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METHODS

A. Molecular Dynamics (MD)

FG nups were modelled as polymers consisting of N identical beads with diameter d and

bond length r0, both set to 0.76 nm. Bonds were implemented using a harmonic potential

Ubond(r) = 1
2
k(r − r0)

2 with a spring constant k = 500 kBT/nm2 where r is the distance

between the centres of two beads.

To capture the steric repulsion between amino acids and the attraction/cohesion aris-

ing from hydrophobic effects, we imposed an excluded-volume and cohesive interaction be-

tween polymer beads [1]. The excluded-volume interaction is the Weeks-Chandler-Anderson

(WCA) potential given by

Uvol(r) =

4εLJ

[(
σ
r

)12 − (σr )6]+ εLJ , r ≤ d,

0, d < r,
(1)

where εLJ = 500 kBT is the interaction strength and σ = 2−
1
6d; the addition of εLJ to the

potential ensured that Uvol(r = d) = 0.0 kBT . The cohesive interaction is based on an

infinitely ranged attractive pair potential

U(r) =

0, r < d,

−εpp exp
(
d−r
λ

)
d ≤ r,

(2)

where εpp is the cohesion strength and λ is the decay length [2]. We set λ = 0.76 nm and

we imposed that no two beads interacted beyond the cutoff distance rc = 1.52 nm, as it is

not possible to have an infinitely-ranged potential in MD. In order to ensure the continuity

of the pair potential at rc we truncated and shifted the potential given by equation 2 using

Uatt(r) = U(r) − U(r = rc) −
(
dU(r)
dr

)
r=rc

(r − rc) [3] where Uatt(r) is the resulting cohesive

pair potential given by

Uatt(r) = −εpp
A

(
exp
[
1− r

d

](
1− r(r− rc)

rd

)
− 1

e

)
, (3)

where e is Euler’s number and A = 1 + (d/l)2 − 1/e, where l = 1.0 nm is the unit of length.

This ensured that the minimum of Uatt(r = d) = εpp. The total bead-bead pair potential,
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Upp(r), with well depth εpp is given as

Upp(r) =


Uvol(r)− εpp, r < d,

Uatt(r), d ≤ r < rc,

0, rc ≤ r,

(4)

where the minimum of Uvol(r) is bought down to εpp to ensure continuity at r = d. MD

simulations were performed using the LAMMPS package (2016) [4]. We subjected the poly-

mer system to Langevin dynamics at a constant temperature, T , by implementing the NVE

(constant number of beads N, constant volume V, constant total energy E ) time integration

algorithm in combination with a Langevin thermostat. We performed the simulations with

dimensionless parameters with T = 1 and γ = 1, where γ is the friction coefficient, and a

simulation timestep of δt = 0.002. To map simulation time to real time, we mapped one

simulation timestep to 3.4 × 10−6 µs such that the self diffusion time of one bead in our

model matched the self diffusion time of two attached amino acids (with size ≈ 0.76 nm) in

water at room temperature, as outlined below. At least 34 µs were used to equilibrate the

simulations, where equilibration was verified by inspection of the radius of gyration.

Mapping self diffusion times

To map the simulation timestep to a time scale relevant to real FG nups, we computed

the diffusion coefficient, D, from simulations of 20 isolated beads (of radius R = 0.38 nm)

and compared them with calculated diffusion constants for an alanine-proline dimer [5].

We fitted a straight line (with zero y-intercept) to the MSD which gave D = (6.429 ±

0.002 nm2)/6∆t where ∆t is the unknown unit of time. We obtained the unit of time, ∆t,

via the Einstein-Stokes relation: D = kBT
6πηR

, where kB is Boltzmann’s constant, T is the

temperature, η is the viscosity, and R is the radius of the bead. Using kBT = 4 pNnm and

η = 8.90 × 10−10 pNs/nm2 for water at room temperature implied that the unit of time of

the simulations was ∆t = 1.707× 10−9s. This produced a translational diffusion constant of

D = 0.627 × 10−9 m2s−1 for a bead which is comparable to diffusion constants calculated,

from all-atom MD simulations with explicit solvent, for an alanine-proline dimer [5]. The

elapsed simulation time is given by t = Ns× δt×∆t where δt = 0.002 is the LAMMPS time

step and Ns is the number of iterations for which a configuration of the system is recorded.
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Single Polymer

To simulate an isolated polymer in the solvent we placed the first bead at the origin of a

simulation box with side lengths of 600 nm. For these simulations a polymer started in an

extended conformation where beads formed a straight line.

Polymer film

The first bead of each polymer was fixed to a vertex, r⊥ = (x⊥, y⊥, z⊥ = 0.0 nm), on a

triangular lattice in the x−y plane. We approximated a polymer film with infinite extension

in the x and y directions through periodic boundary conditions. The hardness of the surface

is implemented through a bead-surface interaction given by

Usur(∆r⊥) =

Uvol(∆r⊥), ∆r⊥ < d,

0, ∆r⊥ ≥ d,
(5)

where ∆r⊥ is the distance between a bead to the nearest point on the surface passing through

the tethering points. Polymers were grafted onto the surface at a density of 3.3 polymers

per 100 nm2, which is in the range of the grafting density of a yeast NPC that is thought

to be 3.1 to 4.1 polymers per 100 nm2 (i.e. 5.2 - 6.9 pmol per cm2) [6]. The surface area

was set to 545 nm2 and 18 polymers were used. The initial condition was generated using a

short MD simulation where polymer beads were attracted to the surface.

Polymer pore

We based the pore geometry on an NPC-mimetic system (NuPOD) that we have used

previously [7]. In this system, 48 polymers were grafted onto freely rotating rods that were

fixed on the inside of a stationary cylinder. The rods and cylinder consisted of beads and all

polymer, rod, and cylinder beads interacted through excluded-volume interactions only. In

addition, the beads of the polymers interacted through an attractive potential as outlined

above (equation 4).
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Calculating the dissociation constant

We calculated the dissociation constantKD (in Molars) for two beads, in a simulation box

with periodic boundary conditions, with cohesion strength εpp. We used the relation KD =

K−1A = (NAn1(V − VD)/n0)
−1 [8], where KA is the association constant, NA is Avogadro’s

number, n1 is the number of simulation trajectories containing two beads that form a dimer,

i.e., the inter-particle separation is ≤ rD where rD is the dimerization cut-off, V is the

volume of the simulation box ((6 nm)3), VD = 4πr3D/3 is the dimerization volume of one

bead (with a volume, excluding the dimerization volume, per bead (V − 2VD)/2 of 106-

108 nm3 for rD between 0.76-0.38 nm respectively [8]), and n0 is the number of simulation

trajectories containing two beads that have an inter-particle separation > rD.

Model parameterization

To set the cohesion strength εpp for polymers with lengths corresponding to FG nups (Ta-

ble S1) we performed MD simulations of single polymers with εpp = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)

kBT . We computed the ensemble averaged Stokes radius RS, the radius of a sphere that

has the same diffusion coefficient as the polymer, from simulations run for 68 µs, using the

HYDRO++ program (version 10) [9] assuming a temperature of 20.0 ℃, a solvent viscosity

of 0.01 gcm−1s−1, and solution density of 1.0 g/cm3. In order to find the εpp for a particular

FG nup in this model, we interpolated the calculated Stokes radii as a function of εpp and

solved for the εpp that yielded the experimental Stokes radius.

Model validation

To validate the parameterized polymer model we simulated polymer films at cohesion

strengths εpp =( 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) kBT and calculated the model film thickness pre-

dictions by numerically solving
∫ zκ
0
ρ(z)dz/

∫∞
0
ρ(z)dz = κ, where κ is the chosen fraction of

beads and zκ is the distance above the surface that contains κNpN beads. The film thickness

is calculated with κ = 0.95± 0.05, similar to previous comparisons between computational

and experimental data [6]. The max height used for the density profile was 250 nm with

0.5 nm/bin for the histogramming. To obtain the film thickness at the NPC grafting den-

sity from the experimental data, we first fitted datasets, for a range of grafting densities,
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to a function Z(D) = ADB, where Z is the thickness, D is the grafting distance between

polymers, and {A,B} are fitting parameters. We assumed that the average film thickness

goes to zero for D � 1 nm. The experimental film thickness at the NPC grafting distance

is then defined as Z(DH) where DH =
√

1.15·103
6g

is the grafting distance, g = 5.4 pmol/cm2

is the approximate NPC grafting density, and the numerical factors convert g to a grafting

distance on a triangular lattice in units of nm.

File compressibility

To quantitatively compare polymer film and pore assemblies, we used a measure of bead

compaction that could be implemented in the same way irrespective of geometry. We used

the file compressibilty quantity which represents how much a data file containing bead

coordinates can be losslessly compressed [10]. To compute the file compressibility we first

calculated the minimum volume of a box, V0, that contained all polymer beads in a system

with εpp = 0.0 kBT . V0 was then discretized into cubes with side length l = 0.76 nm. For a

simulation run at a certain εpp, every 0.34 µs the simulation box was raster scanned to check

if a cube was inside a bead (= 1) or not (= 0), and a file was generated containing all the

states of the cubes. These files were then losslessly compressed using the bzip2 facility [11]

and the average of the file sizes, %ave(εpp), were computed. The file compressibility parameter

was defined as % = (%ave(εpp)−%min)/(%ave(0.0)−%min), where %min is a reference compressed

file size of a maximally ordered file containing a sequence of 0s only. For all cases the total

number of characters in the uncompressed state file was V0/l3.

Resealing simulations

To investigate the parameterized model in a dynamic setting, we investigated the dynamic

behaviour of polymer pore assemblies by performing ‘resealing’ simulations, where a hole

(void of polymer beads) with diameter dhole is artificially made at the centre of the polymer-

coated pore and ‘resealing’ begins when this constraint is removed. The initial hole was

created through a simulation where a cylinder with radius dhole/2 and length L = 200 nm

was dragged through the polymers inside the pore. The cylinder was a continuum, i.e.,

not constructed of point like beads, and the distance between a bead and the cylinder was
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defined as the distance from the bead to the nearest point on the surface, therefore the force

the surface exerted on the bead was along the direction that is normal to the surface at that

point. The cylinder was placed at an initial height so as not to make contact with any bead,

and with its axis permanently aligned with the pore scaffold. The centre of the cylinder was

then incrementally moved towards the origin. The cylinder and beads interacted through

excluded-volume only using the WCA pair potential given by equation 1. Whilst the cylinder

was moving an external constraint was imposed to force polymer beads to within the axial

dimensions of the pore scaffold, without causing overlapping between beads. The simulation

imposing the constraints was run for 0.34 µs and then a second simulation, marking the

beginning of resealing, was performed with the cylinder and external constraints removed.

The resealing of the pore is quantified through a central density, i.e., the number of beads

in a circle of radius 5 nm located at the origin, which we compute every 0.34 µs, and we fit

this data to a relaxation function ρ(t) = ρ0 (1− exp (−t/τ)), where ρ is the central density,

ρ0 the equilibrium central density, t is time, and τ is the resealing time: the time taken for

the central density to reach ≈ 0.63ρ0.

B. Density Functional Theory (DFT)

To investigate molecular interactions in a polymer system we have used classical density

functional theory (DFT), a scheme based upon the minimisation of a dimensionless free

energy functional F that depends solely on the number density of beads ρ(r), and is written

as F [ρ(r)] [12]. In this work we have formulated DFT using mean-field theory so that

the many-body polymer interactions are reduced to a single polymer interacting with a

dimensionless mean field w(r). The optimum mean field minimizes F and produces as

output the equilibrium number density.

To model planar assemblies of FG nups, we formulated a 1D version of a previously

successful 2D DFT formulation [6], where polymers were grafted onto the base of a cylinder

with the assumption of rotational symmetry along the axial coordinate. This DFT has been

previously described in extensive detail [2, 6, 13]. Here we describe the 1D version, consisting

of polymers grafted onto a flat surface and assuming translational symmetry along this

surface. The determining coordinate was therefore the height z above the grafting surface.

We took the approximation F = F0 + {Fvol + Fatt + Fsur + Fmf} where F0 is the free
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energy functional describing a chain of N non-interacting point-like beads in the mean field,

and excess terms representing excluded-volume, attractive, surface, and compensating mean

field interactions respectively. F0 is defined by the Hamiltonian

H0 =
N−1∑
i=0

h(ri+1, ri) + kBT

N∑
i=1

w(zi), (6)

where h is a function (and r is the magnitude of bead separation) that imposes a rigid bond

length of r0 between beads in a chain and w(z) is the 1D mean field.

Fvol is the free energy functional imposing the excluded volume interactions between

beads. To impose the excluded volume interactions, we used fundamental measure theory

Fvol =

∫
(φwb + φch) dz, (7)

where φwb is the white bear functional [14] and φch is the chain connectivity functional [15].

φwb is given by

φwb =− n0 log(1− n3) +
n1n2 − n1 · n2

1− n3

+ (n3
2 − 3n2n

2
2)
n3 + (1− n3)

2 log(1− n3)

36πn2
3(1− n3)2

(8)

and φch is

φch =

(
1−N
N

)
n0

(
1− n2

2

n2
2

)
log

 1

1− n3

+
n2R

(
1− n2

2

n2
2

)
2 (1− n3)

2 +
n2R

2
(

1− n2
2

n2
2

)
18 (1− n3)

3

 , (9)

where R = d/2 is the bead radius and {nα} and {nα} are sets of scalar and vector weighted

densities, respectively, that are given by

nα(z) =

∫
ρ(z′)ωα(z − z′)dz, α = 0, 1, 2, 3, (10a)

nα(z) =

∫
ρ(z′)ωα(z − z′)dz, α = 1, 2, (10b)

where ρ(z) is the one dimensional number density, ωα and ωα are the 1D geometrical weight

functions of a sphere [16] given as w2(z) = 2πRθ(R−|z|), w2(z) = 2πzezθ(R−|z|), w3(z) =

π(R2 − z2)θ(R − |z|), w1(z) = w2(z)/(4πR), w1(z) = w2(z)/(4πR), w0(z) = w2(z)/(4πR2),

where ez is a unit vector and θ is the Heaviside function.

The cohesive term in the free energy, Fatt, is implemented using the random phase ap-

proximation [17] and is given by

Fatt =
β

2

∫ ∫
ρ(z′)ρ(z)U⊥att(z − z′)dzdz′, (11)
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where β = 1/kBT and U⊥att(z) =
∫∞
−∞

∫∞
−∞ Uatt(r)dxdy (integrated over an infinite grafting

area) with r being the magnitude of vector separation between beads, and Uatt is given by

equation 3.

The free energy term representing the interactions between beads and the surface is given

as

Fsur = β

∫
ρ(z)Usur(z)dz, (12)

with Usur as given in equation 5. The mean field energy, Fmf , is the dimensionless free

energy term that compensates for the introduction of a mean field and is given as

Fmf =

∫
w(z)ρ(z)dz, (13)

To incorporate a number of polymers, Np, one multiplies F0 by Np and interprets ρ(z) as

the number density of NpN beads. To compute ρ(z), we solved the 1D diffusion equation

for a random walk with contour length Nr0 in the presence of an external field w(z) [2]. We

optimized w(z) through a discrete update rule

wn+1(zj) = wn(zj) + ∆t

(
−wn(zj) + µn(zj) + β

M∑
i

ρn(zi)U
⊥
att(zi − zj)∆z + βUsur(zj)

)
,

(14)

where n is an index representing the current iteration, ∆t is the update timestep, {i, j} are

labels denoting discrete space, µ is the functional derivative of Fvol with respect to ρ(z), and

M is the total number of discrete spatial points (along the z axis). To ensure the stability

of the update rule we used M= 1024 and ∆z = zmax/M (zmax = 100 nm so that polymer

beads were well within the spatial domain), ∆t= 0.001, and the initial mean field was set

to zero for all z. Convergence was obtained when wn+1(zj)− wn(zj) ≤ 10−7 for all j.

Calculating the second virial coefficient

We considered two beads, treated as weakly attractive (εpp ≤ kBT ) hard spheres, inter-

acting with a pair potential given by equation 4. The second virial coefficient, B2(εpp), is

given as

B2(εpp) = 2π

(
b+

∫ rc

r0

r2 (1− exp (−Uatt(r)/kBT )) dr

)
,

≈ 2π

(
b+

∫ rc

r0

r2
Uatt(r)

kBT
dr

)
, (15)
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where b = r30/3, r0 = d is the contact distance between two beads, and rc is the cut-off of

the attractive potential (=∞ for infinite ranged potentials) [18].

SUPPLEMENTARY TABLES AND FIGURES

FG nup No. of Protein Polymer
Charged Single polymer Polymer film

Source
amino acids volume (nm3) a volume (nm3) b /hydrophobic ratio c RS (nm) εpp (kT) Thickness (nm) εpp (kT)

Nsp1 95 9.1 10.8 1.31 2.68 0.50 - - [20]

Nsp1p-5FF 150 15.3 17.0 1.27 4.4 - d 5.68 0.54 [21]

Nup60 151 15.3 17.2 0.95 3.13 0.47 - - [20]

Nsp1n 172 15.2 19.7 0.08 2.71 0.69 - - [20]

Nup100s 190 19.3 21.72 1.0 3.66 0.42 - - [20]

Nup145Ns 191 19.4 21.8 0.89 2.98 0.60 - - [20]

Nup116s 196 20.7 22.4 1.35 3.91 0.36 - - [20]

Nup42 212 18.5 24.3 0.14 2.84 0.72 - - [20]

Nup49 215 18.4 24.6 0.13 2.69 0.93 - - [20]

Nup62 240 20.5 27.5 0.03 3.7 0.49 4.62 0.91 [22]

Nup145N 242 21.7 27.7 0.14 2.82 0.85 - - [20]

Nup57 255 22.3 29.2 0.14 3.19 0.61 - - [20]

Nup1c 279 24.8 31.9 0.14 3.24 0.63 - - [20]

Nup214 282 23.8 32.3 0.14 3.4 0.60 2.64 1.10 [22]

Nsp1p-12FF 283 27.9 32.3 1.4 4.3 0.42 9.03 0.47 [21]

Reg-FSFG 315 27.8 36.4 0.0 - - 11.01 0.44 [6]

Nup2 376 36.7 43.0 1.1 5.98 0.15 - - [20]

Nsp1m 431 40.9 49.4 1.22 6.53 0.19 - - [20]

Nup159 441 40.6 50.6 0.69 5.54 0.40 - - [20]

Nup98-Glyco 496 45.1 56.9 0.2 - - 16.22 0.41 [6]

Nup98 498 44.7 57.1 0.2 5.6 0.40 5.24 0.72 [22]

Nup116m 551 48.9 63.2 0.11 4.65 0.50 - - [20]

Nup1m 578 57.0 66.3 1.08 6.79 0.38 - - [20]

Nup153 602 55.7 69.1 0.5 5.1 0.48 10.31 0.50 [22]

Nup100n 609 54.9 69.9 0.11 4.87 0.49 - - [20]

Nsp1 615 57.4 70.4 0.93 - - 27.09 0.34 [6]

Nup2p 720 72.1 82.6 1.11 7.9 0.28 - - [23]

a Sum of Van der Waals volumes for each specific amino acid [19].
b Sum of bead volumes. A diameter of 0.76 nm is used for all calculations.
c Based on the same amino acid classification as used in [20].
d Experimental Stokes radius is slightly overestimated due to polydispersity [21].

TABLE S1. Characterisation, and experimental dimensions (Stokes radius RS and film thickness),

of the resulting cohesion strengths (εpp, from MD) for all FG nups used in this work.
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FIG. S1. Defining and quantifying the interactions between polymer beads. a) Plot of the total

pair potential energy, Upp(r), between two polymer beads, with a diameter of 0.76 nm, at a centre-

to-centre distance r, shown for various cohesion strengths εpp. b) The dissociation constant KD

between two individual polymer beads as a function of εpp, for three choices of the dimerization

cut-off (see Methods): the maximum inter-particle separation at which two beads are considered a

dimer. For all choices of the dimerization cut-off, the number of simulation trajectories containing

dimers was > 2000.

Interaction
RS = A0(NAA)

ν RG = A0(NAA)
ν

regime A0 (nm) ν A0 (nm) ν

εpp = 0.0 kBT 0.26± 0.02 0.55± 0.01 0.22± 0.05 0.61± 0.03

εpp = 〈εpp〉FG 0.47± 0.04 0.38± 0.02 0.4± 0.1 0.38± 0.04

εpp = 1.0 kBT 0.63± 0.05 0.27± 0.01 0.54± 0.05 0.24± 0.02

Ideal 0.35± 0.03 0.42± 0.01 0.25± 0.04 0.48± 0.03

Experiment 0.2± 0.3 0.5± 0.2 - -

TABLE S2. Fitting parameters for RS and RG using a power law fit, where NAA is the number of

amino acids. Note that the obtained values of the scaling exponent ν do depend on the choice of

A0 (here left as a free fitting parameter). The uncertainties represent 95% confidence intervals.
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FIG. S2. Further quantification of single-molecule morphologies. a) Comparing the Stokes radii

RS to the radius of gyration RG for various interaction regimes as calculated from MD simulations

of polymers with a bead diameter of 0.76 nm. b) Comparing Stokes radii from MD simulations to

experiments, as in Figure ??c but here using a bead diameter of 0.57 nm, i.e., a polymer with a

predicted persistence length smaller than that for FG nups (0.29 nm) and with an excluded volume

that underestimates that of FG nups by ≈ 30%. The beads interacted through an attractive pair

potential, as given in equation 3, with d=0.57 nm and with a cut-off range rc = 1.52 nm. In this

model 〈εpp〉FG = 0.21± 0.06 kBT . As for the model discussed in the main text, the behaviour for

this 〈εpp〉FG closely matched the predictions for ideal polymers.
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FIG. S3. Model dependence on overestimates of the excluded volume for different FG nups. a) The

fractional overestimation of the excluded volume of an FG nup (V real
b ), i.e., the total sum of the

Van der Waals volumes, by the excluded volume of a polymer in the model (V model
b ), i.e., the total

sum of the bead volumes. b) For FG nups that have a smaller total amino acid volume compared

with the polymer model (i.e., for which the excluded-volume is overestimated by a larger amount

in our model), a larger effective εpp is needed to describe the (more compact) morphology of those

FG nups. c,d) In line with previous work [20], we can classify the different FG nups according

to their relative contents in terms of more charged and more hydrophobic amino acids and note

that both the fractional overestimation of the excluded volume and the cohesion strength εpp follow

the same trend. e,f) Both the overestimation of the excluded volume and the experimental Stokes

radii (relative to the prediction of 〈εpp〉) show the same trend as a function of the ratio of charged

and hydrophobic amino acid contents of the FG nups. This suggests that such variations between

FG nups are simply do to differences in their excluded volume, and not to systematic differences in

charge/hydrophobicity as proposed previously [20].
13



FIG. S4. Interpolation of the experimental data from FG nup films, to estimate the film thickness for

a grafting distance/density that corresponds to the NPC (3.2 polymers/100 nm2, or 5.4 pmol/cm2).

Data were fitted with a power law, with 95% mean prediction bands (green shading).
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FIG. S5. Morphologies for polymers grafted inside an NPC-mimicking nanopore [7]. a) MD equi-

librated snapshots of polymers in a pore for various interaction regimes (Np = 48 polymers, N =

300 beads). Polymers are shown in blue; the inner diameter of the (DNA origami) pore scaffold

is shown in grey; and conjugated DNA handles (freely rotating, rigid rods) in red. b) A measure

of polymer compaction, file compressibility, is plotted as a function of εpp for the different starting

conditions of the simulations. c) Polymer extension in the pore as a function of εpp. The red band

denotes the upper and lower radial extension thresholds that represent the radial distance from the

centre containing 99% and 90% of the total bead count respectively; the purple band refers to the

axial extension.
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FIG. S6. Snapshots of polymer pore configurations (see Figure S5) for various εpp from two different

initial conditions.

FIG. S7. Benchmarking DFT against MD film data for the thickness of FG nup films, as a function

of cohesion strength εpp. The bands denote a tolerance of ±5% of the total number of beads. DFT

thicknesses at εpp > 0.8 kBT were unavailable for N = 250 and 300 beads, since the dense packing

complicated the convergence of the DFT calculations.
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FIG. S8. DFT equilibrium mean fields w(z) (see equation 6) for polymer films comprising polymers

at various chain lengths N and cohesion strengths εpp. We show the mean fields just above the

grafting plane. The mean field energy per polymer (see Figure ??) follows by the integration (over

z) of w(z)ρ(z), divided by the number of polymers Np and multiplied by kBT (see equation 13).
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FIG. S9. Snapshots of polymer pore configurations (see Figures S5 and S6) from the dynamic

resealing simulations (see Methods) and their resulting configurations after 34 µs of simulation

time. For εpp = 1.0 kBT the pore did not converge to the configuration that was obtained by

starting from a compact initial condition, hence the pore did not reseal.
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