the boundary integral equation formulations for quasistatic modeling are 

currently being used: the first is framed in terms of electric potential 𝜑(𝒓) while the second is 

written in terms of electric charge density 𝜌(𝒓) at the boundaries (Barnard, Duck, and Lynn, 1967). 

These two approaches are referred to as the double-layer and the adjoint double-layer formulations, 

respectively (Rahmouni, Adrian, Cools, and Andriulli, 2018). In addition, there is the “symmetric” 

formulation (Kybic et al., 2005a; Rahmouni, Adrian, Cools, and Andriulli, 2018), which may have 

certain computational advantages (Rahmouni, Adrian, Cools, and Andriulli, 2018; Ortiz, Pillain, 

Rahmouni, and Andriulli, 2018). We chose the adjoint double-layer formulation written in terms 

of surface charges as a natural foundation for coupling the BEM with the fast multipole method 

(Rokhlin, 1985; Greengard & Rokhlin, 1987; Gimbutas & Greengard, 2015). Let us consider two 

(or more) conducting compartments separated by interface 𝑆. The outer compartment has electric 

conductivity of 𝜎𝑜𝑢𝑡 while the inner compartment has conductivity 𝜎𝑖𝑛 as shown in Fig. 1a. The 

vector 𝒏(𝒓) in Fig. 1 is the outward unit normal vector for the inner compartment. When a primary 

electric field 𝑬𝑝(𝒓, 𝑡) excitation is applied, surface electric charges with density 𝜌(𝒓, 𝑡) will 

accumulate at 𝑆 while the electric potential 𝜑(𝒓, 𝑡) and the normal component of the electric 

current density remain continuous across the interface. In the quasi-static or low-frequency 

approximation, the time dependence can be eliminated and therefore is considered as a purely 

parametric multiplicative factor. 
 

 
 

Fig. 1. Boundary between two conducting compartments with different conductivities and surface charge density 𝜌(𝒓) 

residing at the boundary. 
 

The most widely used potential-based approach results in the integral equation (Barnard, Duck, 

and Lynn, 1967; Geselowitz, 1967; Sarvas, 1987; Hämäläinen and Sarvas, 1989; Meijs, Weier, 

Peters, and van Oosterom, 1989; de Munck 1992; Hämäläinen et al., 1993) 
 

𝜑(𝒓)

2
+

𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
∫ 𝒏(𝒓′) ∙

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜑(𝒓′)𝑑𝒓′

𝑆

=
𝜎0

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
𝜑0(𝒓) (1) 

where 𝜎0 = 1 S/m is the unit conductivity and 𝜑0(𝒓) is the potential arising from a given 

excitation in a homogeneous medium with unit conductivity. For EEG/MEG applications, it is the 

electric potential of a current dipole. Eq. (1) is well suited for EEG studies since it gives us the 

solution directly in the form of the electric potential on the scalp surface as well as on the other 

interfaces between tissue compartments with different conductivities. It is also well suited for 

MEG studies since, after solving the surface potentials, the magnetic field can be found using 

Geselowitz’ formula (see, e.g., Sarvas, 1987). However, Eq. (1) is derived using Green’s second 

identity (Hämäläinen et al., 1993) and thus only valid for closed surfaces with one value of external 

conductivity, in particular for surfaces enclosed into each other in the form of a nested structure. 
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Inclusion of surface junctions (e.g., an opening in a skull sketched in Fig. 1b) requires a special 

treatment (Stenroos, 2016). 

On the other hand, the surface-charge approach uses the boundary conditions only and therefore 

directly applies to a wider range of volume conductor geometries. The corresponding integral 

equation is obtained by writing the total electric field 𝑬𝑡 in a form that considers the primary field 

𝑬𝑝 and a conservative contribution of the secondary induced surface charge density 𝑬𝑠: 
 

𝑬𝑡(𝒓) = 𝑬𝑝(𝒓) + 𝑬𝑠(𝒓) = 𝑬𝑝(𝒓) + ∫
𝜌(𝒓′)

4𝜋𝜀0

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝑑𝒓′

𝑆

 (2) 

where 𝜀0 is the permittivity of vacuum. Taking the limit of Eq. (2) as 𝒓 approaches surface 𝑆 from 

both sides and using the continuity condition for the normal current component, 𝜎𝑬𝑡(𝒓), one 

obtains the adjoint double-layer equation ((Barnard, Duck, and Lynn, 1967; Makarov, Noetscher, 

and Nazarian, 2016; Rahmouni, Adrian, Cools, and Andriulli, 2018): 
 

𝜌(𝒓)

2
−

𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
𝒏(𝒓) ∙ ∫

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′

𝑆
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𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
𝒏(𝒓) ∙ 𝜀0𝑬𝑝(𝒓) (3) 

Eq. (3) is directly applicable to the surface junction case from Fig. 1b. In contrast to Eq. (1), the 

normal-vector multiplication becomes external in the adjoint operator, i.e., it appears outside of 

the potential integral. This leads to computing the gradient of a single layer in Eq. (3) instead of 

the potential of the double layer in Eq. (1). 

 

2.2. Fast multipole method (FMM) for the secondary field 

The fast multipole method (Rokhlin, 1985; Greengard & Rokhlin, 1987) speeds up computation 

of a matrix-vector product by many orders of magnitude. Such a matrix-vector product appears 

when an electric field from many point sources 𝜌(𝒓′) in space has to be computed at many 

observation points 𝒓. In the present problem, this computational task emerges from the 

discretization of the surface integral in Eq. (2) or in Eq. (3). Assuming zeroth-order piecewise 

constant basis functions (pulse bases), one has 
 

𝑬𝑠(𝒄𝑖) = ∑
𝐴𝑗𝜌𝑗

4𝜋𝜀0

𝐜𝑖 − 𝐜𝑗

|𝐜𝑖 − 𝐜𝑗|
3

𝑁

𝑗=1

 (4) 

where 𝐴𝑖 , 𝒄𝑖 , 𝑖 = 1, … , 𝑁 are the areas and centers of the triangular surface facets 𝑡𝑖 and 𝜌𝑖 are the 

triangle surface charge densities. An approximation of the expression on the right-hand side of (4) 

is computed via the FMM with drastic improvements in the computational speed. We adopt, 

integrate, and use an efficient and proven version of the FMM (Gimbutas & Greengard, 2015) 

originating from its inventors. In this version, there is no a priori limit on the number of levels of 

the FMM tree, although after about thirty levels, there may be floating point issues (L. Greengard, 

private communication). The required number of levels is determined by a maximum permissible 

least-squares error or method tolerance, which is specified by the user. The FMM is a FORTAN 

90/95 program compiled for MATLAB. The tolerance level iprec of the FMM algorithm is set 

at 0 or 1 (the relative least-squares error is guaranteed not to exceed 0.5% or 0.05%, respectively). 

This FMM version allows for a straightforward inclusion of a controlled number of analytical 

neighbor integrals to be precisely evaluated as specified below. 
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2.3. Correction of neighboring terms and iterative solution for secondary field 

Approximation (4) is inaccurate for the neighbor facets. Using Galerkin (or strictly speaking 

Petrov-Galerkin) method with the same pulse bases as testing functions, we employ a refined 

computation:  
 

𝑬𝑠(𝒄𝑖) = ∑
𝐴𝑗𝜌𝑗

4𝜋𝜀0

𝐜𝑖 − 𝐜𝑗

|𝐜𝑖 − 𝐜𝑗|
3

𝑗∉𝑉(𝑖)

+
1

𝐴𝑖
∑ 𝜌𝑗 ∬

(𝒓 − 𝒓′)

4𝜋𝜀0|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝑡𝑖𝑡𝑗𝑗∈𝑉(𝑖)

 (5) 

where 𝑉(𝑖) is a neighborhood of observation triangle 𝑡𝑖. The inner integrals in Eq. (5) are computed 

analytically (Wilton et al., 1984; Wang et al., 2003; Makarov, Noetscher, and Nazarian, 2016) 

while the outer integrals use a Gaussian quadrature on triangles of 10th degree of accuracy (Cools, 

2003). We have implemented two methods for the selection of 𝑉(𝑖): a ball neighborhood with a 

radius 𝑅 such that |𝐜𝑖 − 𝐜𝑗| ≤ 𝑅 and a neighborhood of 𝐾 ≪ 𝑁 nearest triangular facets; they yield 

similar results. However, the second method leads to fixed-size arrays of pre-calculated double 

surface integrals and to a faster speed, making it the preferred method. Inclusion of a small number 

of precomputed neighbor integrals (three to sixteen) drastically improves the convergence of the 

iterative solution; inclusion of a larger number has a negligible effect. The present BEM-FMM 

approach performs precise analytical integration over 𝐾 = 16 closest neighbor facets. Eq. (3) is 

then solved iteratively using GMRES (generalized minimum residual method (Barrett et al., 1994; 

Saad, 2003) implemented by Drs. P. Quillen and Z. Hoffnung of MathWorks, Inc. Its overall 

performance and convergence are excellent, especially for complicated head geometries.  

After the solution for the surface charges is obtained, the condition of an electrically neutral 

system is explicitly enforced, with the total charge equal to zero, i.e., 
 

𝜌𝑖 → 𝜌𝑖 −
∑ 𝐴𝑗𝜌𝑗

𝑁
𝑗=1

∑ 𝐴𝑗
𝑁
𝑗=1

 (6) 

This correction has a negligible effect on the resulting electric/magnetic fields but improves 

solution accuracy for the electric potential, which is defined up to an additive constant. When the 

charge conservation law is introduced, this constant no longer needs to be adjusted.  
 

2.4. Fast multipole method (FMM) for the primary field 

A finite-length EEG/MEG dipole (Nunes & Srinivasan, 2006; Hämäläinen et al, 1993; Malmivuo 

& Plonsey, 1995) shown in Fig. 2 is constructed from a (isotropic) current source of strength 𝐼0 

and electric potential 𝜑+(𝒓) = 𝐼0 4𝜋𝜎|𝒓 − 𝒑1|⁄  at 𝒑1 and a current sink −𝐼0 with electric potential 

𝜑−(𝒓) = − 𝐼0 4𝜋𝜎|𝒓 − 𝒑2|⁄  at 𝒑2 as shown in Fig. 2. The surrounding medium has conductivity 

𝜎. The primary electric potential is thus 
 

𝜑𝑝(𝒓) =
𝐼0

4𝜋𝜎|𝒓 − 𝒑1|
−

𝐼0

4𝜋𝜎|𝒓 − 𝒑2|
 (7) 

 

When the vector distance 𝒅 = 𝒑1 − 𝒑2 from the sink to the source approaches zero, one has the 

well-known point-dipole expression 𝜑𝑝 = 𝑸 ∙ ∇(1 |𝒓 − 𝒓1|⁄ ) 4𝜋𝜎⁄  with 𝑸 = 𝐼0𝒅  being the vector 

dipole moment (in A·m). The primary electric field is  
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𝑬𝑝(𝒓) = −∇𝜑 =
𝐼0(𝒓 − 𝒑1)

4𝜋𝜎|𝒓 − 𝒑1|3
−

𝐼0(𝒓 − 𝒑2)

4𝜋𝜎|𝒓 − 𝒑2|3
 (8) 

The magnetic vector potential, 𝑨, of any point current source (or their linear combination) is a 

conservative field (Balanis, 2012). Therefore, its curl is zero so that the magnetic flux, 𝑩 = ∇ × 𝑨, 

for the combination of two isotropic current sources (7) vanishes everywhere in space. 
 

 
 

Fig. 2. Finite length EEG/MEG dipole. 
 

Both 𝜑𝑝 and 𝑬𝑝 generated by the sources located at 𝒑𝑗  are computed at a large number of target 

points 𝒓𝑖. The target points may be chosen anywhere in the volume or they may coincide with the 

triangle centers 𝒄𝑖. In either case, we directly apply function lfmm3dpart from the FMMLIB3 

library of the fast multipole method (Gimbutas & Greengard, 2015) to all current sources and to 

all required target points. This gives us the potential 𝜑𝑝(𝒓𝑖) and the field 𝑬𝑝(𝒓𝑖). 

When the targets are 𝒄𝑖, a ball neighborhood 𝑉(𝑖) with a radius 𝑅 such that |𝐜𝑖 − 𝒑𝑗| ≤ 𝑅 is 

introduced. The typical 𝑅 is 5-10 times the average edge length. If the source 𝒑𝑗   is within this 

sphere, its potential and field contributions are corrected by replacing the center-point 

approximation by accurate integration (the current source of strength 𝐼0 is assumed below) over 

the triangle area, 
 

𝜑𝑝(𝒄𝑖) =  ∑
1

𝐴𝑖
∫

𝐼0

4𝜋𝜎|𝒓 − 𝒑𝑗|
𝑑𝒓

𝑡𝑖𝑗∈𝑉(𝑖)

 (9) 

 

𝑬𝑝(𝒄𝑖) =  ∑
1

𝐴𝑖
∫

𝐼0(𝒓 − 𝒑𝑗)

4𝜋𝜎|𝒓 − 𝒑𝑗|
3 𝑑𝒓

𝑡𝑖𝑗∈𝑉(𝑖)

 (10) 

In other words, we compute the primary field by accurate averaging over the entire triangle area if 

the source is close to the triangle, which may become a decisive advantage for certain situations. 

The integrals over triangular facets in Eqs. (9), (10) are computed analytically (Wilton et al., 1984; 

Wang et al., 2003; Makarov, Noetscher, and Nazarian, 2016). 

For MEG dipoles, we additionally consider a filamentary current between the two current 

sources in Fig. 2. Such a current does not give a contribution to the conservative electric field 

(7),(8), but it creates a solenoidal magnetic vector potential 𝑨 and the respective primary magnetic 
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field 𝑩𝑝 = ∇ × 𝑨. For a small straight element of current 𝐼0 with length 𝑑 and center 𝒑𝑗, which 

has a unit direction vector 𝒏𝑗  
 

𝑩𝑝(𝒓) =
𝜇0𝑑𝐼0

4𝜋|𝒓 − 𝒑𝑗|
3 𝒏𝑗 × (𝒓 − 𝒑𝑗) (11) 

where 𝒓 is the target point and 𝜇0 is the permeability of vacuum. Eq. (11) cannot be evaluated 

using the FMM directly for multiple source and target points. However, since 𝒏𝑗 × (𝒓 − 𝑝𝑗) ⋅ 𝒆𝑘 =

(𝒆𝑘 × 𝒏𝑗) ⋅ (𝒓 − 𝒑𝑗), where 𝒆𝑘 = 𝒆{𝑥,𝑦,𝑧} are the three orthogonal unit vectors, we find 
 

𝑩𝑝(𝒓) =
𝜇0𝑑𝑗𝐼0

4𝜋|𝒓 − 𝒑𝑗|
3 (

𝒏𝑗
𝑥 ∙ (𝒓 − 𝒑𝑗)

𝒏𝑗
𝑦

∙ (𝒓 − 𝒑𝑗)

𝒏𝑗
𝑧 ∙ (𝒓 − 𝒑𝑗)

)  and (12) 

𝒏𝑗
𝑥 = (

0
−𝑛𝑗𝑧

𝑛𝑗𝑦

) , 𝒏𝑗
𝑦

= (

𝑛𝑗𝑧

0
−𝑛𝑗𝑥

) , 𝒏𝑗
𝑧 = (

−𝑛𝑗𝑦

𝑛𝑗𝑥

0
) (13) 

which is equivalent to the electric potential of a double layer (layer of electric dipoles) to be 

computed three times and with the three different sets of the “direction vectors” given in Eqs. (13). 

This task is thus accomplished by applying function lfmm3dpart from the FMMLIB3 library of 

the fast multipole method (Gimbutas & Greengard, 2015) three times. Since the magnetic field is 

measured outside the cortical volume, no refinement of the FMM result is necessary. 
 

2.5. Fast multipole method for the total potential (EEG) and total magnetic field (MEG) 

After the electric charge density 𝜌𝑗 for every 𝑗-th triangular facet at the conductivity boundaries is 

computed via the iterative solution, the secondary electric potential 𝜑𝑠 for every 𝑖-th triangular 

facet is found from the familiar electrostatic expression using the FMM. We apply function 

lfmm3dpart from the FMMLIB3 library of the fast multipole method (Gimbutas & Greengard, 

2015) and ignore the self-term. This formulation is again inaccurate when the 𝑖-th and 𝑗-th triangles 

are close to each other or coincide. Therefore, it is corrected similar to Eqs. (9), (10), that is 
 

𝜑𝑗
𝑠(𝒄𝑖) =  

1

𝐴𝑖
∬

𝜌
𝑗

4𝜋𝜀0|𝒓 − 𝒓′|
𝑑𝒓′𝑑𝒓

𝑡𝑖𝑡𝑗

 (14) 

Inner integrals in Eq. (14) are computed analytically (Wilton et al., 1984; Wang et al., 2003; 

Makarov, Noetscher, and Nazarian, 2016); the outer integrals use a Gaussian quadrature of 10th 

degree of accuracy (Cools, 2003). For the neighborhood of 𝐾 = 16 closest facets, the double 

surface integrals (14) are precomputed and then stored in memory to enable fast repetitive 

postprocessing.  

After the secondary electric potential 𝜑𝑠 is obtained, the continuous secondary magnetic field 

𝑩𝑠 of volumetric currents caused by surface charges in the conducting medium is found using 

Stokes theorem (Hämäläinen et al, 1993), which is Geselowitz’ formula 
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𝑩𝒋
𝒔(𝒄𝑖) = (𝜎out −  𝜎in)

𝜇0𝐴𝑗𝜑𝑗

4𝜋

𝐧𝑗 × (𝐜𝑖 − 𝐜𝑗)

|𝐜𝑖 − 𝐜𝑗|
3  

 
(15) 

To compute the sum of contributions (15) for all source triangles and for all required target points, 

we apply the FMM approach three times, following the transform introduced in Eqs. (12) and (13), 

respectively. We also apply corrections conceptually identical to Eqs. (5),(9),(10),(14) for target 

points close to the conductivity boundaries or directly on the conductivity boundaries. 
 

3. Results 
3.1. Accuracy of BEM-FMM in the sphere model 

We test the accuracy and speed of the proposed BEM-FMM numerical solver against previously 

published first-order FEM solutions (continuous Galerkin or CG and discontinuous Galerkin or 

DG) for EEG and MEG problems (Engwer, Vorwerk, Ludewig, and Wolters, 2017; Piastra et al., 

2018). We replicate the benchmark tests using our approach and use the published results as a 

reference. To this end, a four-layer sphere model is created for which well-known analytical 

solutions for EEG (Zhang 1995; Mosher, Leahy, and Lewis, 1999) and MEG (Sarvas, 1987) exist. 

Fig. 3a shows the problem geometry and conductivity values previously employed (Engwer, 

Vorwerk, Ludewig, and Wolters, 2017; Piastra et al., 2018).  

Since computation of the fields of dipoles located close to the CSF boundary poses highest 

numerical challenges, we used a source located 0.99 mm inside the CSF boundary (eccentricity 

0.987 according to Engwer, Vorwerk, Ludewig, and Wolters, 2017; Piastra et al., 2018). We 

created six surface sphere meshes with the number of facets ranging from 6,000 to 400,000 using 

a high-quality surface mesh generator (Persson and Strang, 2004; Persson, 2005). The four 

boundaries were obtained from a prototype mesh by scaling. The total mesh size thus ranged from 

24,000 to 1,600,000.  

The EEG problem is considered first. A 0.1 mm long vertical electric dipole schematically shown 

in Fig. 3a and separated by 0.99 mm from the CSF boundary is employed. The dipole length was 

chosen to be much smaller than the distance to the closest conductivity boundary (CSF) to be 

consistent with the analytical solution that uses the point-dipole model (Zhang, 1995; Mosher, 

Leahy, and Lewis, 1999). The dipole moment 𝑄 = 1 nA ∙ m. Fig. 3b shows the corresponding 

potential distribution at the outermost sphere (“skin”) surface for the combined mesh with the 

segmentation resolution (mean edge length) approximately three times the dipole separation 

distance and with about 0.05 M facets in total. Fig. 3c shows the convergence speed of the BEM-

FMM solution. The final relative residual is required to be less than 5 ⋅ 10−6. Next, 300 random 

radial dipole positions at the same eccentricity of 0.987 within the “brain” sphere surface are 

generated. An average relative error between numerical and analytical solutions is computed for 

all tested sphere meshes exactly following (Engwer, Vorwerk, Ludewig, and Wolters, 2017), i.e. 
 

𝐸 =  ‖
𝜑𝑛𝑢𝑚

‖𝜑𝑛𝑢𝑚‖
−

𝜑𝑎𝑛𝑎𝑙𝑦𝑡

‖𝜑𝑎𝑛𝑎𝑙𝑦𝑡‖
‖ (16) 

where ‖∙‖ is the 2-norm of the vector of potential values at the skin surface. Fig. 3d shows 𝐸 as a 

function of surface mesh resolution together with  the corresponding result from (Engwer, 

Vorwerk, Ludewig, and Wolters, 2017), see Figure 7 in the original. These data are for the 

continuous and discontinuous finite-element Galerkin method, respectively, and for the identical 

mesh resolutions but achieved with the hexahedral volumetric FEM meshes. Fig. 3d indicates that 

the BEM-FMM generates a smaller error for all considered mesh resolutions and that its accuracy 
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may exceed the FEM accuracy reported in Ref. (Engwer, Vorwerk, Ludewig, and Wolters, 2017) 

by an order of magnitude at resolutions on the order of the dipole separation distance.  
 

 
 

Fig. 3. a) Geometry of the sphere model; b) The potential distribution at the skin surface for the combined mesh with 

the resolution (mean edge length) approximately three times the dipole separation distance. c) Convergence speed of 

the BEM-FMM solution; d) Relative errors of the FEM and BEM-FMM methods as functions of the mesh resolution.  
 

The MEG problem from Ref. (Piastra et al., 2018) is considered next. The volume conductor 

geometry of the benchmark test remains unchanged but the MEG test source is a 0.1 mm long 

tangential current dipole schematically shown in Fig. 4a and separated by 0.99 mm from the CSF 

boundary (with the same eccentricity factor of 0.987). Following (Piastra et al., 2018), the 

magnetic field is evaluated on a sphere surface with the radius of 110 mm also shown in Fig. 4a. 

Fig. 4b shows the magnitude distribution of the magnetic field at this surface for the combined 

mesh with segmentation resolution approximately three times the dipole separation distance. Fig. 

4c shows the convergence speed of the corresponding BEM-FMM solution as a function of the 

iteration number. The final relative residual is required to be less than 5 × 10−6. 
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Fig. 4. a) Geometry of a multilayered isotropic sphere; b) Distribution of the amplitude of the magnetic field at the 

observation surface for the combined mesh with the resolution (mean edge length) approximately three times the 

dipole separation distance; c) Convergence speed of the BEM-FMM solution; d) Relative errors of the FEM and BEM-

FMM methods as functions of the mesh resolution. 
 

Next, 300 random tangential dipole positions/directions at the same eccentricity of 0.987 within 

the “brain” sphere surface are generated. An average relative error between numerical and 

analytical solutions is computed for all tested sphere meshes exactly following (Piastra et al., 

2018), i.e. 
 

𝐸 =
1

2
‖

𝑩𝑛𝑢𝑚

‖𝑩𝑛𝑢𝑚‖
−

𝑩𝑎𝑛𝑎𝑙𝑦𝑡

‖𝑩𝑎𝑛𝑎𝑙𝑦𝑡‖
‖ (17) 

where ‖𝑩‖ = √∑ ∑ 𝑏𝑖,𝑗
2

𝑗𝑖  is the Frobenius or 𝐿2,2 norm of the matrix of magnetic field values at 

the observation surface. Fig. 3d shows 𝐸 as a function of surface mesh resolution together with  
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the corresponding result from Ref. (Piastra et al., 2018), see Figure 8 in the original, for continuous 

and discontinuous FGEM Galerkin method, and for identical mesh resolution but achieved with 

hexahedral volumetric meshes. Fig. 4d indicates that the BEM-FMM generates a smaller error for 

all considered mesh resolutions and that its accuracy exceeds the FEM field accuracy reported in 

(Piastra et al., 2018) by a factor of 1.5–4. 
 

3.2. Computation speed in the sphere model 

For the EEG problem shown in Fig. 3, Ref. (Engwer, Vorwerk, Ludewig, and Wolters, 2017) 

reports a comprehensive evaluation of computational time for the first-order finite-element 

methods with non-uniform meshing, which will be used for comparison. Either a single dipole 

source or a group of 4724 dipoles were been considered. Based on these data, Table 1 compares 

the method speed given the nearly identical mesh resolution close to the conductivity boundaries. 

The present BEM-FMM solution again uses the relative residual of 5 ⋅ 10−6. Table 1 reports 

computational performance for 1 and 2 mm mesh resolutions. There was no effort to parallelize 

either of the methods (DUNE FEM software described in online Ref. (DUNE software) used by 

Engwer, Vorwerk, Ludewig, and Wolters, 2017) or present BEM-FMM running within MATLAB 

platform with major routines compiled in FORTRAN). However, both software packages (DUNE 

and core MATLAB) employ multithreading for linear algebra operations, allowing them to execute 

faster on multicore-enabled machines. 
 

Table 1. EEG computation run times for a single source and for 4724 dipole sources including the right-hand side 

(RHS) computations and compared to Ref. (Engwer, Vorwerk, Ludewig, and Wolters, 2017) labeled as (*). Mesh 

sizes of 2 mm mesh (0.19 M triangles/0.5 M hexahedra) and 1 mm mesh (0.83 M triangles/3.9 M hexahedra) were 

used. The 4724 vertical dipoles were randomly located at the distance of 0.99 mm from the CSF boundary. 
 

Method Mesh 

resolution 

[mm] 

Computer 

Hardware/Software 

Run time for 

a single 

source [sec] 

Run time for 4724 

sources including 

RHS comput. [sec] 
CG FEM (*) 2  Intel Xeon E5-2698 v3 CPU 

(2.30 GHz) Linux 

20 42810 

DG FEM (*) 2  Intel Xeon E5-2698 v3 CPU 

(2.30 GHz) Linux 

136 52689 

BEM-FMM 2  Intel Xeon E5-2698 v4 CPU 

(2.20 GHz) 

MATLAB 2018a, Windows 

19 

(0.9 per 

iteration) 

34 

CG FEM (*) 1  Intel Xeon E5-2698 v3 CPU 

(2.30 GHz) Linux 

185 336339 

DG FEM (*) 1  Intel Xeon E5-2698 v3 CPU 

(2.30 GHz) Linux 

1468 452112 

BEM-FMM 1  Intel Xeon E5-2698 v4 CPU 

(2.20 GHz) 

MATLAB 2018a, Windows 

77 

(3.5 per 

iteration) 

92 

 

Table 1 shows that, when the right-hand side computational time is excluded, the speed of the 

BEM-FMM algorithm for a single-dipole is about the same as the speed of the standard FEM (CG) 

for the coarse 2 mm mesh and exceeds the FEM speed for the fine 1 mm mesh. We emphasize that 

our platform is based on MATLAB® and that we use complex arithmetic of the FMMLIB3 library 

of the fast multipole method (Gimbutas & Greengard, 2015). Therefore, we would expect a further 

speed improvement by approximately a factor of 2 when using a real-valued version of the FMM 

currently under development. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 5, 2019. ; https://doi.org/10.1101/567933doi: bioRxiv preprint 

https://doi.org/10.1101/567933


13 
 

The results are even more favorable for multiple EEG dipoles and for the corresponding right-

hand side computations. One main challenge in applying the finite-element methods to solve the 

EEG/MEG forward problem is to deal with the strong singularity at the current dipole source. 

Different singularity extraction approaches have been proposed; among them the subtraction 

approach developed in (Wolters et al., 2007; Engwer, Vorwerk, Ludewig, and Wolters, 2017; 

Piastra et al., 2018) and reported in Table 1. This approach very significantly increases the overall 

FEM run time as Table 1 shows. On the other hand, the BEM-FMM does not need to perform the 

singularity extraction since there are no volumetric elements containing the sources themselves. 

Strong and rapidly varying near fields for a small number of nearby surface facets are handled by 

analytical surface integration in Eqs. (5),(9),(10),(14). As a result, the fast multipole method 

requires about a minute of run time for the problem of the same complexity and using nearly the 

same computer hardware. Since the native FMM is very fast for source field calculations, the 

number of sources in the present approach is practically unlimited, which is of importance for 

EEG/MEG distributed inverse problem approaches where the entire discretized cortex is employed 

as the space of possible sources.  This is illustrated in Table 1 where we report a very modest 

(approximately 15 sec) increase in the computation time for 4724 sources. 
 

3.3. Effect of anatomically detailed modeling 

A triangular surface-based head model for subject #101309 from the Population Head Model 

Repository (Lee et al., 2016; IT’IS Foundation, 2017) originated from Connectome Project (Van 

Essen et al., 2012) has been solved via BEM-FMM. The model includes the following seven 

compartments: cerebellum, CSF, GM, skin (or scalp), skull, ventricles, and WM, and results in 

700,000 triangular facets in total. The average mesh resolution (edge length) is 1.5 mm for scalp 

and skull and 1.1 mm for CSF, GM, and WM. Tissue conductivities are adopted from the IT’IS 

database (Hasgall et al., 2018) with the average scalp conductivity chosen as 0.333 S/m. With the 

BEM-FMM approach, an EEG forward computation executes in less than 2 minutes on an ordinary 

server.  

To demonstrate the importance of the anatomical detail and accuracy of the head model, a single 

finite-length (1.8 mm) cortical dipole with the moment 𝑄 = 1.8 nA ∙ m is placed in the vicinity of 

the right motor cortex at two different orientations as shown in Fig. 5a,b.  

The scalp potential was computed with all brain compartments present and with only three brain 

compartments present, respectively, which is similar to OpenMEEG software (Gramfort et al., 

2010; Tadel, Bock, and Mosher, 2018). There are clear differences in the scalp potential 

distribution (Fig. 5 c-f), especially in the amplitude. Quantitative measures are given in Table 2. 

They are the relative difference measure (RDM) or topographical error given by RDM =

 ‖𝜑1/‖𝜑1‖ − 𝜑2/‖𝜑2‖‖ and the logarithmic magnitude (lnMAG) error given by lnMAG =
 ln (‖𝜑1‖/‖𝜑2‖). The topographical error in Table 2 may be as large as 67%. 
 

3.4. High-resolution modeling of intracranial fields  

In addition to the extracranial EEG/MEG fields, the BEM-FMM method can be utilized to model 

the intracranial fields in the immediate vicinity of the neuronal sources. This can be beneficial for 

analyzing ECoG and/or LFP data and can help us to understand the relationships between intra- 

and extracranial fields. The surface mesh from the previous example was refined using a 14 

barycentric triangle subdivision and then surface-preserving Laplacian smoothing (Vollmer, 

Mencl, and Müller, 1999a,b) was applied. This results in a model that has an average mesh 

resolution of 0.7 mm (0.6 mm for GM and WM) and 2.8 M triangular facets in total. This high-
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resolution model runs reasonably fast, in approximately 200 seconds in Windows MATLAB 

environment given 14 iterations and the relative residual below 10−4.  
 

 
 

Fig. 5. Electric potential distribution in V over the scalp surface for nearly radial (a) and nearly tangential (b) cortical 

dipoles (𝑄 = 1.8 nA ∙ m) at the primary motor cortex (coronal plane); c), d) Solutions with all brain compartments 

included; e), f) Approximate solutions with only three brain compartments (scalp, inner skull, outer skull) included. 

Note the differences in the maximum amplitudes. 
 

Table 2. Topographical error and magnitude error for the electric potential between the complete model and that 

omitting the CSF, WM, and WM interfaces. 
 

Surface RDM error, % lnMAG error 

Scalp for nearly vertical dipole in Fig. 5a 67 -1.0 

Scalp for nearly horizontal dipole in Fig. 5b 29 -0.6 

Inner skull(dura) for nearly vertical dipole in Fig. 5a 29 -1.7 

Inner skull(dura) for nearly horizontal dipole in Fig. 5b 38 -1.1 
 

A 1.8 mm long and nearly radial dipole with the moment 𝑄 = 1 nA ∙ m, directed outwards is 

placed near the primary motor cortex as shown in Fig. 6a in both coronal and sagittal planes. 
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Fig. 6. Single-dipole EEG/MEG distributions computed with the BEM-FMM approach. a), b) Problem geometry; c) 

The electric field magnitude in the coronal plane; d) The absolute value of dominant tangential component 𝐵𝑥 in the 

sagittal plane. 
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Figs. 6c, d show the resulting volume fields (electric and magnetic) in the two planes. Every field 

plot is based on 250,000 observation points at a spacing of 0.1 mm. The total electric field 

magnitude is given in the coronal plane in Fig. 6c while Fig 6d shows the absolute value of the 

dominant tangential component 𝐵𝑥 in the sagittal plane. In order to display large field variations, 

we use the decibel scale as explained in the respective figures. The electric field is indeed observed 

to be discontinuous at the interfaces between the tissue compartments while the magnetic field is 

not. Fig. 6c clearly demonstrates how the electric field of the current dipole is attenuated and 

smeared by the scalp; both the amplitude and the spatial specificity of the recordings would greatly 

increase if the electrodes could be attached to the skull instead of skin. On the other hand, Fig. 6d 

illustrates a magnetic-field lacuna that is typical for a nearly radial dipole (which in the spherically 

symmetric model would produce no extracranial field). However, this lacuna is bent and is shifted 

quite significantly due to the intricate geometry of the anatomically realistic conductivity 

boundaries resulting in diminished yet non-zero field outside the head. 

Fig. 7 is the zoomed in version of Fig. 6c; it shows the electric field magnitude distribution in 

the immediate vicinity of the EEG dipole in Fig. 6c. The same logarithmic scale is used. For every 

observation point in Fig. 6 or in Fig. 7, the ball neighborhood with the radius 𝑅 = 5𝑙, where 𝑙 is 

average edge length, is introduced. If a surface triangle in question belongs to this domain, the 

corresponding charge contribution into the total electric field is computed by analytically 

evaluating the field integral in Eq. (2). Otherwise, the central-point approximation is used which 

implies that the distributed charge is concentrated at the triangle center. 
 

 
 

Fig. 7. Electric field magnitude distribution in the immediate vicinity of the 1.8 mm long EEG dipole in Fig. 6c. The 

same logarithmic scale is used but with a better spatial resolution. 
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3.5. A cortical equivalent dipole layer 

A spatially extended cortical equivalent dipole layer (He, Yao, and Lian, 2002; Murakami & 

Okada, 2006; Murakami & Okada, 2015) was simulated using the same high-resolution model as 

in the previous section. For comparison purposes, this extended source was crated around the 

single dipole from the previous example. To generate the source, we select all triangular facets of 

the white matter shell within the distance of 10 mm from the original dipole and assign to every 

such facet a 1.6 mm long dipole. All the individual dipoles were directed along the outer normal 

vectors of the white matter facets and are directed outwards as shown in Fig. 8a,b. The distance of 

each current dipole from the white matter shell was 0.2 mm. Fig. 8b depicts the corresponding 

dipole distribution to scale. The number of individual dipoles in the present example is ~2,000 

although the numbers as large as 20,000 were also tested. 

The Okada-Murakami constant of 𝑞0 = 1 nA ∙ m mm2⁄  (Murakami & Okada, 2006; Murakami 

& Okada, 2015), also confirmed in a recent MRI study (Sundaram et al., 2016), is used to obtain 

a realistic current dipole density across the source region. When the dipole length is 𝑑 and the area 

of the dipole layer is 𝐴, an expression for the dipole current 𝐼0 follows from 𝑞0 = 𝐼0𝑑 𝐴⁄ , which 

yields 𝐼0 =  𝑞0𝐴 𝑑⁄ . The total area of the cortical dipole layer is 360 mm2. The simulation times 

are the nearly same as for the single dipole illustrating another computational advantage of the 

BEM-FMM approach. 

The convergence rate is initially very fast but it slows down after the relative residual reaches 

10−3. Therefore, we restrict ourselves to this value and will discuss this problem later. Fig. 8c 

shows the resulting surface electric potential on the skin surface and Fig. 8d shows the magnitude 

of the total magnetic field 18 mm away from the skin surface. A quite significant change in the 

MEG response pattern is observed as compared to the case of the single dipole located at the cluster 

center. This is likely due to the presence of multiple horizontal dipoles whose contributions might 

add up. As to the EEG response pattern, it becomes a bit wider and spatially shifted, but its shape 

remains nearly the same as for the single dipole. 
 

3.6. Conductivity geometries with surface junctions: a head model with a skull opening 

Certain problems including modeling of infant MEG/EEG require taking into account more 

complex anatomical features such as skull openings (fontanels and sutures) that manifest 

themselves as junctions between the conductivity boundaries. An example with surface junctions 

in the volume conductor geometry is illustrated in Fig. 9. An adult-sized triangular surface-based 

head model for subject #101309 from the Population Head Model Repository (Lee et al., 2016; 

IT’IS Foundation 2017) originated from Connectome Project (Van Essen et al., 2012) was adopted 

as a starting point The original model was scaled down in order to reflect the average size of a new 

born head (CDC Growth Charts, 2000).  

To mimic the anterior fontanel, the outer skull surface was deformed inwards following a raised 

cosine elliptical profile with the semi-major axis of 14 mm and the maximum depth of 7 mm. After 

that, the model was decimated to approximately 10,000 facets per tissue boundary and smoothed 

using surface-preserving Laplacian smoothing (Vollmer, Mencl, and Müller, 1999a,b). The new 

boundary surfaces were created by Boolean subtraction of the CSF/brain shell from the deformed 

skull shell that resulted in a 2-manifold closed skull surface (with the correct model of fontanel) 

while the intersection of the deformed outer skull shell and the CSF/brain resulted in a new 2-

manifold CSF/brain shell. These operations were performed both in ANSYS® Maxwell 3D 

Electromagnetics Suite 2019 R1 commercial FEM software and within the MATLAB BEM mesh 

processing environment documented in (Makarov, Noetscher, and Nazarian, 2016).  
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Fig. 8. EEG/MEG responses of a small-scale cortical dipole layer computed via BEM-FMM. a), b) Problem geometry; 

c) The electric potential on the skin surface; d) The magnitude of the total magnetic field 18 mm away from the skin 

surface. The center of the white cross coincides with projection of the geometrical center of the layer onto a transverse 

plane. 
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conductivity of 0.400 S/m. Fig. 9b shows the model thus obtained versus the control model with 

an intact skull (Fig. 9a). Importantly, all three surfaces (scalp, skull, CSF/brain) are still 2-

manifolds and thus closed and orientable. The only global requirement is that the conductivities 

inside the surfaces need to be uniquely defined. We should note that these conditions are satisfied 

for all practical cases that stem from extracting boundary surfaces of volumetric objects, so the 

method is completely general. However, for each triangle, the local conductivity contrast 

(conductivity value on each side of the triangle as defined by its normal vector) needs to be 

uniquely defined. Therefore, the duplicates of the triangles that are shared by CSF/brain and skull 

surfaces were identified and removed prior to the execution of the BEM-FMM algorithm. 

A tangential electric dipole with the dipole moment 𝑄 = 1 μA ∙ m (dipole length is 5 mm and 

source strength is 0.2 mA) was inserted into the brain volume at the distance of 36 mm from origin 

as shown in Fig. 9a,b. The distance of the dipole from the brain surface was 6.9 mm.  

The surface electric voltage was evaluated everywhere on the skin surface using ANSYS® 

Maxwell 3D FEM software (Electromagnetics Suite 2019 R1, DC Conduction solver module) with 

12 adaptive mesh refinement passes and with the final tetrahedral meshes approaching 3 × 106 

tetrahedra. Fig. 9c shows the voltage map computed for the head without the skull opening while 

Fig. 9d is the same results with the skull opening. Both voltage maps are normalized to the 

maximum voltage differences given in Table 3. The effect of the fontanel is clearly visible on the 

potential maps. Furthermore, there is a clear agreement between the BEM-FMM computations and 

ANSYS® FEM results that is illustrated in Fig. 9e,f, respectively. To quantify this, Table 3 lists 

the maximum voltage differences observed using both methods and the average relative error 

between the two solutions following Eq. (16). A higher average error for the surface potential may 

be explained by a non-equivalent modeling of the dipole in ANSYS Maxwell. It is evident from 

Table 3 that the fontanel has a significant influence on EEG response: the voltage difference in the 

simulated case nearly doubles. 
 

Table 3. Potential/voltage differences on the skin surface in Fig. 9 using ANSYS first-order FEM and BEM-FMM, 

respectively. A tangential current  dipole with the moment 𝑄 = 1 μA ∙ m is considered. 
 

Method Without fontanel With fontanel 

ANSYS® 3D FEM Max voltage diff.: 0.856 mV Max voltage diff.: 1.607 mV 

BEM-FMM, rel. res.=1e-3 Max voltage diff.: 0.852 mV Max voltage diff.: 1.542 mV 

Deviation of maximum 

difference (FEM vs. BEM-

FMM) 

0.5% 4.0% 

Average potential error (FEM 

vs. BEM-FMM) over the entire 

skin surface following Eq.(16) 

9.6% 17.9% 

 

 

On the other hand, the MEG responses computed via the BEM-FMM for the same problem and 

shown in Fig. 10a,b, respectively, do not indicate significant differences. This is in stark contrast 

to the EEG responses for the horizontal dipole shown in Fig. 9 and for the identical vertical dipole 

shown for completeness in Fig. 10c,d, respectively. In the last case, we use the log-modulus 

transformation (John and Draper, 1980) 
 

𝜑𝑑𝐵 = 𝑠𝑖𝑔𝑛(𝜑) ∙ 20 log10 (
𝜑

𝜑0
+ 1) , 𝜑0 = 1 μV   (18) 
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to display large variations of the signed electric potential. In Fig. 10c,d, the maximum on-skin 

voltage changes from +0.98 mV (no skull opening) to +1.87 mV (with skull opening). 
 

 
 

Fig. 9. Simplified head geometry without a) and with b) a fontanel; c), d) Voltage distributions on the skin surface 

obtained with ANSYS Maxwell 3D and normalized to the maximum voltage difference from Table 3; e), f) Voltage 

distribution on the skin surface obtained via BEM-FMM and normalized to the maximum voltage difference from 

Table 3.  
 

4. Discussion and Conclusion 
We presented a general computational framework for high-resolution computational modeling of 

neuroelectromagnetic fields. The method is based on a BEM formulation with several distinct 

features that allow efficient utilization of the FMM acceleration and is related to our previously 

developed solver for TMS (Makarov, Noetscher, Raij, and Nummenmaa, 2018; Htet et al., 2019). 

The presented method is equally well suited for modeling extracranial and intracranial fields and 

the possible applications include high-resolution modeling of EEG, MEG, ECoG 

(electrocorticography), and LFP (local field potential) recordings. 

a) b)

c) d)

e) f)
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Fig. 10. a), b) Distributions of the magnetic field magnitude for the tangential dipole in the sagittal plane obtained via 

BEM-FMM; c), d) Distributions of the electric potential for the radial dipole in the sagittal plane obtained via BEM-

FMM. 
 

In the most demanding clinical evaluations, such as presurgical mapping in epileptic patients, 

the initial evaluation that starts with EEG and/or MEG is followed by direct recordings with 

subdural (ECoG) or intraparenchymal depth electrodes. However, despite its vastly improved 

SNR, ECoG provides only indirect information of the majority of underlying cortical areas, i.e., 

cortical sulci. In particular, the peaks in ECoG patterns for tangential sources do not coincide with 

the location of the source. On the other hand, the EEG depth electrodes provide only very limited 

sparse coverage. Therefore, in principle, the same procedures that are developed for MEG/EEG 

source modeling could also be applied to greatly improve the value of invasive recordings, which 
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contain more detailed spatial information but the locations of the current sources still need to be 

computationally inferred from the electric/magnetic field data. Unfortunately, due to the inherent 

limitations, most crucially due to the surgical penetrations to the skull, no widely accepted 

application for source modeling for both invasive and non-invasive EEG data still exist. 

Resolving the sources of human brain electrophysiological activity poses a significant challenge, 

specifically in infants or neurological patients whose skull is not intact. The BEM-FMM 

framework allows handling the most general tissue geometries including junctions between 

compartments such as skull openings for infants.  

The major advantage of the BEM-FMM EEG/MEG modeling approach established in this study 

is its high speed while maintaining a low computational error and high model resolution as was 

demonstrated by comparison with the FEM solvers. Furthermore, the method is well suited for a 

large number of dipoles; the dipoles are also permitted to have a finite length, which makes the 

method well suited for modeling sources of laminar LFP recordings arising from synaptic activities 

at different cortical layers. However, the present formulation of the BEM cannot describe 

anisotropic tissue conductivity, e.g., in the white matter.  

We note that a new FMM library is anticipated to be released soon that will enable vectorized 

computation of multiple dipole distributions for the same head model, resulting in significant 

reduction in computational cost (L. Greengard, private communication Jan. 10/19). In addition, 

since the original underlying FMM is using complex arithmetic, the present numerical approach 

equally well operates with complex dipoles including not only location, magnitude, and direction, 

but also a phase; it may generate complex electromagnetic fields for each recording channel if 

desired. Alternatively, reverting to real-valued implementation of the FMM, a factor of two speed-

up would be immediately attainable. 

Despite significant advantages quantified in this study, the BEM-FMM algorithm is not without 

its limitations. The FMM part of the BEM-FMM algorithm is not trivial from implementation 

viewpoint; therefore a general-purpose library is used that may not be ideal for all potential 

applications. Furthermore, the largest gains in computational efficiency are obtained for problems 

where high-resolution models are desired. The BEM part of the algorithm relies upon choosing 

some parameters manually (the number of neighboring triangles for which analytical integration 

is applied) in order to obtain a good convergence.  

An open numerical problem to date is selection of an appropriate stopping criterion of the 

iterative solution as well as improving its convergence. The relative residual alone is not an entirely 

adequate measure of the solution convergence to the true result. An initially fast convergence rate 

of the GMRES method for a realistic head model may saturate, which may indicate that the 

solution starts to deviate from the true result. We also note that the present method depends on the 

surface mesh quality and seems to work best for large-scale high-quality smooth manifold meshes. 

The above-mentioned limitations are shared by many iterative solvers and their practical 

significance is expected to be small. More research is required to establish standard convergence 

criteria as well as to quantify the numerical robustness of the results across meshes of varying 

quality. 

We conclude that the presented BEM-FMM approach has high potential to become a standard 

computational tool for high-resolution forward modeling of electric and magnetic fields of 

electrophysiological origin. 
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