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Figure 2. Analysis of nuclear tracks during IKNM. (A) Extracted trajectories of nuclei in 3 dimensions. All curated
tracks of the main dataset over 400 minutes in the region shown in Figure 1C are presented. (B) The
distribution of maximum distances reached away from the apical surface by nuclei during their completed cell

cycles. The mean and one standard deviation are shown. (C) The speed distribution of nuclei over complete cell
cycles. The cell cycle lengths of all nuclei were normalized and superimposed to highlight the early basal burst

of speed, as well as pre-division apical rapid migration. The speeds between these two periods are normally

distributed. (D) Position of nuclei as measured by their distance from the apical surface over normalized cell
cycle time. Even though all nuclei start and end their cell cycle near the apical surface, they move out across the

retina to take positions in all available spaces, creating an apical clearing as indicated.

Interestingly, except during mitosis, we find an apical clearing of a few microns for dividing140

cells (Figure 2D). We checked to see if this was an artifact of measuring the distance to nuclear141

centers due to nuclear shape, as nuclei are rounded during M phase but are more elongated along142

the apicobasal axis at other times. We found no significant difference between average length of143

nuclear long axis when measured for nuclei right before their division compared to nuclei chosen144

randomly from any other time point within the cell cycle, indicating that this clearing is likely to145

have a biological explanation, such as the preferential occupancy of M phase nuclei to the apical146

surface during IKNM.147

Basal movement of nuclei is driven like a diffusive process148

Previous work has shown that when RPCs are pharmacologically inhibited from replicating their149

DNA, their nuclei neither enter G2 nor exhibit rapid persistent apical migration that normally occurs150

during the G2 phase of the cell cycle (Leung et al., 2011; Kosodo et al., 2011). A more surprising151

result of these experiments is that the stochastic movements of nuclei in G1 and S phases also slow152

down considerably during such treatment (Leung et al., 2011). It was, therefore, suspected that the153

migration of nuclei of cells in G2 toward the apical surface jostles those in other phases (Norden154

et al., 2009). We therefore searched our tracks for evidence of such direct kinetic interactions155

among nuclei by correlating the speed and direction of movement of single nuclei with their nearest156

neighbors. These neighbors were chosen such that their centers fell within a cylindrical volume157

of a height and base diameter twice the length of long and short axes, respectively, of an average158

nucleus. Figure 3A shows the lack of correlation between the speed of movement of nuclei and the159

average speed of their neighbors. We further categorized the neighboring nuclei by their position160
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Figure 3. (A) Average speed of nuclei neighboring a nucleus of interest as a function of the speed of that
nucleus. (B) The positions of two sister nuclei at each time point imaged (red circles) over their complete cell
cycle. The black lines are spline curves indicating the general trend of their movements.

in relation to the nucleus of interest (along the apicobasal axis), their direction of movement, and161

whether they were moving in the same direction of the nucleus of interest or not. None of the162

resulting eight categories of neighboring nuclei showed a correlation in their average speed with163

the speed of the nucleus of interest. Furthermore, we considered the movement of neighboring164

nuclei one time point (2 min) before or one time point after the movement of the nucleus of interest.165

Yet, we still found no correlation between these time-delayed and original speeds. These results166

suggest that there does not appear to be much transfer of kinetic energy between neighboring167

nuclei.168

Another hypothesis advanced for variability in basal IKNM is that the nuclear movements are169

driven by apical crowding (Kosodo et al., 2011; Okamoto et al., 2013). How apical crowding might170

result in basal IKNM can be understood by comparing IKNM to a diffusive process. In diffusion, a171

concentration gradient drives the average movement of particles from areas of high to areas of low172

concentration. However, despite the average movement being directed, each individual particle’s173

trajectory is a random walk (Reif, 1965). Similarly, during IKNM a gradient in nuclear concentration174

is generated because nuclei divide exclusively at the apical surface. If basal IKNM were comparable175

to diffusion, this nuclear concentration gradient would be expected to result in a net movement176

of nuclei away from the area of high nuclear crowding at the apical side of the neuroepithelium177

(Miyata et al., 2015; Okamoto et al., 2013). Indeed, in IKNM we find that each individual nucleus’178

trajectory resembles a random walk (Norden et al., 2009). Therefore, for the cells in the G1 and S179

phases (which account for more than 90% of the cell cycle time in our system), IKNM has, at least180

on a phenomenological level, the main features of a diffusive process.181

To test further whether we can indeed describe IKNM using a model of diffusion, we first182

asked what would happen to the concentration gradient if we blocked the cell cycle in S phase,183

which inhibits both the apical movement of the nuclei in G2 and mitosis at the apical surface. If the184

comparison to diffusion were valid, we expect the blockage to abolish the build-up andmaintenance185

of the concentration gradient. We, therefore, compared the normally evolving distribution of nuclei186

in control retinas with those measured from retinas where the cell cycle was arrested at S-phase187

using a combination of hydroxyurea (HU) and aphidicolin (AC) (Norden et al., 2009; Icha et al.,188

2016). We counted the number of nuclei in a three dimensional section of the retina containing189

approximately 100 nuclei, at equal time intervals, starting with 120 min after drug treatment. The190

delay ensured that almost all cell divisions, from nuclei that had already completed the S phase at191

the time of treatment, had taken place. As expected from the diffusion model (Figure 4D), over the192

course of 160 min, the mean of the nuclear distribution moved further towards the basal surface in193
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treated retinas, and the concentration difference between the apical and basal surfaces diminished194

(Figure 4A,C). In contrast, in control retinas the mean of the nuclear distribution moved towards the195

apical surface (Figure 4B,C) as the gradient continued to build up. Hence, these results support the196

suitability of a diffusive model to describe the basal nuclear migration during IKNM.197

An analytical diffusion model of IKNM198

To investigate whether a diffusion model would also provide a useful quantitative description199

for IKNM, we formalized the process of IKNM in mathematical terms. This formalization again200

focuses on the crowding of nuclei at the apical side of the tissue. Crowding can be thought of, in201

mathematical terms, as creating a gradient in nuclear concentration c along the apicobasal direction202

of the retina. In contrast, we assumed no dependence of the nuclear concentration on the lateral203

position within the tissue. Thus we employed the diffusion equation for the nuclear concentration204

c(r, t) as a function only of the apicobasal distance r and time t. The retina can be approximated as205

one half of a spherical shell around the lens, and thus we use spherical polar coordinates with the206

origin of the coordinate system at the center of the lens, the basal surface at r = b and the apical207

surface at r = a (Figure 5B). We first study the simplest diffusion equation for this system, in which208

there is a diffusion constant D independent of position, time, and c itself, namely209

)c(r, t)
)t

= D 1
r2
)
)r

(

r2
)c(r, t)
)r

)

. (1)

By analyzing the experimental data we seek to determine D. This equation provided the basis for210

our mathematical description of IKNM in terms of a diffusion process.211

In addition to Equation 1, we also needed to specify the boundary conditions adequate to212

describing IKNM. As mentioned above, we focused our description of IKNM on the apical crowding213

of nuclei. Since nuclei only divide close to the apical surface of the tissue, we treat mitosis as creating214

an effective influx of nuclei through the apical boundary. To quantify this influx, we extracted the215

number of cellsN(t) as a function of time. As during the stages of development examined here cells216

are neither dying nor exiting the cell cycle (Biehlmaier et al., 2001), we assumed that the number217

of cell divisions is always proportional to the number of currently existing cells. This assumption218

predicts an exponential increase in the number of cells or nuclei, over time, also recently found by219

Matejčić et al. (2018):220

N(t) = N0e
t∕� , (2)

where N0 is the initial number of nuclei and � = TP∕ ln 2, with TP the average cell cycle length. Fig-221

ure 5A shows the agreement between the theoretically predicted curveN(t) with the experimentally222

obtained numbers of nuclei over time. Having obtained N0 and TP from our experimental data, the223

predicted curve does not have any remaining free parameters and thus no fitting is necessary. Thus,224

the obtained description for the number of nuclei over time, Equation 2, was used to formulate the225

influx boundary condition for our mathematical model226

D)c
)r

|

|

|

|

|r=a

= 1
S
)N(t)
)t

=
N0

S�
et∕� , (3)

with S the apical surface area of our domain of interest. In contrast to the apical side of the tissue,227

there is no creation (or depletion) of nuclei at the basal side (Matejčić et al., 2018), and hence a228

no-flux boundary condition,229

)c
)r

|

|

|

|

|r=b

= 0. (4)

Equations 1, 3 and 4 fully specify this simplest mathematical model of IKNM.230

From these equations we can derive an expression for the concentration of nuclei c(r, t) in the231

retinal tissue. To this end, we introduced dimensionless variables for space and time,232

� = r
a
, s = Dt

a2
(5)
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Figure 4. Nuclear concentration gradient across the apicobasal axis of the retina. The concentration of nuclei is
higher near the apical surface compared to the basal surface. (A) In the control retina the nuclear concentration
gradient builds up over time. (B) Blocking apical migration and division of nuclei, by inhibiting S phase
progression, leads to a shift in the distribution of nuclei towards the basal surface in the HU-AC treated retina.(C) The shift in the distribution of nuclei under HU-AC treatment when compared to the untreated retina. The
number of nuclei away from the apical surface increases consistently over time in the absence of cell division,

but remains the same when new nuclei are constantly added at the apical surface. (D) A schematic of how a
diffusion model would work in the context of IKNM in the retina. A concentration gradient of nuclei (left) would

drive the net movement of nuclei from the apical surface to the basal surface. However, without maintenance

of the gradient, the drive for this net migration is lost (top right). In the retina, the gradient is maintained

through cell divisions at the apical surface, modeled as a one way influx across the apical surface (bottom right),

continuously driving the net movement basally.
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Figure 5. (A) Number of nuclei grows exponentially during the proliferative stage of the retinal development. A
line can be fit to the log-lin graph of nuclear numbers as a function of time to extract the doubling time (cell

cycle length) in this period. (B) A schematic of the retina indicating the variables used in the diffusion model of
IKNM. a: distance from center of lens to apical surface; b: distance from center of lens to basal surface; L:

thickness of the retina; r: distance from center of lens for each particle.

and further define � = b∕a < 1. The exact solution for the nuclear concentration, whose detailed233

derivation is given in the Appendix, is234

c(�, s) =
∞
∑

i=1

(

ℎie
−�2i s +

�if0
� + �2i

e�s
)

Hi(�) +
1

1 − �

(1
2
�2 − �� + g0

)

f0e
�s. (6)

The first terms within parentheses describes the decay over time of the initial condition c
exp
(�, s = 0).235

Here, �i are the eigenvalues andHi(�) the eigenfunctions of the radial diffusion problem, and the236

coefficients ℎi are determined from the experimental initial conditions (see Methods). The second237

terms within the sum and the final term on the right hand side of Equation 6 are constructed such238

that the solution fulfills the boundary conditions 3 and 4. In the last term, the constant g0 was239

obtained using the constraint that the volume integral of the initial concentration yields the initial240

number of nuclei N0. f0, � and �i emerge within the calculation of the solution and are specified in241

the Appendix. Thus, the effective diffusion constant D in Equations 1 and 6 is the only unknown in242

the model.243

The linear model is accurate at early times244

As mentioned before, the only parameter in the solution 6 is the effective diffusion constant D. To245

determine this from the data, the experimentally obtained distribution of nuclei in the retinal tissue246

was first converted into a concentration profile. Then, the optimal D-value, henceforth termed247

D∗, was obtained using a minimal-�2 approach. The value obtained within the linear model for a248

binning width of 3 µm and an apical exclusion width of 4 µm is D∗
lin
= 0.17±0.07 µm2/min. Using this,249

we can examine the decay times of the different modes in the first term of Equation 6. The slowest250

decaying modes are the ones with the smallest eigenvalues �i and we find that the longest three251

decay times are T1 ≈ 1325min, T2 ≈ 350min and T3 ≈ 158min. This shows that indeed all three252

terms of Equation 6 are relevant on the timescale of our experiment and need to be taken into253

account when calculating the concentration profile. The corresponding plots of c(�, s) are shown in254

Figure 6A-C. As can be seen from this figure, the diffusion model fits the data very well at early times,255

t ≤ 200min. However, for t ≥ 200min the model does not fit the data as well; the experimentally256

observed nuclear concentration levels off at a value between 4.00 and 4.50 × 10−3 µm−3 (Figure 6D),257

an aspect that is not captured by the model of linear diffusion.258

One particular aspect of the biology that the linear model neglects is the spatial extent of the259

nuclei. In a linear diffusion model, particles are treated as point-like and non-interacting. However,260
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Figure 6. (A) The initial experimental concentration profile of nuclei at t = 0min as well as the calculated initial
condition curves (see Methods Equation 11) for the linear (red solid line) and nonlinear (blue dashed line)

models. B,C,D) The fit of the models to experimental distribution of nuclei after 100 min (B), 200 min (C), and
300 min (B) are shown. For the first three graphs, the best fit over all 100 intervening time points were used
with the corresponding diffusion constants shown in (A). For t = 300 min, the best fit at that time point only was
used with the corresponding diffusion constants indicated.

our microscopy images (see Figure 1A) clearly indicate that the nuclei have finite incompressible261

volumes, so that their dense arrangement within the retinal tissue would lead to steric interactions262

once the nuclear concentration is sufficiently high, and moreover that the packing density of nuclei263

can not exceed a maximum value dictated by their geometry. Next, we examine whether accounting264

for these effects leads to a more accurate theory.265

Nonlinear extension to the model266

If we write the diffusion equation 1 in the form267

)c
)t
= D 1

r2
)
)r

{

r2c )
)r

[ )
)c
(c ln c)

]}

, (7)

we can identify the term c ln c as proportional to the entropyS of an ideal gas, and its derivative268

with respect to c as a chemical potential. In an ideal gas, all particles are treated as point-like and269

without mutual interactions. In order to include the spatial extent of particles, we estimate the270

entropy using the model of a lattice gas, a system in which space is divided into discrete sites which271

can either by empty or occupied by a single gas particle. Due to the discrete lattice, particles cannot272

get closer than the lattice spacing from each other, and there is a maximum possible concentration273

c
max
(Huang, 1987). In this system the entropy takes the form274

S
lattice gas

∝ c ln c +
(

c
max

− c
)

ln
(

c
max

− c
)

. (8)
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Table 1. List of best-fit diffusion constants D∗, their standard deviations and probabilities for the studied
conditions.

D∗
nonlin

(µm2/min) �D (µm2/min) P� (�2; �)

Normal 0.09 0.05 0.49 - 0.51

Normal (repeat sample) 0.10 0.06 0.47 - 0.48

High T 0.13 0.08 0.42

Low T 0.06 0.05 0.69 - 0.7

Substituting this expression for the term c ln c in 7, we obtain the nonlinear diffusion equation275

)c
)t
= D 1

r2
)
)r

(

r2
c
max

c
max

− c
)c
)r

)

. (9)

Adjusting the boundary conditions at the apical side accordingly leads to276

D
c
max

c
max

− c
)c
)r

|

|

|

|

|r=a

=
N0

S�
et∕� , (10)

while the basal boundary condition remains the same as Equation 4. Together, Equation 9 and the277

boundary conditions in Equations 10 and 4 represent an extension to the diffusion model for IKNM,278

which now accounts for steric interactions between the nuclei. The maximum concentration c
max

279

incorporated in this model was obtained, as described in the Methods, by considering a range of280

nuclear radii and the maximum possible packing density for aligned ellipsoids (Donev et al., 2004).281

Similar to fitting the linear model, we also need to establish a description of the initial condition.282

To make both models consistent with each other, we employ the linear model’s initial condition,283

Equation 6 at s = 0 with ℎi as obtained from Equation 11, as an initial condition for this nonlinear284

model as well (Figure 6A). The concentration profile in the nonlinear model and its derivative were285

obtained numerically using the MATLAB pdepe solver. Fitting this concentration profile to the data286

was again by means of a minimal-�2 approach. When the optimization took data points up to287

t = 200min into account, we find D∗
nonlin

= 0.09 ± 0.05 µm2/min (Figure 6, Table 1). As can be seen,288

by choosing c
max
correctly, an excellent fit to the data can be obtained. These results show that289

a lattice-gas based diffusion model is indeed suitable to describe time evolution of the nuclear290

concentration profile in zebrafish retina tissue during IKNM over several hours of development.291

Incubation temperature has direct effects on IKNM292

The diffusion model may also address mechanistic questions about IKNM in retinas growing under293

varying experimental conditions. Zebrafish embryos are often grown at different temperatures to294

manipulate their growth rate (Kimmel et al., 1995; Reider and Connaughton, 2014), but it has been295

unclear how the nuclei in the retina behave at these different temperatures. To examine this issue,296

we grew the embryos at the normal temperature of 28.5 ◦C overnight and then incubated them297

at lower temperature (LT) of 25 ◦C or higher temperature (HT) of 32 ◦C during imaging. We could298

directly measure the change in average cell cycle length from experimental data and found that299

in HT, it is 205.5 min, while in LT, it is a much longer 532.78 min. We were then able to use these300

values in the model to investigate whether the change in temperature influences the processes301

that determine the effective diffusion constant of the nuclei. The resulting values for D∗
nonlin

are302

summarised in Table 1. Based on these values, two-sided t-tests (see Methods) confirmed that303

there is no significant difference between the D-values obtained from the two normal condition304

data sets. In contrast, D-values for the LT and HT data sets were significantly different from the305

normal ones, with p ≤ 0.01. These results indicate, that aside from its effect on cell cycle length,306

incubation temperature is likely to influence IKNM directly by altering the mobility of nuclei, here307

represented by the effective diffusion constant D.308
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Discussion309

In this work, we have shown that high density nuclear trajectories can be used to tease apart the310

possible physical processes behind the apparently stochastic movement of nuclei during interkinetic311

nuclear migration. Firstly, we generated these trajectories using long-term imaging and tracking of312

nuclei with high spatial and temporal resolution within a 3-dimensional segment of the zebrafish313

retina. Analysis of speed and positional distributions of more than a hundred nuclei revealed a314

large degree of variability in their movements during G1 and S phases. Although this variability had315

been observed before, previous experiments had only considered sparsely labeled nuclei within316

an otherwise unlabeled environment (Baye and Link, 2007; Norden et al., 2009; Leung et al., 2011).317

Thus, our results provide an important account of the variability of IKNM on a whole tissue level. In318

effect, the variability of IKNM means that nuclear trajectories appear stochastic during the majority319

of the cell cycle. Previously, it had been suggested that the origins of this apparent stochasticity lay320

in the transfer of kinetic energy between nuclei in G2 exhibiting rapid apical migration to nuclei321

in G1 and S phases of the cell cycle, much as a person with an empty beer glass may nudge away322

other customers to get to the bar (Norden et al., 2009). However, we found no evidence for direct323

transfer of kinetic energy between nuclei and their immediate neighbors. Recently Shinoda et al.324

(2018) have also provided evidence that suggests direct collisions do not contribute to basal IKNM.325

Another possibility is that the stochastic trajectories of G1 and S nuclei could be a result of326

passive displacements, arising from a diffusive process depending on a nuclear concentration327

gradient between the apical and basal sides of the tissue (Miyata et al., 2015). This gradient328

could be formed by nuclear divisions taking place exclusively at the apical surface. We confirmed329

the presence of such a gradient by calculating the nuclear concentration along the apicobasal330

dimension within the retinal tissue at various time points. Further, to probe the source of the331

gradient, we treated the zebrafish retina with HU-AC to stop the cell cycle in S phase. While332

we observed the build-up of the nuclear concentration gradient over time in the control retina,333

the nuclear distribution flattened when cell division was inhibited with HU-AC treatment. These334

phenomenological similarities between IKNM and diffusion suggested the diffusive model. This335

model includes two key features: most importantly, it focuses on the crowding of nuclei at the apical336

surface of the tissue, here included as the apical boundary condition. Additionally, in the nonlinear337

extension of the model, it incorporates a maximum possible nuclear concentration. This addition338

provided a striking overall improvement to the fits to experimental data over periods of many hours.339

The resulting difference in the obtained D-values between the linear and nonlinear versions of our340

model can be understood heuristically when closely examining the difference between Eqs. 1 and 9.341

The latter introduces the new term c
max

∕(c
max

− c) which one could think of loosely as corresponding342

to an effective, concentration dependent diffusion constant D̃ = Dc
max

∕(c
max

− c). In general D̃ will343

vary across the tissue thickness and, since c > 0 for most of the retinal tissue, D̃ > D. Therefore,344

averaging across the retina tissue, D̃might actually be in very good agreement with the D-value345

found in the linear model. However, the fact the linear model fails to describe, and which leads to a346

better representation of the data using the nonlinear model, is that the mobility of the nuclei is347

likely to be concentration dependent.348

The underlying processes causing IKNM during the G1 and S phases of the cell cycle in pseudos-349

tratified epithelia have been largely elusive. Several partially competing ideas have been put forward,350

ranging from the active involvement of cytoskeletal transport processes to passive mechanisms of351

direct energy transfer or movements driven by apical nuclear crowding (Schenk et al., 2009; Tsai352

et al., 2010; Norden et al., 2009; Kosodo et al., 2011). The fact that inanimate microbeads migrate353

much like nuclei during IKNM in the mouse cerebral cortex (Kosodo et al., 2011) suggests that active,354

unidirectional intracellular transport mechanisms are not directly responsible for these stochastic355

movements. Instead, we showed that a passive diffusive process which takes steric interactions356

between nuclei into account produces an excellent representation of the time evolution of the actual357

nuclear distribution within the retinal tissue during early development. Consequently, our work358
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builds on earlier models of apical crowding based on in silico simulations of IKNM (Kosodo et al.,359

2011). Having said this, it remains to understand the general scale of the diffusion constant (D ∼0.1360

�2/min) from microscopic considerations, perhaps analogous to those used to relate random walks361

to diffusion (Goldstein, 2018). In addition, our work revealed the remarkable importance of simple362

physical constraints imposed by the overall tissue architecture, which could not be explored in pre-363

vious studies which tracked sparse nuclei, and thus lacked the means to explore the effect of such364

3-dimensional arrangements. Hence, we paid special attention to the spherical shape of the retina365

and the concentration of nuclei in that space. Examining the evolution in distribution of nuclei over366

time unveils the importance of spatial restriction due to the curvature of the tissue. Additionally, the367

size of the nuclei in comparison to the neuroprogenitor cells leads to the emergence of a maximum368

nuclear concentration which must be taken into account to accurately model IKNM.369

By inhibiting cell cycle progression or changing temperature, we used our model to shed some370

light on some of the properties of and mechanisms of the stochastic movements of nuclei during371

IKNM. From our results and previous studies, we knew that cell cycle length is affected by change in372

incubation temperature (Kimmel et al., 1995; Reider and Connaughton, 2014). However, our results373

also indicate a significant influence of temperature on the mobility of nuclei and thus the underlying374

processes controlling their movement. For example, the speed and dynamic properties of both375

the microtubule and actomyosin systems are dependent on temperature and could in part explain376

the changes in the diffusion constant that we see as a function of temperature (Hartshorne et al.,377

1972; Hong et al., 2016) as the diffusion constant may be influenced by stochastic associations with378

motor proteins or the physical properties of the epithelium. However, a much closer examination379

of molecular mechanisms driving stochastic nuclear movements is required to better understand380

the connections between these phenomena, as we are far from understanding the nature of forces381

involved in this process. Furthermore, the diffusion constant reported here contains all types of382

nuclear movement during IKNM as it is derived from the changing nuclear concentration profile383

over time. However, it is not immediately clear what the contribution the rapid apical migration to384

this overall diffusion constant may be. Nonetheless, despite the large displacement during rapid385

apical migration at G2, this phase only accounts for about 8% of the cell cycle (Leung et al., 2011).386

Therefore, given this small portion of the cell cycle when rapid migration can happen and the good387

agreement of our calculated diffusion constant with those previously reported in the literature for388

individual nuclei (Leung et al., 2011), the proposed model appears to describe tissue-wide IKNM389

quite well.390

The physiological consequences of nuclear arrangements and the IKNM movements associated391

with all pseudostratified epithelia are not well understood. Our results provide a quantitative392

description of the stochastic distribution of the nuclei across the retina. This distribution has393

been implicated in stochastic cell fate decision making of progenitor cells during differentiation394

(Clark et al., 2012; Baye and Link, 2007; Hiscock et al., 2018). Our observations would fit with395

previous suggestions that a signalling gradient, such as a Notch gradient, exists across the retina396

and location-dependent exposure to it is important for downstream decision-making (Murciano397

et al., 2002; Del Bene et al., 2008; Hiscock et al., 2018; Aggarwal et al., 2016). Thus, our results398

not only have important implications for understanding the organisation of developing vertebrate399

tissues, but may also provide a starting point for further exploration of the connection between400

variability in nuclear positions and cell fate decision making in neuroepithelia.401

Methods and Materials402

Animals and Transgenic Lines403

All animal work was approved by Local Ethical Review Committee of the University of Cambridge404

and performed in accordance with a Home Office project license PL80/2198. All zebrafish were405

maintained and bred at 26.5 ◦C. All embryos were incubated at 28.5 ◦C before imaging sessions. At406

10 hours post fertilization (hpf), 0.003% phenylthiourea (PTU) (sigma) was added to the medium to407
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stop pigmentation in the eye.408

Lightsheet microscopy409

Images of retinal development for the main dataset were obtained using lightsheet microscopy.410

Double transgenic embryos, Tg(bactin2:H2B-GFP::ptf1a:DsRed) were dechorionated at 24 hpf and411

screened positive for the fluorescent transgenic markers prior to the imaging experiment. The412

embryo selected for imaging was then embedded in 0.4% low gelling temperature agarose (Type413

VII, Sigma-Aldrich) prepared in the imaging buffer (0.3x Daniau’s solution with 0.2% tricaine and414

0.003% PTU (Godinho, 2011)) within an FEP tube with 25 µm thick walls (Zeus), with an eye facing415

the camera and the illumination light shedding from the ventral side. The tube was held in place by416

a custom-designed glass capillary (3 mm outer diameter, 20 mm length; Hilgenberg GmbH). The417

capillary itself was mounted vertically in the imaging specimen chamber filled with the imaging418

buffer. To ensure normal development, a perfusion system was used to pump warm water into the419

specimen chamber, maintaining a constant temperature of 28.5 ◦C at the location of the specimen.420

Time-lapse recording of retinal development was performed using a SiMView light-sheet micro-421

scope (Tomer et al., 2012) with one illumination and one detection arm. Lasers were focused by422

Nikon 10x/0.3 NA water immersion objectives. Images were acquired with Nikon 40x/0.8 NA water423

immersion objective and Hamamatsu Ocra Flash 4.0 sCMOS camera. GFP was excited with scanned424

light sheets using a 488 nm laser, and detected through a 525/50 nm band pass detection filter425

(Semrock). Image stacks were acquired with confocal slit detection (Baumgart and Kubitscheck,426

2012) with exposure time of 10 ms per frame, and the sample was moved in 0.812 µm steps427

along the axial direction. For each time point, two 330 x 330 x 250 µm3 image stacks with a 40428

µm horizontal offset were acquired to ensure the coverage of the entire retina. The images were429

acquired every 2 min from 30 hpf to 72 hpf. The position of the sample was manually adjusted430

during imaging to compensate for drift. The two image stacks in the same time point were fused431

together to keep the combined image with the best resolution. An algorithm based on phase432

correlation was subsequently used to estimate and correct for the sample drift over time. The433

processing pipeline was implemented with MATLAB (MathWorks).434

Two photon microscopy435

Images for the repetition dataset and all other conditions were obtained using a TriM Scope II436

2-photon microscope (LaVision BioTec). A previously established Tg(H2B-GFP) line, generated by437

injecting a DNA construct of H2B-GFP driven from the actin promoter (He et al., 2012), was used for438

all these experiments. Embryos were dechorionated and screened for expression of GFP at 24 hpf.439

An embryo was then embedded in 0.9% UltraPure low melting point agarose (Invitrogen) prepared440

in E3 medium containing 0.003% PTU and 0.2% tricaine. The agarose and embryo were placed441

laterally within a 3D printed half cylinder of transparent ABS plastic, 0.8 mm in diameter, attached442

to the bottom of a petri dish, such that one eye faced the detection lens of the microscope. The443

petri dish was then filled with an incubation solution of E3 medium, PTU, and tricaine in the same444

concentrations as above. For the experiment involving cell cycle arrest, hydroxyurea and aphidicolin445

(Abcam) were added to the incubation solution right before imaging, to a final concentration of 20446

mM and 150 µM, respectively. The imaging chamber was maintained at a temperature of 25 ◦C,447

28.5 ◦C, or 32 ◦C, as required, using a precision air heater (The Cube, Life Imaging Services).448

Green fluorescence was excited using an Insight DeepSee laser (Spectra-Physics) at 927 nm.449

The emission of the fluorophore was detected through an Olympus 25x/1.05 NA water immersion450

objective, and all the signal within the visible spectrum was recorded by a sensitive GaAsP detector.451

Image stacks with step size of 1 µm were acquired with exposure time of 1.35 ms per line averaged452

over two scans. The images were recorded every 2 min for 10-15 hours starting at 26-28 hpf. The453

same post processing procedure for data compression and drift correction was used on these raw454

images as on those from lightsheet imaging.455
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Obtaining experimental input values for the model456

The radial coordinates rn of nuclei were calculated by subtracting ln from a, wherein ln is the distance457

from the center of a nucleus n to the apical surface and a is the distance from the center of the458

lens to the apical surface. We estimated a total uncertainty of Δr = ±3 µm for each single distance459

measurement of rn. This value is a result of uncertainty in detecting the center of the nucleus and460

in establishing the position of the apical surface.461

Because each nuclear position has an error bar Δr, binning the data leads to an uncertainty462

in the bin count. In order to calculate this uncertainty, we considered the probability distribution463

of a nucleus’ position. In the simplest case, this probability is uniform within the width of the464

positional error bar and zero elsewhere. The probability, pn,bin, of finding a given nucleus n within a465

given bin, is proportional to the size of the overlap of probability distribution and bin. It follows466

that the expectation value for the number of nuclei within a bin is given as E(N
bin
) =

∑

n pn,bin.467

Correspondingly, Var(N
bin
) =

∑

n pn,bin(1 − pn,bin) is the variance of the number of nuclei within this468

bin. Thus, the error bar of the bin count is �y,bin =
√

Var(N
bin
). The nuclear distribution profile469

N(r, t) is not expected to be uniform or linear, therefore the expectation value E(N
bin
) does not470

correspond to the number of nuclei at the center of the bin. Since the position of the expectation471

value is unknown a priori, it is still plotted at the center of the bin with an error bar denoting its472

positional uncertainty. Here we assume this error bar to be the square-root of the bin size Δr
bin
, i.e.473

�x,bin =
√

Δr
bin
.474

In order to obtain the experimental nuclear concentration profile c(r, t), and its error bars, from475

the distribution of nuclei N(r, t), the volume of the retina also has to be taken into account, since476

c = N∕V . The total retinal volume within which nuclei tracking took place was estimated directly477

from the microscopy images. To this end, we outlined the area of observation in each image slice478

using the Fiji software and multiplied this area with the distance between successive images. Given479

the total volume, V
total
, we proceeded to calculate the volume per bin, which depends on the radii at480

the inner and outer bin surfaces. In general, the volume of part of a sphere, e.g. a spherical sector,481

is given as V
sector

= 1
3
Ωr3
sector

, where Ω denotes the solid angle. Knowing the apical and basal tissue482

radii, r = a and r = b, one can thus calculate Ω as Ω = 3V
total

∕(a3 − b3). This gives the volume of each483

bin as V
bin
= 1

3
Ω
(

r3
bin,outer

− r3
bin,inner

)

, where r
bin,outer

and r
bin,inner

denote the outer and inner radii of484

a bin, respectively. Similarly, we calculated the effective surface area S through which the influx of485

nuclei occurs (see Equation 3) from the solid angle Ω. This surface area is simply given as S = Ωa2.486

To retrieve the average cell cycle time TP for each of the data sets, we used two different487

approaches. In the case of the main data set, sufficient number of nuclear tracks consisting of488

a whole cell cycle were present. Thus we directly calculated the average cell cycle duration from489

these tracks. For the other datasets, we make use of the fact that the number of nuclei follows an490

exponential growth law depending on TP (see Equation 2). Knowing the initial number of tracked491

nuclei N0 for each data set, we obtained TP from fitting the following equation to the number of492

nuclei as a function of time in a log-lin plot: lnN(t) = lnN0 + t∕� = lnN0 + (ln 2∕TP )t. Then TP was493

deduced from the slope of this fit.494

In order to determine the maximum nuclear concentration c
max
for the nonlinear model, we495

first randomly selected 100 nuclei from our dataset of tracked nuclei and measured the size of their496

longest diameter in both XY and YZ planes. From these measurements we established that the497

size of the principal semi-axis of each nucleus is likely to lie in the range of about 3 µm to 5 µm,498

where the nuclear shape is regarded to be ellipsoidal. This led to the range of possible maximum499

concentrations c
max
, although we did not measure the precise nuclear volume. The lower limit for500

the nuclear volume is set by the volume of a sphere of radius 3 µm, the upper limit by a sphere of501

radius 5 µm. Taking into account the maximum possible packing density of nuclei, which for aligned502

ellipsoids is the same as that of spheres (Donev et al., 2004), �
3
√

2
≈ 0.74, we obtained a range of503

1.41 × 10−3 µm−3 ≤ c
max

≤ 6.55 × 10−3 µm−3.504
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Obtaining the initial condition505

We determined the prefactors ℎi from the experimental nuclear distribution at the start of the506

experiment, c
exp
(�, 0). For convenience, we chose to determine first ℎ̃i = ℎi + �if0∕(� + �2i ) and then507

obtained ℎi by subtracting �if0∕(� + �2i ) from the results. The ℎ̃i can be calculated from the data,508

using Equation 6 for s = 0, as509

ℎ̃i =
∑

m
�2mHi(�m)cexp(�m, 0)Δ�m −

f0
1 − � ∫

1

�
�2Hi(�)

(1
2
�2 − �� + g0

)

d�, (11)

where m denotes the m-th binned data point, �m its position and Δ�m the width of bin m. As in510

Equation 6, the index i denotes the i-th eigenfunction or -mode.511

The concentration profile in the nonlinear model512

The non-linear concentration profile was determined numerically from the same initial condition as513

used for the linear model, Equation 6, at s = 0 with ℎ̃i as in Equation 11. Time evolution of the initial514

condition, according to Equation 9, was performed using the pdepe solver in MATLAB.515

Fitting the model516

The range of sizes of the nuclear principal semi-axes was used to determine the range of data to be517

included in our fits. Any data closer than 3 µm to 5 µm from the apical or basal tissue surfaces was518

not taken into account for fitting because the center of a nucleus cannot be any closer to a surface519

than the nuclear radius. Thus, all data collection very close to the apical or basal tissue surfaces520

must have been due to the above mentioned measurement uncertainties Δr.521

In principle, the full solution for c(�, s) is composed of infinitely many modes. However, in522

practice, we truncated this series and only included the first 8 modes in our fits. This is due to the523

fact that we have a finite set of data points, so adding too many modes could lead to over-fitting.524

Fits with a wide range of numbers of modes were found to result in the same optimal D-values.525

For fitting, we first rescaled the data in accordance with the non-dimensionalisation of the526

theoretical variables r and t (see Equation 5). Thus we obtain c
exp
(�, s) from c

exp
(r, t). Then both527

models were fitted to the experimental data using a minimal-�2 approach. The goodness of fit528

parameter �2 =
∑

m

(

c
exp
(�, s) − c(�, s)

)2 ∕�2m, where
∑

m denotes the summation over all bins m. Since529

binning resulted in uncertainties �y,bin and �x,bin in the y- and x-directions, both had to be taken530

into account when calculating �m and �2. The combined contribution of x- and y- uncertainties is:531

�2m = �2y,m + �
2
y,indirect,m with �y,indirect,m = �x,m (dc(�, s)∕d�)

|

|

|�=�m
(Bevington and Robinson, 2003). In our532

fits, the value �2 was calculated for a large range of possible diffusion constants D, from D = 0.01533

µm2/min to D = 10 µm2/min. By finding the value of D for which �2 became minimal for a given534

data set and time point, we established our optimal fit.535

The minimal-�2 approach furthermore enabled us to determine the optimal binning width Δr
bin

536

or Δ�
bin
and width of data exclusion for the fits. In order to do so, fits of the normal data set were537

performed for different data binning widths and exclusion sizes of 3 µm to 5 µm. For each of these538

fits the �2-value and the number of degrees of freedom �, i.e. the number of data points minus539

the number of free fit parameters (here number of data points minus 1), were registered. From540

�2 and � we calculated the reduced �2 value, �2� = �2∕� (Bevington and Robinson, 2003). Using �541

and �2� , the probability P� (�
2; �) of exceeding � for a given fit can be estimated, which should be542

approximately 0.5 (Bevington and Robinson, 2003). Therefore, we found our optimal data binning543

width of 3 µm to 4 µm as the width that resulted in a P� (�2; �) as close to 0.5 as possible for all the544

different time points when fitting the nonlinear model. The exact choice of exclusion width was545

found not to influence the fitting result for the nonlinear model.546

In addition to finding the optimal D-value for individual time points, we also modified the547

minimal-�2 routine to find the value ofD that fits a whole data set (i.e. all time points simultaneously)548

in the best possible way. In order to do so, we summed the �2-values obtained for each D over all549

time points, in this way producing a
∑

t �2(D)-curve. The minimum of this curve indicates D∗ for550
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the whole time series. Furthermore, dividing
∑

t �2(D) by the number of time points included in the551

optimization yields an average �2- and reduced �2-value corresponding to this D∗. In addition, the552

width of this time averaged curve at �2 = �2
min

+ 1 indicates the standard deviation of the optimal553

D-value, �D. By approximating the minimum with a quadratic curve, we obtain an estimate for this554

standard deviation as �D = ΔD

√

2
(

�2D∗−ΔD − 2�
2
D∗ + �

2
D∗+ΔD

)

(Bevington and Robinson, 2003) where555

ΔD is the step size between individual fitted D-values, here ΔD = 0.01 µm2/min. Lastly, based on the556

average reduced �2-values, we also compared several c
max
-values for each data set to find the fit557

with probability P� (�2; �) the closest to 0.5 in each case.558

All fits were performed using custom MATLAB routines.559

t-tests560

To compare results between data sets, the values D∗ and corresponding �D from the overall fits561

were considered. It should be noted that these values were not obtained by averaging several data562

sets of the same experimental condition but instead each value results from one data set only.563

However, the sample size for each data set was set to 100 because 100 time points were taken into564

account for each overall optimization. These time points might not be completely uncorrelated,565

limiting the predictive power of the t-test. Two sided tests, specifically unequal variances t-test, also566

known as Welch’s t-test, (Precht and Kraft, 2015), were performed in order to determine whether567

samples differ significantly from each other.568
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Appendix680

Full solution of the linear diffusion equation681

After rescaling space and time as in Equation 5 and introducing � = a∕b < 1, Equation 1 and the682

boundary conditions 3 and 4 read683
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where we have defined f0 = aN0∕DS� and � = a2∕D�. We transform this homogeneous differential684

equation with inhomogeneous boundary conditions into the problem of solving an inhomogeneous685

differential equation with homogeneous boundary conditions by writing c(�, s) as a sum of two686

contributions,687

c(�, s) = �(�, s) +  (�, s), (13)

where we require �(�, s) to satisfy the inhomogeneous boundary conditions688

)�(�, s)
)�

|

|

|

|

|�=1

= f0e�s and
)�(�, s)
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|

|

|

|

|�=�

= 0. (14)

These conditions are satisfied if �(�, s) has the form689

�(�, s) = 1
1 − �

(1
2
�2 − �� + g0

)

f0e
�s. (15)

where g0 is a constant of integration to be determined later. The remaining problem to solve for690

 (�, s) is691
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+
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with homogeneous boundary conditions692
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We can further write  (�, s) as the sum of two contributions,693

 (�, s) =  ℎ(�, s) +  p(�, s), (18)

where  ℎ is the general solution of the homogeneous problem694
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(19)

and  p is a particular solution of the full inhomogeneous problem 17. The full solution of the695

homogeneous problem is given as a series of linearly independent eigenfunctions, each of the form696

697

e−�2sW (�) = e−�2s
(

A
sin ��
�

+ B
cos ��
�

)

, (20)

where the eigenvalues � can be found from simultaneous solution of the boundary conditions,698

A (� cos � − sin �) − B (� sin � + cos �) = 0

A
(

� cos ��
�

−
sin ��
�2

)

− B
(

� sin ��
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+
cos ��
�2

)

= 0,
(21)

which yields the transcendental relation699

tan � (1 − �) =
� (1 − �)
�2� + 1

, (22)

for which each eigenvalue �i is a solution corresponding to one of the linearly independent eigen-700

functions (only �i > 0 need to be taken into account). We can further deduce from the Equation 21701

that Bi = �iAi, where702

�i =
�i cos �i − sin �i
�i sin �i + cos �i

, (23)

and we normalize the obtained expression forWi(�) from Equation 20703
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with704

Y 2i =
1
2
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sin 2�i − sin 2�i�
) (
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+
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)

. (25)

Thus, the homogeneous solution  ℎ is705

 ℎ =
∞
∑

i=1
ℎiHi(�)e−�

2
i s, (26)

with prefactors ℎi to be determined from the initial condition.706

In order to find a particular solution of the inhomogeneous problem, we first rewrite 17 as707

) (�, s)
)s

− 1
�2

)
)�

(

�2
) (�, s)
)�

)

= (�, s). (27)

Now, we express (�, s), as well as the unknown inhomogeneous solution  i(�, s) in terms of the708

normalized eigenfunctionsH(�, s) of the homogeneous problem,709

(�, s) =
∞
∑

i=1
Ri(s)Hi(�), (28)

and710

 i(�, s) =
∞
∑

i=1
Ci(s)Hi(�). (29)

Substituting these forms into 27, and noting that each term in the series must vanish separately we711

obtain712

)Ci(s)
)s

+ �2iCi(s) − Ri(s) = 0. (30)

From the form of (�, s) it follows that Ri(s) = �if0e�s with some purely numerical prefactors �i, so713

we expect Ci(s) ∝ pie�s and find714

pi =
�if0
� + �2i

. (31)

Finally, we determine the �i by reconsidering Equation 28. We multiply both sides by �2Hj(�), where715

Hj(�) is one specific but arbitrary eigenfunction of the homogeneous problem, and then integrate716

over the whole volume V . By the orthogonormality of these eigenfunctions we obtain717

�j = ∫
1

1 − �

(
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2�
�
− �
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2
�2 − �� + g0

)

)

�2Hj(�)d�, (32)

and all the �i can be calculated explicitely. Thus, the full solution of the linear problem is718
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∞
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ℎie
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)
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�s. (33)

The constant g0 can now be calculated from the requirement that ∫ c(�, s = 0)dV = N0. Here we719

make use of the fact that ∫ Hi(�)�2d� = 0 if �i satisfies Equation 22, thus720

g0 =
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