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ABSTRACT 30 
 31 
The genetic control of gene expression is a core component of human physiology. For the past 32 
several years, transcriptome-wide association studies have leveraged large datasets of linked 33 
genotype and RNA sequencing information to create a powerful gene-based test of association 34 
that has been used in dozens of studies. While numerous discoveries have been made, the 35 
populations in the training data are overwhelmingly of European descent, and little is known 36 
about the portability of these models to other populations. Here, we test for cross-population 37 
portability of gene expression prediction models using a dataset of African American individuals 38 
with RNA-Seq data in whole blood. We find that the default models trained in large datasets such 39 
as GTEx and DGN fare poorly in African Americans, with a notable reduction in prediction 40 
accuracy when compared to European Americans. We replicate these limitations in cross-41 
population portability using the five populations in the GEUVADIS dataset. Via simulations of both 42 
populations and gene expression, we show that accurate cross-population portability of 43 
transcriptome imputation only arises when eQTL architecture is substantially shared across 44 
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populations. In contrast, models with non-identical eQTL showed patterns similar to real-world 45 
data. Therefore, generating RNA-Seq data in diverse populations is a critical step towards multi-46 
ethnic utility of gene expression imputation.  47 
 48 
KEYWORDS 49 
TWAS, gene expression, admixed populations, GTEx, PrediXcan 50 
 51 
MANUSCRIPT TEXT 52 
 53 
In the last decade, large-scale genome-wide genotyping projects have enabled a revolution in our 54 
understanding of complex traits.1–4 This explosion of genome sequencing data has spurred the 55 
development of new methods that integrate large genotype sets with additional molecular 56 
measurements such as gene expression. A recently popular integrative approach to genetic 57 
association analyses, known as a transcriptome-wide association study (TWAS)5,6, leverages 58 
reference datasets such as the Genotype-Tissue Expression (GTEx) repository7 or the Depression 59 
and Genes Network (DGN)8 to link associated genetic variants with a molecular trait like gene 60 
expression. The general TWAS framework requires previously estimated cis-eQTL for all genes in 61 
a dataset with both genotype and gene expression measurements. The resulting eQTL effect sizes 62 
build a predictive model that can impute gene expression in an independently genotyped 63 
population. A TWAS is similar in spirit to the widely-known genome-wide association study 64 
(GWAS) but suffers less of a multiple testing burden and can potentially detect more associations 65 
as a result.5,6 66 
 67 
Unlike a normal GWAS, where phenotypes are regressed onto genotypes, in TWAS the phenotype 68 
is regressed onto the imputed gene expression values, thus constituting a new gene-based 69 
association test. TWAS can also link phenotypes to variation in gene expression and provide 70 
researchers with additional biological and functional insights over those afforded by GWAS alone. 71 
While these models are imperfect predictors, imputing gene expression allows researchers to 72 
test phenotype associations to expression levels in existing GWAS datasets without measuring 73 
gene expression directly. In particular, these methods enable analysis of predicted gene 74 
expression in very large cohorts (~104 – 106 individuals) rather than typical gene expression 75 
studies that measure expression directly (~102 – 103 individuals). Several methods have been 76 
recently developed to perform TWAS in existing genotyped datasets. PrediXcan6 uses eQTL 77 
precomputed from paired genotype-expression data, such as those in GTEx, in conjunction with 78 
a new genotype set to predict gene expression. These gene expression prediction models are 79 
freely available online (PredictDB). Related TWAS approaches, such as FUSION5, MetaXcan9, or 80 
SMR10, leverage eQTL with GWAS summary statistics instead of requiring the availability of raw 81 
individual-level genotype data. 82 
 83 
As evidenced by application to numerous disease domains, the TWAS framework is capable of 84 
uncovering new genic associations.11–17  However, the power of TWAS is inherently limited by the 85 
data used for eQTL discovery. For example, since gene expression varies by tissue type, 86 
researchers must ensure that the prediction weights are estimated using RNA from a tissue 87 
related to their phenotype, whether that be the direct tissue of interest or one with sufficiently 88 
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correlated gene expression.18 Furthermore, the ability of predictive models to impute gene 89 
expression from genotypes is limited by the heritability in the cis region around the gene.6 90 
Consequently, genes with little or no measurable genetically regulated effect on their expression 91 
in the discovery data would not be good candidates for TWAS. 92 
 93 
A subtler but more troubling issue arises from the lack of genetic diversity present in the datasets 94 
used for predictive model training: most paired genotype-expression datasets consist almost 95 
entirely of data from European-descent individuals. The European overrepresentation in genetic 96 
studies is well documented19–21 and has severe negative consequences for equity as well as for 97 
gene discovery22, fine mapping23–25, and applications in personalized medicine.26–34  Genetic 98 
architecture and genotype frequencies can vary across populations, which presents a potential 99 
problem for the application of predictive models with genotype predictors across multiple 100 
populations.  101 
 102 
The training data for most models in PredictDB are highly biased toward European ancestry: GTEx 103 
version v6p subjects are over 85% European, while the GTEx v7 and DGN subjects are entirely of 104 
European descent. The lack of suitable genotype-expression datasets in non-European 105 
individuals leads to scenarios in which PredictDB models trained in Europeans are used to impute 106 
into non-European or admixed populations. As shown previously in the context of polygenic risk 107 
scores35, multi-SNP prediction models trained in one population can suffer from unpredictable 108 
bias and poor prediction accuracy that impair their cross-population portability. Recent analyses 109 
of genotype-expression data from the Multi-Ethnic Study of Atherosclerosis (MESA)36–38  explore 110 
cross-population transcriptome imputation and conclude that predictive accuracy is highest 111 
when training and testing populations match in ancestry. These results dovetail with our 112 
experience analyzing diverse populations, but offer little insight into the mechanisms underlying 113 
the cross-population portability of transcriptome prediction models, particularly when eQTL 114 
architecture is known. 115 
 116 
Here, we investigate the cross-population portability of gene expression models using paired 117 
genotype and gene expression data and using simulations derived from real genotypic data and 118 
realistic models of gene expression. We analyze prediction quality from currently available 119 
PrediXcan prediction weights using a pilot subset of paired genotype and whole blood 120 
transcriptome data from the Study of African Americans, Asthma, Genes, and Environment 121 
(SAGE).39–42 SAGE is a pediatric cohort study of childhood-onset asthma and pulmonary 122 
phenotypes in African American subjects of 8 to 21 years of age. To tease apart cross-population 123 
prediction quality, we turn to GEUVADIS and the 1000 Genomes Project datasets.4,43 The 124 
GEUVADIS dataset has been used extensively to validate PrediXcan models.6,38 However, recent 125 
analyses suggest that GTEx and DGN PrediXcan models behave differently on the constituent 126 
populations in GEUVADIS.44 To our knowledge, nobody has investigated cross-population 127 
portability within GEUVADIS. GEUVADIS provides us an opportunity to investigate predictive 128 
models with an experimentally homogeneous dataset: the GEUVADIS RNA-Seq data were 129 
produced in the same environment under the same protocol, from lymphoblastoid cell lines 130 
(LCLs) derived from similar sampling efforts, providing a high degree of technical harmonization. 131 
We train, test, and validate predictive models wholly within GEUVADIS with a nested cross-132 
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validation scheme. Finally, to understand the consequences of eQTL architecture on TWAS, we 133 
use existing 1000 Genomes data to simulate two ancestral populations and an admixed 134 
population and then apply the same “train-test-validate” scheme with various simulated eQTL 135 
models to study cross-population prediction efficacy when a gold standard is known. 136 
 137 
We compared transcriptome imputation accuracy in SAGE whole blood RNA using three 138 
PredictDB prediction weight sets for whole blood RNA: GTEx v6p, GTEx v7, and DGN. We also 139 
evaluated expression prediction with all four MESA monocyte weight sets: MESA_ALL 140 
(populations combined), MESA_AFA (African Americans), MESA_AFHI (combined African 141 
Americans and Hispanic Americans), and MESA_CAU (Caucasians). For each gene where both 142 
measured RNA-Seq gene expression and predictions are available in SAGE, we compute both the 143 
coefficient of determination (R2) and Spearman correlation to analyze the direction of prediction. 144 
As we are primarily interested in describing the relationship between predicted outcome and real 145 
outcome, we prefer Spearman’s ρ to describe correlations, while for determining prediction 146 
accuracy, we use the standard regression R2, corresponding to the squared Pearson correlation, 147 
to facilitate comparisons to prior work. We then benchmark these against the out-of-sample R2 148 
and correlations from GTEx v7 and MESA as found in PredictDB. Prediction results in SAGE were 149 
available for 11,545 genes with a predictive model from at least one weight set. Not all sets 150 
derived models at the same genes: the prediction results across all weight sets overlapped at 273 151 
genes, of which 39 genes had predictions with positive correlation to measurements. Since the 152 
estimation of these prediction models requires both high quality expression data and inferred 153 
eQTL, each weight set may have a different number of gene models. Therefore, intersecting 154 
seven different weight sets reduces the overall number of models available for comparison. This 155 
small number of genes in common is largely driven by MESA_AFA, the repository with the 156 
smallest number of predictive models. MESA_AFA contains the models that should best reflect 157 
the genetic ancestry in SAGE (Supplementary Table 1). We note that MESA_AFA also has the 158 
smallest training sample size among our weight sets (N = 233)38,  so the small number of predicted 159 
genes from MESA_AFA probably results from the small training sample size and not from any 160 
feature of the underlying MESA_AFA training data. 161 
 162 
The concordance between predicted and measured gene expression over the 273 genes in 163 
common to all seven weight sets, with corresponding training metrics from PredictDB as 164 
benchmarks, shows worse performance than expected for R2 (Figure 1) and correlations (Figure 165 
2). The highest mean R2 of 0.0336 was observed in DGN. Here, we highlight the intersection of 166 
genes across model sets for investigation, but the overall patterns for all genes are similar; results 167 
for the 11,545 total genes (Supplementary Figure 1) and the 39 genes with positive correlations 168 
(Supplementary Figure 2) showed little appreciable deviation from R2 shown in Figure 1. Because 169 
SAGE is an independent validation set for the training populations, we would expect to observe 170 
some deterioration in imputation R2 due to differences in population structure and linkage 171 
disequilibrium. However, Figure 1 shows a marked difference in model performance. 172 
 173 
More noteworthy is the substantial proportion of predictions in SAGE with negative correlations 174 
to the real data. All seven weight sets produced negative mean correlations. The least negative 175 
mean correlation (-0.0044) was observed with GTEx_v6p, while the most negative mean 176 
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correlation (-0.020) was observed with MESA_AFA (Supplementary Table 1). The fact that 177 
correlations to SAGE measurements are negative on average suggests that some large R2 values 178 
in Figure 1 may result from gene models with incorrect direction of prediction. While there are 179 
some fluctuations in prediction accuracy, no prediction weight set produces practically 180 
meaningfully better correlations to data than the others (-0.020 to -0.044). In contrast, the 181 
published PredictDB models for these genes show positive correlations to their training data, 182 
indicating no obvious incapacity for accurate prediction. However, available predictions into 183 
SAGE from otherwise valid prediction models are uniformly limited in power to capture true 184 
genotype-expression relationships. 185 
 186 
To analyze genes with ostensibly high imputation R2, we focus on genes in GTEx v7 with cross-187 
validated R2 > 0.2 in the reference population. Figure 3 compares PredictDB testing R2 against the 188 
empirical R2 from regressing predictions onto observations in SAGE. In this case, even the better-189 
imputed gene models derived from PredictDB have limited ability to capture gene expression 190 
accurately in SAGE (mean R2 0.031, IQR [0.0027, 0.037]). 191 
 192 
It is important to note that real-world comparisons of RNA-Seq datasets can be subject to 193 
numerous sources of heterogeneity besides differential ancestry. Possible confounders include 194 
technical differences in sequencing protocols, differences in the age of participants45, and the 195 
postmortem interval to tissue collection (for GTEx).46–48 To investigate cross-population 196 
portability in an experimentally homogeneous context, we turn to GEUVADIS.43 The GEUVADIS 197 
data include two continental population groups from the 1000 Genomes Project: the Europeans 198 
(EUR373), composed of 373 unrelated individuals from four subpopulations (Utahns (CEU), Finns 199 
(FIN), British (GBR), Toscani (TSI)), and the Africans (AFR) composed of 89 unrelated Yoruba (YRI) 200 
individuals. In light of the known bottleneck in Finnish population history , we analyze EUR373 201 
both as one population and as two independent subgroups: the 95 Finnish individuals (FIN) and 202 
the 278 non-Finnish Europeans (EUR278). We used matched RNA-Seq, generated and 203 
harmonized together by the GEUVADIS Consortium and whole-genome genotype data in the 204 
resulting four populations (EUR373, EUR278, FIN, and AFR) to train predictive models for gene 205 
expression in a nested cross-validation scheme6 and perform cross-population tests of 206 
imputation accuracy. 207 
 208 
Table 1 shows R2 from three training sets (EUR373, EUR278 and AFR) into the four testing 209 
populations (EUR373, EUR278, FIN, and AFR) for genes with positive correlation between 210 
prediction and measurement. While the number of genes with applicable models including 211 
genetic data varies in each train-test scenario (see Supplementary Table 3), we note that not all 212 
predictive models are trained on equal sample sizes, so the resulting R2 only provide a general 213 
idea of how well one population imputes into another.  Analyses within a population use out-of-214 
sample imputation R2 to avoid overfitting across train-test scenarios. Predicting from a 215 
population into itself yields R2 ranging from 0.079 – 0.098 (Table 1) consistent with the smaller 216 
sample sizes in GEUVADIS versus GTEx and DGN. In contrast, predicting across populations yields 217 
more variable predictions, with R2 ranging from 0.029 – 0.087. At the lower range of R2 (0.029 – 218 
0.039) are predictions from AFR into European testing groups (EUR373, EUR278, and FIN). 219 
Alternatively, when predicting from European training groups into AFR, the R2 are noticeably 220 
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higher (0.051 – 0.054). Prediction from EUR278 into FIN (R2 = 0.087) is better than prediction 221 
from EUR278 into AFR (R2 = 0.051), suggesting that imputation R2 may deteriorate with increased 222 
genetic distance. A comparison of the 564 genes in common across all train-test scenarios (Table 223 
2) yields a more equal basis of comparison between populations, albeit from a subset of genes 224 
with potentially more consistent gene expression levels.  In this case involving better-predicted 225 
genes, we see that imputation quality between the European groups improves noticeably, with 226 
R2 ranging between 0.183 to 0.216, while R2 between Europeans and Africans ranges from 0.095 227 
to 0.147.  In general, populations seem to predict better when imputing into themselves, and less 228 
well when imputing into other populations.  229 
 230 
Combining all European subpopulations obscures population structure and can complicate 231 
analysis of cross-population imputation performance. To that end, we divide the GEUVADIS data 232 
into its five constituent populations and randomly subsample each of them to the smallest 233 
population size (n = 89). We then estimate models from each subpopulation and predict into all 234 
five subpopulations. Table 3 shows average R2 from each population into itself and others. The 235 
populations consistently impute well into themselves, with imputation R2 ranging from 0.104 – 236 
0.136. However, a notable difference exists between the EUR subpopulations and YRI. The cross-237 
population R2 between CEU, TSI, GBR, and FIN ranges from 0.103 to 0.137, while cross-population 238 
R2 from these populations into YRI ranges from 0.062 to 0.084. Imputation between YRI and the 239 
EUR populations taken together is consistently lower than within the EUR populations 240 
(Supplementary Figure 3) and statistically significant (p-value < 1.36 x 10-4, Dunn test; see 241 
Supplementary Table 6). The cross-population differences remain for the 142 genes with positive 242 
correlation in all train-test scenarios (Table 4), where R2 for imputation into YRI ranges from 0.166 243 
to 0.244, while imputation within EUR populations ranges from 0.239 to 0.331. These results 244 
clearly suggest problems for prediction models that impute gene expression across populations, 245 
in similar regimes to those tested with linear predictive models and datasets of size consistent 246 
with current references. In addition, since AFR is genetically more distant from the EUR 247 
subpopulations than they are to each other, we interpret these results to imply that structure in 248 
populations can potentially exacerbate cross-population imputation quality (Supplementary 249 
Figure 4). 250 
 251 
The unresolved question is the extent to which these results hold with oracle knowledge of eQTL 252 
architecture, something impossible to investigate in real data when the causal links between 253 
eQTL and gene expression can only be estimated. To investigate genomic architectures giving rise 254 
to gene expression, and in particular to investigate behavior in admixed populations, we simulate 255 
haplotypes from HapMap350 CEU and YRI using HAPGEN251 and then sample haplotypes in 256 
proportions consistent with observed admixture proportions (80% YRI, 20% CEU)52 to construct 257 
a simulated African-American (AA) admixed population. We simulate eQTL architectures under 258 
an additive model of size k causal alleles (k = 1, 5, 10, and 20) and a phenotype with cis-heritability 259 
h2 = 0.15 (recapitulating average h2 in GTEx) using the genomic background of genic regions on 260 
chromosome 22, thus testing various model sizes and LD patterns. To tease apart the effect of 261 
shared eQTL architecture, we allow the populations to share eQTL with fixed effects in various 262 
proportions (0%, 10%, 20%, …, 100%). With these simulations providing known architectures for 263 
comparison, we then apply the train-test-validate scheme as before. 264 
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 265 
Figure 4 shows the cross-population Spearman correlations between predicted and simulated 266 
phenotypes in our simulated AA, CEU, and YRI, partitioned by proportion of shared eQTL, for k = 267 
10 causal eQTL, with k = 5 and k = 20 showing similar effects (Supplementary Figure 5 and 268 
Supplementary Figure 6). Imputation within a population produced similar correlations in all 269 
cases, ranging from 0.323 to 0.329 (Supplementary Table 4). Secondly, the case of 100% shared 270 
eQTL architecture (where eQTL positions and effects are exactly the same across populations) 271 
models provide predictions with no loss in cross-population portability, with correlations ranging 272 
from 0.299 to 0.336 even when imputing across populations (Supplementary Table 5). This case 273 
suggests that eQTL that are causal in all populations can impute gene expression reliably 274 
regardless of the population in which they were ascertained, provided that the eQTL can be 275 
correctly mapped and genotyped in all populations, that the eQTL effects are identical across 276 
populations, and that a linear model of eQTL is assumed. For cases where eQTL architecture is 277 
not fully shared across populations, we see that imputation from each population into the other 278 
improves as the proportion of shared eQTL increases (Figure 4). The cross-population correlation 279 
between predicted gene expression versus measurement is highest between YRI and AA (0.037 280 
to 0.088), intermediate between CEU and AA (0.0083 to 0.0245), and lowest between CEU and 281 
YRI (0.0017 to 0.0290). When imputing between two populations, the choice of which population 282 
is used to train predictive models produces no obvious difference in imputation quality. More 283 
explicitly, imputation quality between AA to CEU and CEU to AA is not significantly different (p-284 
value ~ 1, Dunn test). The same applies between AA to YRI and YRI to AA (p-value ~ 1) and 285 
between CEU to YRI and YRI to CEU (p-value < 0.12). All other train/test scenarios are significantly 286 
different from each other as expected (Supplementary Table 7). The results for k = 5, 10, and 20 287 
eQTL are consistent with the higher overall ancestral similarity of AA to YRI versus AA to CEU or 288 
CEU to YRI (k = 10, Figure 4, similar plots in Supplementary Figure 5 and Supplementary Figure 289 
6). Although less realistic for most genes5,6,18, we also analyzed models with a single causal eQTL. 290 
Trends for single-eQTL models are difficult to analyze due to simplicity in architecture 291 
(Supplementary Figure 7) and binary inference as to whether the causal is identified or not.  292 
 293 
Overall, these results highlight two points: firstly, since prediction within populations is better 294 
than prediction between populations, our results reaffirm prior investigations38 that population 295 
matching matters for optimally imputing gene expression. This is consistent with our results of 296 
impaired transcriptome imputation performance in SAGE with currently available resources. 297 
Secondly, despite decreased prediction accuracy when imputing between different populations, 298 
the populations that are more closely genetically related demonstrate better cross-population 299 
prediction. Imputation results from both GTEx and DGN into SAGE suggest that current predictive 300 
models, even for genes with greater heritability, perform worse than expected despite matching 301 
tissue types. Focusing on imputation R2, as previous studies have done, may hide the observation 302 
of a substantial proportion of negative correlations between predictions and gene expression 303 
measurements in cross-population scenarios. Our investigation into cross-population imputation 304 
accuracy with GEUVADIS data replicates this lack of cross-population portability as observed with 305 
current GTEx and DGN predictive models. Since transcriptome prediction models use 306 
multivariate genotype predictors trained on a specific outcome, the impaired cross-population 307 
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application can be viewed as an analogous observation to that seen previously in polygenic 308 
scores.35  309 
 310 
It is important to note that our observations do not reflect shortcomings of either the initial 311 
PrediXcan or TWAS frameworks. Nor do our findings affect the positive discoveries made using 312 
these frameworks over the past several years. These methods fully rely on the data used as input 313 
for training, and the most commonly used datasets for model training are overwhelmingly of 314 
European descent. Here we note that the current models fail to capture the complexity of the 315 
cross-population genomic architecture of gene expression for populations of non-European 316 
descent. Failing to account for this could lead researchers to draw incorrect conclusions from 317 
their genetic data, particularly as these models would lead to false negatives. 318 
 319 
To this end, our simulations strongly suggest that imputing gene expression in a target population 320 
is improved by using predictive models constructed in a genetically similar training population. If 321 
populations share the exact same eQTL architecture, then they are essentially interchangeable 322 
for the purposes of gene expression imputation so long as eQTL are genotyped and accurately 323 
estimated, which remains a technological and statistical challenge. As the proportion of shared 324 
eQTL architecture decreases between two populations, the cross-population imputation quality 325 
decreases as well, and often dramatically. In both SAGE and GEUVADIS, we observe cross-326 
population patterns consistent with an imperfect overlap of eQTL across populations. Ensuring 327 
representative eQTL architecture for all populations in genotype-expression repositories will 328 
require a solid understanding of true cross-population and population-specific eQTL. However, 329 
expanding the amount of global genetic architecture represented in genotype-expression 330 
repositories, which can be accomplished by sampling more populations, provides the most 331 
desirable course for improving gene expression prediction models. Additionally, this presents an 332 
opportunity for future research in methods that could improve cross-population portability, 333 
particularly when one population is over-represented in reference data. Tools from transfer 334 
learning could facilitate porting TWAS eQTL models from reference populations to target 335 
populations using little or no RNA-Seq data.  336 
 337 
In light of the surging interest in gene expression imputation, we see a pressing need for freely 338 
distributed predictive models of gene expression estimated from coupled transcriptome-genome 339 
data sampled in a variety of populations and tissues. The recently published predictive models 340 
with multi-ethnic MESA data constitute a crucial first step in this direction for researchers 341 
working with admixed populations. However, the clinical and biomedical research communities 342 
must push for more diverse genotype-expression resources to ensure that the fruits of genomic 343 
studies benefit all populations.   344 
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Online Resources 345 
 346 
PredictDB: http://predictdb.org/ 347 
GTEx: http://gtexportal.org/ 348 
DGN: http://dags.stanford.edu/dgn/ 349 
GEUVADIS: https://www.ebi.ac.uk/Tools/geuvadis-das/ 350 
Source code: https://github.com/asthmacollaboratory/sage-geuvadis-predixcan 351 
Results and simulation data: https://ucsf.box.com/v/sage-geuvadis-predixcan 352 

353 
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SUPPLEMENTAL MATERIALS AND METHODS 354 

Genotype and RNA-Seq data 355 

RNA-Seq (RNA sequencing) data generation and cleaning protocols for 39 SAGE subjects analyzed 356 
here were initially described in (Mak, White, Eckalbar, et al. 2018).39 Genotypes were generated 357 
on the Affymetrix Axiom array as described previously.53 Genotypes were then imputed on the 358 
Michigan Imputation Server54 with EAGLE v2.355 and the 1000 Genomes panel phase 3 v556 and 359 
then subjected to the following filters: <5% missing sample, <5% missing genotypes, >1% MAF, 360 
>1e-4 HWE, and >0.3 imputation R2. The choice of the 1000 Genomes panel follows GTEx 361 
protocol, though GTEx used the smaller 1000 Genomes phase 1 panel.4 Gene expression counts 362 
were processed through the GTEx v6p eQTL quality control pipeline and as described 363 
previously.18  This filtering process kept 20,985 genes with Ensembl identifiers for analysis, of 364 
which 20,268 were autosomal genes. We then quantile normalized the remaining gene 365 
expression values across samples as our gene expression measurements. 366 
 367 
GEUVADIS genotype VCF files and normalized gene expression data (filename 368 
GD462.GeneQuantRPKM.50FN.samplename.resk10.txt.gz) were downloaded directly from 369 
the EMBL-EBI GEUVADIS Data Browser. Genotypes were filtered similarly to SAGE subjects. No 370 
manipulation was performed on expression data. This process yielded 23,722 genes for analysis. 371 
 372 
Running PrediXcan models 373 
 374 
We ran PrediXcan on SAGE subjects using PredictDB prediction weights from three paired 375 
genotype-expression datasets from PredictDB: GTEx, DGN, and MESA.6,9,38,57 For GTEx, we used 376 
both GTEx v6p and GTEx v7 weights. For MESA, we used all weight sets from the freeze dated 377 
2018-05-30: African Americans (MESA_AFA), African Americans and Hispanics (MESA_AFHI), 378 
Caucasians (MESA_CAU), and all MESA samples (MESA_ALL). Overall, the analysis included 379 
10,161 genes, of which only 273 had both normalized RNA-Seq measures and predictions from 380 
all weight sets. Of these, 126 had positive correlation between prediction and measurement. We 381 
assessed imputation quality by comparing PrediXcan predictions to normalized gene expression 382 
from SAGE using linear regression and correlation tests. 383 
 384 
Building prediction models 385 
 386 
We trained prediction models in GEUVADIS on genotypes in a 500Kb window around each of 387 
23,723 genes with measured and normalized gene expression. GEUVADIS subjects were 388 
partitioned into various groups: the Europeans (EUR373), the non-Finnish Europeans (EUR278), 389 
the Yoruba (AFR), and the constituent 1000 Genomes populations (CEU, GBR, TSI, FIN, and YRI). 390 
For each training set, we performed nested cross-validation. The external cross-validation for all 391 
populations used leave-one-out cross-validation (LOOCV). The internal cross-validation used 10-392 
fold cross-validation for EUR373 and EUR278 and LOOCV for the five constituent GEUVADIS 393 
populations in order to fully utilize the smaller sample size (n = 89) compared to EUR278 (n = 278) 394 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2019. ; https://doi.org/10.1101/552042doi: bioRxiv preprint 

https://doi.org/10.1101/552042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

and EUR373 (n = 373). Internal cross-validation used elastic net regression with mixing parameter 395 
! = 0.5 as implemented in the glmnet package in R. The nonzero weights for each SNP from each 396 
LOOCV were compiled and averaged for each gene, yielding a single set of prediction weights for 397 
each gene. Predictions were computed by parsing genotype dosages from the target population 398 
corresponding to the nonzero SNP predictors, and then multiplying dosages against the 399 
prediction weights.  The resulting predictions were compared to normalized gene expression 400 
measurements downloaded from the GEUVADIS data portal. The comparison of predictive 401 
models cannot easily differentiate predictions of 0 (no gene expression) and NA (missing 402 
expression). We addressed this with two additional filters. Firstly, we removed genes that did not 403 
have any eQTL in their predictive models. Secondly, genes where fewer than half of the 404 
individuals had nonmissing predictions were removed from further analysis. Coefficients of 405 
determination (R2) were computed with the lm function in R. Spearman correlations were 406 
computed with the cor.test function in R.  407 
 408 
 409 
Simulation 410 
 411 
We downloaded a sample of 20,085 HapMap 3 SNPs50 from each of CEU and YRI on chromosome 412 
22 as provided by HAPGEN2.51 The data include 234 phased haplotypes for CEU and 230 phased 413 
haplotypes for YRI. We forward-simulated from these haplotypes to obtain two populations of n 414 
= 1000 individuals each. We then sampled haplotypes in proportions of 80% YRI and 20% CEU to 415 
obtain a mixture of CEU and YRI where the ancestry patterns roughly mimic those of African 416 
Americans. For computational simplicity, and in keeping with the high ancestry LD present in 417 
African Americans58,59, for each gene we assumed local ancestry was constant for each haplotype. 418 
For each of the three simulated populations, we applied the same train-test-validate scheme 419 
used for cross-population analysis in GEUVADIS. Genetic data for model simulation were 420 
downloaded from Ensembl 89 and included the largest 100 genes from chromosome 22. We 421 
defined each gene as the start and end positions corresponding to the canonical transcript, plus 422 
1 megabase in each direction. Two genes, PPP6R2 and MOV10L1, spanned no polymorphic 423 
markers in our simulated data, resulting in 98 gene models used for analysis. To simulate 424 
predictive eQTL models, we tested multiple parameter configurations for each gene: we varied 425 
the number of causal eQTL (k = 1, 5, 10, and 20), the positions (all same or not all same), and the 426 
proportion of shared positions (p = 0.0, 0.1, 0.2, …, 0.9, 1). Each model included a simulated gene 427 
expression phenotype with cis-heritability set to 0.15. For each parameter configuration, we ran 428 
100 different random instantiations of the model simulations.  429 
 430 
Analysis tools 431 
 432 
Analyses used GNU parallel60 and the tidyverse bundle of R packages.61 All plots were 433 
generated with ggplot2.62  434 
 435 
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 660 

 661 
Figure 1: R2 of measured gene expression versus predictions from PrediXcan. The prediction weights used here are, from left to right: 662 
GTEx v6p, GTEx v7, DGN, MESA African Americans, MESA African Americans and Hispanics, MESA Caucasians, and all MESA subjects. 663 
Test R2 from model training in GTEx 7 and MESA appear on the right and provide a performance baseline. 664 
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 666 
Figure 2: Spearman correlations of measured gene expression versus predicted expression from PrediXcan. The order of the weight 667 
sets matches Figure 1. 668 
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 670 

 671 
Figure 3: A comparison of R2 from SAGE and GTEx v7 training diagnostics. The SAGE R2 are 672 
computed from regressing PrediXcan predictions onto gene expression measurements. The GTEx 673 
v7 R2 are taken from PredictDB. The red dotted line marks where R2 between the two groups 674 
match, while the blue line denotes the best linear fit.  675 
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 676 

R2 
Train Pop 

EUR373 EUR278 AFR 

Test Pop 

EUR373 0.098 n/a 0.029 
EUR278 n/a 0.096 0.030 

FIN n/a 0.087 0.039 
AFR 0.054 0.051 0.079 

Table 1: Imputation R2 between populations in GEUVADIS for genes with positive correlation 677 
between predictions and measurements. Scenarios where the training sample is contained in 678 
the testing sample cannot be accurately tested and are marked with “n/a”. EUR373 includes all 679 
Europeans, EUR278 includes only non-Finnish Europeans, FIN includes only the Finnish, and AFR 680 
includes only the Yoruba. 681 

 682 

R2 
Train Pop 

EUR373 EUR278 AFR 

Test Pop 

EUR373 0.201 n/a 0.096 
EUR278 n/a 0.183 0.095 

FIN n/a 0.216 0.111 
AFR 0.147 0.141 0.130 

Table 2: Imputation R2 between populations in GEUVADIS for 564 gene models that show 683 
positive correlation between prediction and measurement in all 9 train-test scenarios that were 684 
analyzed. Scenarios that were not tested are marked with “n/a”. As before, EUR373 includes all 685 
Europeans, EUR278 includes only non-Finnish Europeans, FIN includes only the Finnish, and AFR 686 
includes only the Yoruba.  687 
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R2 Mean (Std Err) 
Training population 

CEU TSI GBR FIN YRI 

Testing Pop 

CEU 
0.115 0.106 0.107 0.103 0.069 

(0.139) (0.139) (0.134) (0.133) (0.116) 

TSI 
0.124 0.121 0.124 0.118 0.083 

(0.158) (0.151) (0.149) (0.145) (0.13) 

GBR 
0.132 0.137 0.136 0.133 0.087 
(0.16) (0.155) (0.156) (0.155) (0.132) 

FIN 
0.128 0.130 0.130 0.130 0.084 

(0.158) (0.155) (0.153) (0.152) (0.134) 

YRI 
0.065 0.069 0.063 0.062 0.104 

(0.108) (0.112) (0.1) (0.102) (0.138) 
Table 3: Cross-population prediction performance across all five constituent GEUVADIS 688 
populations over genes with positive correlation between predictions and measurements. All 689 
populations were subsampled to N = 89 individuals. The number of genes represented varies by 690 
training sample (CEU: N = 1029, FIN: N = 1320, GBR: 1436, TSI: 1250, YRI: 914). 691 
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R2 Mean (Std Err) 
Training population 

CEU TSI GBR FIN YRI 

Testing Pop 

CEU 
0.239 0.269 0.291 0.297 0.201 
(0.18) (0.177) (0.166) (0.168) (0.164) 

TSI 
0.307 0.294 0.331 0.322 0.227 

(0.188) (0.21) (0.182) (0.185) (0.185) 

GBR 
0.320 0.326 0.318 0.350 0.235 

(0.175) (0.181) (0.191) (0.178) (0.183) 

FIN 
0.318 0.320 0.343 0.323 0.244 

(0.191) (0.198) (0.182) (0.201) (0.192) 

YRI 
0.166 0.205 0.195 0.189 0.213 

(0.164) (0.163) (0.157) (0.156) (0.177) 
Table 4: Cross-population prediction performance across all five subsampled GEUVADIS 693 
populations over the 142 genes with positive correlation between prediction and measurement 694 
in all 25 train-test scenarios. 695 
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 696 
Figure 4: Correlations between predictions and simulated gene expression measurements from simulated populations across various 697 
proportions of shared eQTL architecture with 10 causal cis-eQTL. Here YRI is simulated from the 1000 Genomes Yoruba, CEU is 698 
simulated from the Utahns, and AA is constructed from YRI and CEU. Each trend line represents a linear interpolation of correlation 699 
versus shared eQTL proportion. Gray areas denote 95% confidence regions of LOESS-smoothed mean correlations conditional on the 700 
proportion of shared eQTL. 701 
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Weight set 

Gene 

models 

Genes predicted 

in SAGE 

Genes both predicted and 

measured 

Genes with positively correlated 

predictions and measurements 

Mean Correlation 

(273 common genes) 

GTEx v6p 6588 5773 5348 2730 -0.0044 
GTEx v7 6297 2742 2570 1319 -0.0113 
DGN 13171 4033 3678 1819 -0.0124 
MESA_AFA 3551 995 982 497 -0.0204 
MESA_AFHI 5556 1889 1862 969 -0.0049 
MESA_CAU 4674 1654 1633 837 -0.0082 
MESA_ALL 6217 2443 2408 1201 -0.0107 

 703 
 704 

Pop 
Measured 

genes 
Predictive 

Models 
With >50% 

samples predicted 
Analyzed prediction 

v. measurement 
Positive 

correlation 
EUR373 23723 20418 11917 11914 5586 
EUR278 23723 20182 11043 11043 4817 

YRI89 23723 20699 11180 11179 4867 
705 

Supplementary Table 1: Summary statistics for analyzing gene expression prediction in SAGE for all seven weight sets in PredictDB. 
SAGE has measurements for 20,985 genes, of which 20,268 are autosomal. The intersection of genes with both predictions and 
measurements in SAGE across all seven weight sets is 273, of which 39 produce predictions positively correlated to data in all 
comparisons. 

Supplementary Table 2: Summary statistics for each filtering step in the analysis of gene expression models from GEUVADIS for the 3 
training populations EUR373, EUR278, and AFR. The analysis of prediction vs. measurement contains 5038 genes in common 
between all three populations. Of these genes, 1476 genes demonstrate positive correlation between predictions and measurements. 
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Training 
Pop Testing Pop R2 Correlation Transcripts 

AFR AFR 0.079 0.2329 2562 
AFR EUR278 0.030 0.1122 2996 
AFR EUR373 0.029 0.1072 3043 
AFR FIN 0.039 0.1377 2908 

EUR278 AFR 0.051 0.1632 3079 
EUR278 EUR278 0.096 0.2291 2857 
EUR278 FIN 0.087 0.2171 3994 
EUR373 AFR 0.054 0.1683 3105 
EUR373 EUR373 0.098 0.2325 3132 

Supplementary Table 3: Summary statistics from training and testing results with continental 706 
GEUVADIS populations for gene models with positive correlations. The R2 correspond to Table 1. 707 
The column “Correlation” lists the Spearman correlations for each scenario, while “Transcripts” 708 
gives the number of gene models used to compute the R2 and correlation summaries. 709 
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Training 
Pop 

Testing 
Pop 

Shared eQTL 
Proportion 

Correlation 
(Mean) 

Correlation 
(StdErr) 

AA AA  0 0.323 0.0350 
AA AA  0.1 0.323 0.0357 
AA AA  0.2 0.323 0.0356 
AA AA  0.3 0.324 0.0355 
AA AA  0.4 0.323 0.0361 
AA AA  0.5 0.323 0.0355 
AA AA  0.6 0.323 0.0358 
AA AA  0.7 0.321 0.0364 
AA AA  0.8 0.323 0.0361 
AA AA  0.9 0.322 0.0358 

CEU  CEU  0 0.329 0.0345 
CEU  CEU  0.1 0.329 0.0345 
CEU  CEU  0.2 0.329 0.0345 
CEU  CEU  0.3 0.329 0.0345 
CEU  CEU  0.4 0.329 0.0345 
CEU  CEU  0.5 0.329 0.0345 
CEU  CEU  0.6 0.329 0.0345 
CEU  CEU  0.7 0.329 0.0346 
CEU  CEU  0.8 0.329 0.0345 
CEU  CEU  0.9 0.329 0.0345 
YRI  YRI  0 0.325 0.0354 
YRI  YRI  0.1 0.325 0.0355 
YRI  YRI  0.2 0.324 0.0351 
YRI  YRI  0.3 0.324 0.0354 
YRI  YRI  0.4 0.325 0.0354 
YRI  YRI  0.5 0.325 0.0352 
YRI  YRI  0.6 0.324 0.0351 
YRI  YRI  0.7 0.322 0.0354 
YRI  YRI  0.8 0.324 0.0352 
YRI  YRI  0.9 0.324 0.0350 

  711 

Supplementary Table 4: Spearman correlations between prediction versus simulated 
measurement from simulated populations to themselves across various shared eQTL 
proportions for k = 10 causal eQTL. 
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Correlation Mean (Std Err) Train-test direction 
AA CEU YRI 

Training Pop AA 0.321 0.308 0.336 
(0.0071) (0.0058) (0.0052) 

CEU 0.334 0.329 0.326 
(0.006) (0.0069) (0.0063) 

YRI 0.336 0.299 0.325 
(0.0051) (0.007) (0.0063) 

Supplementary Table 5: Prediction performance under fully shared eQTL architecture for k = 10 712 
eQTL yields reliable cross-population gene expression imputation. Results for other sizes of eQTL 713 
models are similar.  714 
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R2 AFR to AFR AFR to EUR EUR to AFR 

AFR to EUR 1.222 x 10-12     
EUR to AFR 1.705 x 10-24 6.636 x 10-06   
EUR to EUR 1.357 x 10-04 1.487 x 10-112 1.753 x 10-228 

Supplementary Table 6: A Dunn test shows statistically significant differences when imputing 715 
between AFR and EUR populations versus imputing between EUR populations. 716 
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Z-score (p-value) 
Train-test direction 

AA to CEU AA to YRI CEU to AA CEU to YRI YRI to AA 

Train-test 
direction 

AA to YRI 
-28.029 n/a n/a n/a n/a 

(p < 5.6 x 10-172) n/a n/a n/a n/a 

CEU to AA 
-0.244 27.784 n/a 

n/a 
n/a n/a 

(p ~ 1) (p < 5.0 x 10-169) n/a n/a 

CEU to YRI 
13.373 41.403 13.618 n/a n/a 

(p < 6.5 x 10-40) (p ~ 0) (p < 2.3 x 10-41) n/a n/a 

YRI to AA 
-28.725 -0.695 -28.480 -42.099 n/a 

(p < 1.4 x 10-180) (p ~ 1) (p < 1.5 x 10-177) (p ~ 0) n/a 

YRI to CEU 
12.508 40.538 12.753 -0.865 41.234 
(p ~ 0) (p ~ 0) (p ~ 0) (p ~ 0) (p ~ 0) 

Supplementary Table 7: Differences in cross-population imputation performance are statistically significant, with a few notable 718 
exceptions. Imputation between AA and YRI, between AA and CEU, and between CEU and YRI is essentially the same, indicating that 719 
the direction of imputation does not matter. 720 
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 721 

 722 
Supplementary Figure 1: A comparison of R2 between prediction and measurement in SAGE, with PredictDB test metrics as 723 
benchmarks, for 11,545 genes total. The number of genes per weight set varies; see Supplementary Table 1. 724 
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 726 
Supplementary Figure 2: R2 between prediction and measurement in SAGE only using the 39 genes with positive correlation between 727 
prediction and measurement in all weight sets and benchmarks. 728 
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 729 
Supplementary Figure 3: Imputation R2 between AFR (YRI) and EUR (CEU, TSI, GBR, and FIN). Imputing into and from AFR produces 730 
consistently lower R2 than imputing within EUR, suggesting a potential decrease in prediction accuracy when imputing across 731 
continental population groups. 732 
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 734 
Supplementary Figure 4: Genetic distance versus imputation accuracy over 142 genes with positive correlation across all train-test 735 
scenarios. Here the GEUVADIS populations are arranged into three groups. AFR to AFR includes imputation from YRI into itself; EUR 736 
to AFR includes imputation into YRI from CEU, GBR, TSI, and FIN; and EUR to EUR includes imputation within and between all 737 
European populations in GEUVADIS. Clustering by genetic distance separates imputation between European populations from 738 
imputation between European populations and AFR. FST are taken from the 1000 Genomes Project (Table S11).63  739 
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 741 
 742 

 743 
Supplementary Figure 5: Correlations between predictions and simulated gene expression measurements from simulated populations 744 
across various proportions of shared eQTL architecture with 5 causal cis-eQTL. 745 
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 748 

 749 
Supplementary Figure 6: Correlations between predictions and simulated gene expression measurements from simulated populations 750 
across various proportions of shared eQTL architecture with 20 causal cis-eQTL. 751 
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 754 

 755 
Supplementary Figure 7: Correlations between predictions and simulated gene expression measurements from simulated populations 756 
across various proportions of shared eQTL architecture with a single causal cis-eQTL. 757 
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