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Abstract 

Microbial cooperation enables groups of conspecific cells to perform tasks that cannot be 

performed efficiently by individual cells, such as utilization of various secreted ‘public-good’ 

molecules, communication via quorum-sensing, or the formation of multicellular structures. 

Cooperation is often costly and therefore susceptible to exploitation by ‘cheater’ cells, which 

enjoy the benefit of cooperation without investing in it. While population structure is key to 

the maintenance of cooperation, it remains unclear whether other mechanisms help in 

stabilizing microbial cooperation. Like other microbial traits, cooperation is often governed by 

complex regulatory networks, and one reoccurring motif is an ‘intercellular positive-feedback 

loop’, where a secreted molecule, e.g. a public-good or a quorum-sensing signaling molecule, 

activates its own production in all surrounding cells. Here we investigate the role of 

intercellular feedbacks in the maintenance of bacterial cooperation. We combine theory with a 

synthetic-biology approach, using swarming motility of Bacillus subtilis engineered variants, 

to compare the response of ‘open-loop’ and feedback cooperators to the presence of cheaters. 

We find that positive feedbacks on cooperative behaviors – either directly or through a 

feedback on quorum-sensing – maintain cooperation in a broader range of environments, 

relieving the requirement for a strong population structure. Our results directly demonstrate the 

stabilizing effect of intercellular positive feedbacks on cooperative behaviors, and suggests an 

explanation for their abundance in regulatory networks of bacterial cooperation.  
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Introduction 

Microbial behavior is guided by complex regulatory gene networks. These networks integrate 

information from the environment with information on the cell state in order to reach a 

“decision” on whether or not to express a certain trait and to which extent. Understanding the 

function of these regulatory networks and the design principles guiding them is a major focus 

of systems biology [1,2]. Specifically, feedback loops have attracted much attention and 

studied theoretically and experimentally. Negative feedbacks were shown to stabilize systems 

output [3,4], to reduce noise [5] or to speed up response [6], while positive feedbacks were 

mostly studied as modules that create bistability [7–9], or sharp irreversible transitions during 

differentiation [10,11].  

The study of regulatory networks is also crucial for our understanding of the dynamics of 

microbial social behaviors and specifically cell-cell signaling and cooperation. Many 

microorganisms exhibit cooperative behaviors – the act of one cell is beneficial to the whole 

group of cells, but costly to the individual cell [12,13]. The canonical example is secretion of 

‘public-good’ molecules, such as extra-cellular metabolic enzymes [14–16], surfactants [17–

20] and virulence factors [21–23]. Many microbial cooperative behaviors are guided by 

quorum-sensing cell-cell communication systems, where cells regulate cooperative behaviors 

in a density-dependent manner through secretion and response to signaling molecules [24]. 

The dependence of cooperative behaviors on secreted molecules, either public goods or 

signaling molecules, allows for the formation of intercellular (group-wide) feedback loops, 

whereby the secretion rate of a cell is determined by the (local) external concentration of the 

secreted molecule. This creates an association between the individual investment in 

cooperation and the mean investment in its local environment [25]. Both positive and negative 

intercellular feedback loops are prevalent in the regulatory networks of microbial cooperative 

behaviors, and especially in the secretion of public-good molecules. First, production of many 

public-good exoenzymes is directly inhibited by their product (e.g., [26]), or regulated by the 

stress-response system [19]. Both of these forms of regulation will lead to the formation of an 

‘intercellular negative-feedback’ loop. In the latter case, the negative feedback is formed by 

virtue of the reduction of stress levels through the cooperative act. Second, public-good 

molecules sometimes regulate the transcriptional activation of their producing genes, forming 

an ‘intercellular positive-feedback’ loop. Iron-scavenging siderophores provide one example 

for such a design, since the binding of ferri-siderophores to their specific receptors for 

reentering the cell also activates the siderophore synthesis pathway [27–30]. Another example 

for this positive-feedback design is the secretion of bacteriocins, which benefit all immune 

bacteria. Bacteriocin production is sometimes triggered by self-induced DNA damage [31–33], 

thereby forming an intercellular positive feedback on public goods. Finally, many quorum-

sensing systems, in addition to their regulation of cooperative behaviors, activate the 

production of their own signaling molecules, and this is another form of an intercellular positive 

feedback on cooperation [34,35]. 

Intercellular feedbacks may lead to different effects than intracellular ones. For example, unlike 

intracellular positive feedbacks, intercellular positive feedbacks should decrease cell-to-cell 
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variations and homogenize a population [36–38], yielding bistability in the level of the 

population that could be either all 'ON' or all 'OFF'. Intercellular positive feedbacks were 

suggested to allow population synchronization [33,34], to speed-up QS response [39,40] and 

sharpen its density dependence [34,41], and to allow spatial wave propagation [42]. These 

suggested roles of intercellular positive feedbacks disregard the social conflict and the intrinsic 

susceptibility of microbial cooperative behaviors to exploitation and elimination by non-

cooperative ‘cheater’ mutants – variants which do not invest in cooperation but enjoy its 

benefits. Such cheaters, if kept unchecked, will invade a cooperative population and lead to its 

demise. A key question in microbial ecology and evolution is therefore how cooperative traits 

are maintained in evolution. Theoretically, kin-selection has been a leading candidate for this 

evolutionary maintenance [12], and may very well fit the high level of population structure and 

relatedness observed in microorganisms [43]. However, there is an ongoing debate whether 

other mechanisms, such as association with private good [44], policing [45], or snow-drift 

interactions [16], can replace or add up to kin-selection in maintaining cooperation (reviewed 

in [12]). The effect of microbial regulatory-network structure on the evolutionary maintenance 

of cooperation has been less studied [35,46]. 

Here we use a combination of mathematical models and a synthetic biology approach to show 

that intercellular positive feedbacks stabilize cooperation by reducing cooperative investment 

around cheaters, as was proposed for QS regulation by simulations [46] and indirect 

experiments [35]. We present a model of feedback regulation that demonstrates that positive 

feedbacks extend the range of environments in which cooperation is evolutionarily stable, and 

this stabilizing effect positively depends on feedback strength. We construct and calibrate 

engineered variants of public-good regulation, with and without feedback, in B. subtilis, and 

show that the stabilizing effect of positive feedbacks is due to a positive association between 

the individual’s cooperative investment and the mean investment in its local environment. We 

further dissect the two advantages of this association; a reduced intra-group disadvantage, and 

an increased inter-group advantage, and use a simple structured population assay to validate 

the broadening of the range of environments where cooperation is stable. 

Results 

A simple mathematical model demonstrates that an intercellular positive feedback on 

public-goods cooperation increases stability against cheater mutants 

To study the effect of intercellular feedbacks on the evolutionary stability of cooperative 

behaviors, we devised a simple mathematical model of feedback-regulated public goods (Fig. 

1A). We assume that the public-good production rate 𝑥 of an individual bacterium is linearly 

regulated by the local concentration of public goods (which in steady state is proportional to 

the average public-good production rate �̅�, assuming constant cell density, see Fig. 1B and 

supplementary text for derivation): 

(1)               𝑥 = 𝑓(�⃗�, �̅�) = 𝑔0 + 𝑔𝐹𝐵�̅�, 

where �⃗� = (𝑔0, 𝑔𝐹𝐵) is a set of values that determine the form of the regulatory function 𝑓; 

𝑔0 > 0 is the basal public-good production rate, and −1 < 𝑔𝐹𝐵 < 1 (positive for positive 
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feedback and negative for negative feedback) is the feedback strength that measures the effect 

of the public good on its own production rate. 

 

Figure 1 – A mathematical model demonstrates that a positive-feedback structure improves 

evolutionary stability against cheaters. (A) The model describes bacterial secretion of public goods 

(PG) (here, exoenzymes that degrade complex nutrients into simpler nutrients that can enter the cell). 

Feedback control leads to either activation (blue arrow heads) or repression (red bar-heads) of PG 

production by their average concentration in the environment. (B) PG production rate, 𝑥, is assumed to 

be linearly dependent on external PG concentration (which at steady state is proportional to the mean 

production rate, �̅�, see supplementary text). (C) Calculated threshold relatedness (𝑟𝑡ℎ, purple curve), for 

evolutionary stability against cheating, as a function of feedback slope, 𝑔𝐹𝐵 (blue/red regions for 

positive/negative feedbacks respectively). For every feedback slope, 𝑔𝐹𝐵, there is a threshold of 

relatedness 𝑟𝑡ℎ =
1−𝑔𝐹𝐵
𝐵

𝐶
−𝑔𝐹𝐵

 (purple line), above which cooperation is stable against cheater invasion and 

below it cheaters invade. Dashed line represents the Hamilton rule threshold for unregulated 

cooperation 𝑟𝑡ℎ(𝑔𝐹𝐵 = 0) =
𝐶

𝐵
. The benefit to cost ratio parameter used here is 

𝐵

𝐶
= 1.5. 

For simplicity, we assume a linear fitness function, where the fitness 𝑊 of each individual 

decreases with its own public-good production rate (with a cost parameter 𝐶) and increases 

with the mean public-good production rate in its surroundings (with a benefit parameter 𝐵): 

(2)                𝑊(𝑥, �̅�) = 1 − 𝐶𝑥 + 𝐵�̅�. 

We tested the stability of cooperators with different regulatory strategies in the plane of 

(𝑔0 × 𝑔𝐹𝐵) to invasion by public-good null cheater mutants, i.e. (𝑔0 = 0, 𝑔𝐹𝐵 = 0). We 

assumed a simple population structure such that the frequency of invaders in a patch is either 

zero or equals the structural relatedness coefficient 𝑟 [47–49]. We therefore compared the 

fitness of an invading cheater in a patch with a frequency 𝑟 of cheaters to the fitness of a 

cooperator in a pure cooperator patch. We found that invasion success is independent of the 

basal public-good production rate 𝑔0 of the resident strategy, and depends only on the feedback 

strength 𝑔𝐹𝐵. The condition for stability of the strategy (𝑔0, 𝑔𝐹𝐵) to invasion by cheaters is that 

the relatedness should be higher than a threshold that depends on 𝑔𝐹𝐵 (Fig. 1C):  

(3)                                        𝑟 > 𝑟𝑡ℎ(𝑔𝐹𝐵) =
1−𝑔𝐹𝐵
𝐵

𝐶
−𝑔𝐹𝐵

. 

Figure 1C shows this threshold (purple line) as a function of the feedback strength 𝑔𝐹𝐵. The 

dashed line is the Hamilton rule threshold for constitutive (‘open-loop’) cooperation: 
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𝑟𝑡ℎ(𝑔𝐹𝐵 = 0) =
𝐶

𝐵
. One can see that as 𝑔𝐹𝐵 becomes larger, the range of relatedness levels that 

allow cooperation to be stable against cheating becomes wider. Thus, a positive-feedback 

structure (𝑔𝐹𝐵 > 0) promotes cooperation by weakening the demand of Hamilton's rule for 

constitutive cooperation and allowing stable cooperation in a wider range of population 

structures, while a negative-feedback structure (𝑔𝐹𝐵 < 0) makes this demand more stringent. 

We note that one can recapture Eq. (3) using the standard Hamilton rule, �̃� >
�̃�

�̃�
, but �̃�, �̃�, �̃� 

would be different than the structural relatedness 𝑟 and our benefit and cost parameters 𝐶, 𝐵 

[50]. Interestingly, the same relation between feedback strength and the threshold relatedness 

is found when considering local evolutionary stability to small mutations (see Figs. S1,S2 and 

supplementary text). 

Positive-feedback cooperators are better immune to cheating since they "sense" the presence 

of cheaters (when they sense a low concentration of public goods) and reduce their investment 

in cooperation with the increase in the frequency of cheaters in the population. Negative-

feedback cooperators, on the other hand, invest even more in cooperation when there are 

cheaters around. The reduction in cooperative investment of positive-feedback cooperators 

helps them in two ways. First, they suffer a smaller cost when mixed with cheaters (and this 

cost decreases with their frequency in the group), reducing the intra-group disadvantage of 

cooperators. Second, cheaters in these mixed social groups, and especially in cheater-

dominated groups, gain a smaller benefit, and this increases the inter-group advantage of 

cooperators. 

How could these predictions be extended to feedbacks in QS regulation? In a QS design, where 

the binding of self-produced signals to their cognate receptors activates cooperative behaviors, 

a null mutation in the response genes yields a signal-blind cheater genotype. In many cases, 

QS response and signaling genes are co-transcribed as an operon [34], and therefore response-

null mutants could also be signal-null mutants. In the supplementary text, we extend our model 

and analyze stability of two QS strategies; with and without a feedback on the QS signal, to 

invasion by response-null mutants and full QS-null mutants (response- and signal-null). We 

show that the simple QS design by itself provides an increased immunity against full QS-null 

mutants because QS-cooperators can "sense" their presence (by sensing low external signal 

concentrations) and reduce cooperative investment accordingly. However, simple QS-

cooperators cannot "sense" the presence of response-null mutants that have a functional 

signaling gene. These mutants continue to produce QS signals and coerce cooperators to have 

full investment in cooperation. However, adding a feedback on the QS signal improves stability 

against these response-null mutants, and the resulting condition for stability is identical to the 

simpler case of auto-regulated public goods (Eq. (3)). Thus, the stabilizing effect of the 

intercellular positive-feedback structure applies here as well, improving the stability against 

response-null mutants that pose a threat to simple QS cooperation. 
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Synthetically altered regulatory networks of QS in Bacillus subtilis, with and without 

feedback, can be calibrated to display comparable cooperation levels 

To experimentally test whether positive feedbacks improve stability to cheating, we have 

synthetically manipulated the regulatory network design of the Surfactin production pathway 

of B. subtilis. Surfactin is a secreted surfactant lipo-peptide, which  enables B. subtilis to 

perform swarming motility on semi-solid agar [51], among other roles [52–55]. Surfactin 

production is cooperative and can be exploited by non-secreting cheater mutants during 

swarming [17,18]. Surfactin is produced by an enzymatic complex that is coded by the srfA 

operon [56]. This operon is activated by the transcriptional regulator ComA [57], part of a two-

component system (ComP-ComA). The transmembrane receptor ComP phosphorylates and 

activates ComA upon binding by the quorum sensing signal ComX [58]. This signal is a 

modified peptide which is produced from the comX gene and further cleaved and modified by 

the product of the comQ gene [57]. The comQXP genes are known to be co-transcribed as an 

operon, with constitutive expression [59] (see Fig. 2A for an illustration of the pathway). 

 

Figure 2 – Design and gene expression of synthetic constitutive and positive-feedback QS systems. 

(A-C) Schemes of the native ComQXP QS system (A), the positive-feedback QS system (B, with 
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comXP under a ComA-regulated promoter), and the inducible constitutive (‘open-loop’) QS system (C, 

with comXP under an IPTG-inducible promoter). (D) Density dependence of QS response for a 

response-null mutant (∆comA, AES3412, orange), positive-feedback-QS strain (AES3430, red) and an 

inducible constitutive-QS strain at multiple IPTG levels (AES3429, other colors, see legend). QS 

response is measured in liquid mono-cultures as the median of PsrfA-YFP fluorescence values taken 

using flow cytometry (Methods) and displayed as a function of bacterial density (measured by counting 

flow-cytometer events, calibrated to OD600 values, Methods). One biological repeat is presented for 

each condition. (E) QS response of cooperators in liquid co-cultures with their response mutants. The 

QS response at a bacterial density corresponding to OD600 = 4.7 is presented for the constitutive QS-

cooperator (AES3439, blue) and positive-feedback QS-cooperator (AES3440, brown) in co-cultures 

with their corresponding response-null mutants (AES3425 and AES3427, respectively). Data 

corresponds to two biological repeats of each strain. Lines are linear model fits to the data, with 𝑅2 =

0.85 and 𝑅2 = 0.97 for constitutive and positive-feedback QS-cooperators respectively. Note the 

logarithmic scale of the x-axis. 

In order to compare the sensitivity of feedback and constitutive designs to cheating we 

modified the regulatory network of the comQXP system. To introduce a positive-feedback loop 

design, we placed the comXP part of the operon under the control of a copy of the srfA promoter 

(which is activated by ComA) (Fig. 2B). The native state of the system is constitutive; however, 

in order to properly calibrate the two systems we placed comXP under the control of an IPTG-

inducible promoter (Fig. 2C). Each of these two constructs was then inserted into two 

backgrounds; into a comXP knockout strain to create cooperators, and into a comXPA knockout 

strain to create response-null mutants with functional signaling genes (comQ and comX). This 

setup allowed us to test the theoretical predictions that a positive-feedback loop on the QS 

signal improves the stability against response-null mutants. 

Next, we calibrated the systems. To monitor cooperative secretion of surfactin, we introduced 

a genomic YFP transcriptional reporter of the srfA operon (PsrfA-YFP) [60] into the various 

strains. By modifying IPTG concentration we were able to calibrate the system such that the 

two cooperators had similar cooperation levels (as measured by PsrfA-YFP expression in shaken 

liquid cultures that do not require swarming motility, Methods). Fig. 2D describes the results 

of this calibration. Except for the response-null mutant, which showed no QS response, all 

other time-series displayed density dependence, as expected from QS response. For the 

constitutive QS strain, the density dependence slope increases with increasing IPTG levels, as 

higher bacterial density is needed to elicit QS response when signals and receptors are weakly 

expressed. The expression of the positive-feedback QS strain is comparable to the constitutive 

QS strain at an IPTG concentration between 6-8μM. 

Positive-feedback cooperators display a positive frequency-dependent cooperative 

investment 

After choosing an IPTG concentration (7µM) that makes the two strains comparable in mono-

cultures, we tested their cooperative investment level when each is co-cultured with its 

respective response-null mutant (genetically identical to cooperators except an additional comA 

knockout). Fig. 2E presents PsrfA-YFP expression of cooperators in these co-cultures, estimated 

at a chosen bacterial density, corresponding to OD600 = 4.7 (Methods). As expected, the 
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cooperative investment of the constitutive QS-cooperator is only weakly dependent on its 

frequency in the population (linear model: 𝛽 = 0.389, 𝑠. 𝑒. = 0.066, 𝐹1,6 = 34.8, 𝑃 < 0.001), 

whereas the positive-feedback QS-cooperator strongly reduces its cooperative investment as 

the frequency of response mutants increases (linear model: 𝛽 = 1.159, 𝑠. 𝑒. = 0.086, 𝐹1,6 =

182, 𝑃 < 0.0001). Results were not strongly affected by the choice of bacterial density where 

frequency-dependence was studied (Fig. S3). Gene-expression results therefore suggest that 

the positive-feedback QS-cooperator will be less exploited by response mutants and therefore 

better immune against them, as the theory predicts. The deviation of the constitutive QS-

cooperator from constant (frequency-independent) response may depend on other QS systems 

involved in the activation of this system (see discussion). 

Swarming competitions verify the two predicted advantages of positive-feedbacks: 

reduced intra-group disadvantage and increased inter-group advantage 

To further verify the theoretical predictions, we performed competitions of each cooperator 

against its corresponding response mutant in a swarming assay. Briefly, mixed cultures were 

plated in the middle of a semi-solid agar plate and allowed to swarm and cover the plate (see 

Methods for further details). Using a flow-cytometer we measured the relative fitness of 

cooperators after 2 days of growth on swarming plates. We sought an IPTG concentration, in 

which the two cooperators suffered a similar fitness decrease (cost) when co-cultured with a 

rare (1%) response mutant (i.e., when their cooperative investment is similar). This type of 

comparison was much more sensitive to small differences between the two cooperators than 

just comparing the swarming yield in mono-cultures (see discussion). IPTG dependence was 

different than that observed in liquid culture (Fig. 2D). This difference may be due to difference 

in bacterial densities and signal diffusion in the swarming assay. We found that in swarming 

conditions, the constitutive QS-cooperator suffered a stronger fitness cost compared to the 

positive-feedback QS-cooperator even with no IPTG. We therefore replaced the IPTG-

inducible promoter with one that is less leaky (Pspac instead of Phs, see Methods). This allowed 

us to use inducer on the swarming plate and re-calibrate the IPTG level to compare the costs 

of constitutive and feedback QS-cooperators. 

Fig. 3A presents the relative fitness of each of the two cooperators (now approximately 

comparable at 40µM IPTG) in competition with its respective response-null mutant in different 

initial frequency. The fitness cost of the constitutive QS-cooperator is only weakly dependent 

of its frequency in the population (linear model: 𝛽 = −0.0015, 𝑠. 𝑒. = 0.0007, 𝐹1,30 = 4.28, 

𝑃 < 0.05), while the relative fitness of the positive-feedback QS-cooperator decreases strongly 

with the decrease in its frequency (linear model: 𝛽 = −0.0109, 𝑠. 𝑒. = 0.0004, 𝐹1,30 = 895, 

𝑃 < 0.0001), as was suggested by the decrease in its cooperative investment (Fig. 2E). 

Interestingly, the positive-feedback QS-cooperator even wins as a minority, suggesting a 

preferential access to benefits that yields a snowdrift type of interaction [16] (see Discussion). 
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Figure 3 – Swarming competitions between cooperators and their respective response-null 

mutants. Shown are (A) The logarithm of relative fitness of cooperators over response-null cheaters 

and (B) overall yield in swarming plates of co-cultures of constitutive QS-cooperators (AES3938, blue) 

or positive-feedback QS-cooperators (AES3634, brown) with their corresponding response-null 

mutants (AES3940 and AES3944, respectively). Each point describes a competition on one plate. Lines 

in (A) represent linear model fits to the data with 𝑅2 = 0.125 and 𝑅2 = 0.97 for constitutive and 

positive-feedback QS-cooperators respectively. Lines in (B) represent exponential fits to the increasing 

trend in the data with 𝑅2 = 0.89 and 𝑅2 = 0.83 for constitutive and positive-feedback QS-cooperators 

respectively. Results shown are for four biological repeats taken in different days for each co-cultured 

pair, which were used to start competitions at multiple initial frequencies. The IPTG concentrations for 

the constitutive QS-cooperator plates are 40µM. (C) Based on results shown in A,B, we calculated the 

relative fitness of the two types of cooperators in a structured population with different values of the 
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relatedness coefficient 𝑟. The lines represent linear fits for part of the data where relative fitness 

increases, with 𝑅2 = 0.92, and 𝑅2 = 0.88 for constitutive QS-cooperators (blue), and positive-

feedback QS-cooperators (brown), respectively. Each fit intersection with the X-axis is indicated and 

defines a threshold relatedness, above which cooperators win. The simple two-plate metapopulation 

analysis used to calculate the population structure is illustrated below the graph - combinations of two-

plates with equal mean and increasing standard variation correspond to populations with increasing 

relatedness coefficient.  

Fig. 3B shows that the overall growth on these plates sharply increases when increasing the 

initial frequency of both types of cooperators, with a gradual decrease at higher frequencies 

that is due to saturating benefit but increasing cost of surfactin production [17,60] (see 

Discussion for a possible explanation for this extreme saturation). While a very small frequency 

(~5%) of constitutive QS-cooperators is enough to yield substantial swarming, a significantly 

larger frequency (~15%) of positive-feedback QS-cooperators is needed for substantial 

swarming to take place. The intuitive reason for this is that when surrounded by their response 

mutants, the positive-feedback QS-cooperators produce less surfactin than constitutive QS-

cooperators, as illustrated by the gene expression results (Fig. 2E). Fig. S4 presents similar 

comparisons between the two types of cooperators in swarming competitions, but with a lower 

concentration (27µM) of IPTG. 

Reanalysis in a simple structured-population model demonstrates the increased 

resistance of PFB against response mutants 

The two comparisons – relative fitness and net yield – correspondingly represent the within- 

and between-group impact of cooperation on selection. Both type of interactions come into 

effect in structured population, as determined by the relatedness level 𝑟. To model this 

combined effect, we considered two-plate combinations from Fig. 3A,B (each plate is a well-

mixed population, to a good approximation). We originally divided the two competing strains 

to pairs of swarming plates with opposite frequencies such that their combination yields a 

metapopulation with an overall frequency of 50-50. The relatedness coefficient 𝑟 in group-

structured populations is proportional to the variance in group composition (see Methods). In 

one extreme, a combination of two co-cultures with identical compositions yields a well-mixed 

population (𝑟 = 0), and in the other extreme, a combination of two mono-cultures (extreme 

variance in the composition of the two plates) yields a well-separated population (𝑟 = 1). Fig. 

3C presents the relative fitness of the different cooperators in these two-plate meta-populations. 

For both types of cooperators there is a threshold relatedness, above which cooperators win, as 

expected from Hamilton's rule. Furthermore, as predicted here theoretically, the threshold for 

the positive-feedback QS-cooperator is lower than that of the constitutive QS-cooperator, and 

thus the positive-feedback structure allows stable cooperation in a wider range of population 

structures. Again, using a different concentration of IPTG for comparing the two cooperators, 

yielded very similar results (Fig. S4). 

Discussion 

In this work, we tested the effect of feedback loops in regulation of cooperative behaviors on 

their evolutionary stability. We theoretically showed that positive feedbacks on public goods 
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extend the range of environments that maintain cooperation in the face of either null-mutant 

cheaters or small mutants of the regulatory pathway, and that this improvement in stability 

increases with feedback strength. This is due to a reduction in cooperative investment around 

cheaters that promotes the fitness of cooperators in group-structured populations in two ways. 

Firstly, positive-feedback cooperators suffer a smaller fitness cost in mixed groups with 

cheaters, compared to constitutive cooperators, thereby reducing cooperation’s intra-group 

disadvantage. Secondly, positive feedbacks reduce the average fitness of cheater-dominated 

groups, thereby improving the between-group advantage of cooperator-dominated groups. 

Following the intuition of reduced cooperation around cheaters, we have also shown that these 

results generalize to other secreted molecules that control cooperative behaviors, e.g., QS 

signals. A simple QS design provides increased immunity to QS-null mutants, since 

cooperators can "sense" their presence and reduce cooperative investment. However, the 

simple QS design does not allow "sensing" of response-null mutants that have functional 

signaling genes and continue to produce QS signals and coerce QS-cooperators to cooperate 

strongly, even in cheater-dominated groups. Improved stability against these response-null 

mutants is only accomplished when there is a positive-feedback on the QS signal, as often 

occurs for QS systems [34,35]. 

This extension suggests a connection between public goods as regulators of cooperative 

behaviors to QS signals. If it is beneficial that public goods acquire some regulatory capability 

to activate their own transcription, this capability could also be used to regulate other 

cooperative behaviors. Indeed, some public goods have this capability, affording them a role 

of QS signals [27]. This could also suggest that some QS signals evolved from, and might be 

still active as public goods. 

We have also tested the theoretical predictions experimentally. We used the ComQXPA QS 

system that controls, among other cooperative behaviors, the secretion of surfactin, a public-

good molecule that enables swarming motility. We genetically modified its constitutive 

regulation, to either a positive-feedback design, or an IPTG-inducible constitutive design. This 

additional inducible system allowed us to meaningfully calibrate the open- and closed-loop 

designs to ensure similar cooperative investment of both cooperators in mono-cultures (as we 

verified with gene expression measurements, and fitness-cost measurements in cooperator-

dominated co-cultures). This comparison is the only one that makes the two cooperators neutral 

when co-cultured together. Any difference in cooperative investment between them in mono-

cultures, which must yield a difference in their co-culture, will only result in a fitness cost to 

one of them, while the benefit will be shared. 

The gene-expression measurements verified that the cooperative investment of positive-

feedback QS-cooperators decreased as their frequency in co-cultures with response-null 

mutants decreased. As a result, positive-feedback QS-cooperators should enjoy a two-fold 

advantage over constitutive QS-cooperators, i.e., a decreased fitness cost and a reduced yield 

in cheater-dominated co-cultures, as we demonstrated with swarming competitions. 

Furthermore, by re-analyzing competitions as two-plate meta-populations, we have also 

demonstrated how this advantage is translated into improved stability against response-null 
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mutants in structured populations. As we predicted theoretically, positive-feedback QS-

cooperators were stable against cheaters in a wider range of meta-populations, compared to 

constitutive QS-cooperators, thereby reducing the relatedness threshold required for stable 

cooperation. 

Although the theoretical analyses were restricted to simple linear regulatory and fitness 

functions, the experimental support suggests that the essential components of the problem were 

indeed captured. Actually, the measured dependence of the cooperative investment of positive-

feedback QS-cooperators on their frequency (Fig. 2E) is at the linear regime (𝑅2 = 0.968, 𝑛 =

8). More complex positive-feedback designs on public goods or QS signals could lead to 

bistability of the population as a whole (because of the extra-cellular nature of these molecules). 

This could reduce the cooperative investment of positive-feedback cooperators in cheater-

dominated groups even further [61] but could also lead to hysteresis and more complex 

dynamics. 

Another caveat of the theoretical analyses is the restriction to group-structured populations with 

constant group size, an assumption that was also made in the population structure analysis of 

experimental data. Taking population size into account, the positive-feedback structure would 

actually allow sensing of the density of cooperators (or signal secretors), and not their 

frequency in the population. This could affect the population dynamics and should be 

considered in future work. Apart from further theoretical investigation of the impact of group-

size, it would be interesting to study the effect of feedbacks in more realistic population 

structures with simulations or experiments. However, in swarming, the increased population 

size due to migration, does not change population density significantly and therefore this is less 

relevant to the experimental analysis. 

In a more specific manner, our swarming experiments revealed several surprising insights into 

B. subtilis swarming behavior. First, we found that the open-loop design also showed 

frequency-dependent activity and selection (Figs. 2E,3A) when mixed with response-null 

cheaters. This indicates the existence of a positive feedback loop in the native system. This 

may either result from a yet uncharacterized regulation of the ComQXP system, or from an 

effect of Rap-Phr quorum-sensing systems on ComA activity [18,62,63]. Second, we found 

that, at low frequency, positive-feedback cooperators had a fitness advantage over cheaters. 

This could either be explained by a semi-privatization of secreted surfactin molecules, leading 

to a snowdrift game interaction [16], or by population de-mixing [64,65] occurring in weak-

swarming cheater-dominated plates. Interestingly, a similar phenomenon was observed for P. 

aeruginosa swarming [66]. Finally, we find that proficient swarming requires a very low 

frequency of the constitutive-QS strain (~5%) in a population of cheaters. This results from the 

very high level of surfactin produced by the swarming proficient derivatives of the lab strain, 

which has been selected for increased srfA expression and loss of surfactin production during 

domestication [17,60,67]. The wild strain produces less surfactin and would accordingly 

require high level of cooperation to allow for full swarming. 

Altogether, our results point to a design principle of microbial cooperative behaviors. The 

improved stability against cheating, granted by these intercellular positive feedbacks, suggests 
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one explanation for their abundance in regulatory structures of cooperative behaviors. 

Moreover, these results point to the positive-feedback regulatory structure as another microbial 

mechanism that may helped to maintain cooperative behaviors in evolution. These two 

complementary contributions of this project demonstrate the utility of combining social-

evolutionary tools with the systems biology way of thinking. 

Methods 

Growth media and conditions 

Routine growth was performed in Luria–Bertani [LB] broth (1% [w/v] tryptone (Difco), 0.5% 

[w/v] yeast extract (Difco), 0.5% [w/v] NaCl) or Spizizen minimal medium [SMM] (2 g L−1 

(NH4)2SO4, 14 g L−1 K2HPO4 , 6 g L−1 KH2PO4, 1 g L−1 disodium citrate, 0.2 g L−1 

MgSO4∙7H2O). SMM media was supplemented with 0.5% [w/v] glucose and trace elements 

(125 mg L−1 MgCl2∙6H2O, 5.5 mg L−1 CaCl2, 13.5 mg L−1 FeCl2∙6H2O, 1 mg L−1 MnCl2∙4H2O, 

1.7 mg L−1 ZnCl2, 0.43 mg L−1 CuCl2∙4H2O, 0.6 mg L−1 CoCl2∙6H2O, 0.6 mg L−1 

Na2MoO4∙2H2O). Isopropyl β-D-thiogalactopyranoside (IPTG, Sigma) was added to the 

medium at the indicated concentration when appropriate. 0.01 M Phosphate buffer saline (PBS) 

pH 7.4 (Sigma) was used for dilution and suspension of cells. Petri dishes for routine 

procedures were solidified using 2% [w/v] agar (Difco). Antibiotic concentrations: Macrolides-

Lincosamides-Streptogramin B (MLS, 1 µg ml−1 Erythromycin, 25 µg ml−1 

Lincomycin); Spectinomycin (Sp, 100 µg ml−1); Tetracycline (Tet, 10 µg ml−1); Kanamycin 

(Kan, 10 µg ml−1); Chloramphenicol (Cm, 5 µg ml−1); Ampicillin (Amp, 100 µg ml−1), 

Phleomycin (Ph, 2.5 µg ml−1). 

Pre-measurement growth protocol: Prior to all measurements, an overnight colony from an 

LB agar plate was inoculated in 1.5 mL SMM liquid medium and grown (with shaking) for ~7 

hours in 37 ̊ C until an OD600 of 0.1-0.3 was reached.  The cultures were then diluted by a factor 

of 106 and grown (with shaking) overnight at 37˚C. We find that this long incubation in minimal 

medium both reduced the effects of QS prior to growth and reduced the arbitrary difference in 

growth between two co-cultured wild-type colonies. 

Gene expression experiments 

In all experiments, the overnight cultures from the pre-measurement growth protocol, were 

measured in the following day. Samples were taken at several time points and the OD600-

equivalent (see below) and YFP levels were measured by flow cytometry (see below). YFP 

level was determined from the median level of the unimodal distribution of YFP expressing 

cells using flow cytometry (see below). YFP level was normalized by the auto-fluorescence of 

the wild-type. The expected YFP levels at the chosen bacterial density were calculated by either 

interpolation of two consecutive measurements, one below and one above the chosen OD600, if 

existed, or by extrapolation of two consecutive measurements from the same side of the chosen 

bacterial density. 

OD – flow-cytometer calibration: We used the wild type strain to calibrate flow-cytometer 

density measurement to OD600 measurement. At several time points during growth, the number 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 9, 2019. ; https://doi.org/10.1101/571562doi: bioRxiv preprint 

https://doi.org/10.1101/571562


14 
 

of flow-cytometer events in 60 seconds (considering the dilution factor in the flow-cytometer 

sample preparation), the flow-cytometer flow rate (using Flow-check Pro Fluorophores, 

Beckman-Coulter), and OD600 were measured. A calibration factor of 220,000 events per OD600 

= 0.01 was obtained from the slope of the linear fit to the calibration curve. At all subsequent 

experiments, the flow-cytometer flow rate was re-measured in the same way to correct for day 

to day variation in the flow rate. 

For co-culture experiments: Cells of different strains were mixed in appropriate ratios, based 

on relative optical density, before the overnight part of the pre-measurement growth protocol. 

The exact ratios were measured, together with overall density and YFP, in the following day 

using flow cytometry. Both strains carried the QS-response YFP transcriptional reporter, and 

the YFP-measured strain had an additional mCherry constitutive marker. 

Flow cytometry: Samples were analyzed on a Gallios flow-cytometer (Beckman-Coulter), 

equipped with 4 lasers (405 nm, 488 nm co-linear with 561 nm, and 638 nm). The emission 

filters used were: YFP – 525/40, mCherry – 620/30. Events were discriminated using the 

forward-scatter parameter. For each run, discrimination enabled a single, well-defined 

population to appear in the forward-scatter (FS) by side-scatter plot. Gating on the fluorescent 

populations and inspection of the non-discriminated forward by side-scatter plot indicated that 

over 99.9% of the fluorescent cells are present in the discriminated population. In all analyzed 

samples, only single cells were considered by removing FS events, whose time-of-flight was 

correlated to the integral of the signal. Gating of the different fluorescent populations was 

performed by inspection of the log-log FLx by FLy plots (x & y represent the appropriate filter 

for each fluorescent marker), where two distinct populations were clearly visible, resulting in 

a type-I and type-II errors of less than 0.05%. For each run, at least 100,000 cells were analyzed, 

and the total events analyzed such that the minority population was never below 1,000 events. 

Swarming competition experiments 

Cells were grown as described in the pre-measurement growth protocol, and were then 

centrifuged, re-suspended in PBS, and diluted to an OD600 of 0.01. Agar plates (0.8%) 

containing 25 mL of SMM medium supplemented with trace elements, 0.03% glucose, and 

IPTG (at the indicated concentration when appropriate) were poured, at a constant temperature, 

in a laminar flow chamber and left there to solidify for 24 minutes. Five microliters of the 

diluted cultures were consequently placed at the centers of the plates, which were then left for 

11 minutes in the laminar flow chamber, for the five-microliter drop to dry. The plates were 

then incubated at 30˚C for 47 hours, after which the swarms were scraped and collected from 

the plates by suspension in 2 ml of PBS. The final densities (OD600-equivalent) of both strain 

were measured by flow cytometry as described above, from the two distinct sub-populations, 

and compared to the initial densities, measured at time zero. The fitness (growth factor) of each 

strain was calculated as the ratio of final and initial densities, multiplied by the ratio of final 

and initial liquid volumes (5µl and 2ml respectively). The cooperator’s relative fitness is the 

ratio between the cooperator’s and the cheater’s fitness, while the overall swarming yield is the 

weighted average of fitness of the two strains. In all competitions, both cooperators and 

cheaters carried a constitutive YFP reporter, while cheaters carried an additional constitutive 
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mCherry reporter (see strain list in Table S1). It was shown previously [17] that the additional 

mCherry reporter does not carry a significant fitness cost, as we also verified it with these 

strains. 

Analysis in structured populations 

To simulate population structure, we originally divided the two competing strains to pairs of 

swarming plates with opposite frequencies (i.e., if in one plate the frequency 𝐺 of cooperators 

was 𝐺 = 𝑥, then in the second plate their frequency 𝐺 was approximately 𝐺 = 1 − 𝑥, such that 

the frequency of cooperators in the meta population composed of the two plates was 

approximately 〈𝐺〉~0.5). The relatedness of the two-plate populations was calculated using the 

following formula [49]: 

(4)                                    𝑟 =
〈𝐺2〉−〈𝐺〉2

〈𝐺〉(1−〈𝐺〉)
, 

where 〈 〉 denotes an average over the two plates, each weighted by its overall density (OD600-

equivalent). The fitness (growth factor) of each strain in the two-plate population was 

calculated as described above for single plates but using its densities (initial and final) in the 

overall two-plate population. The relative fitness of cooperators is again the ratio between the 

cooperator’s fitness and the cheater’s fitness. 

Strain construction 

All B. subtilis and E. coli strains are detailed in Table S1 and Table S2 respectively, while 

respective primers are provided in Table S3. Deletion mutations and their replacement with the 

indicated antibiotic resistance cassette were performed using the long flanking homology PCR 

methods [68]. 1kb fragments corresponding to regions upstream and downstream of the target 

gene were amplified by PCR. The 5’ end of the reverse primer for the upstream region and the 

3’ end of the forward primer for the downstream region contained a short overhang sequence 

homologous to an antibiotic resistance cassette. A second PCR was then performed using the 

PCR products of the first reaction as primers, and the antibiotic cassette as a template. The final 

product was transformed to B. subtilis PY79 (AES101). Integration of the construct to the 

genomic DNA was confirmed by PCR. Accordingly, comXP and comXP-comA were deleted 

from the PY79 chromosome using the primers comXP-del-P1-P4 and comXPA-del-P1-P4 

(Table S3). 

The mutations and constructs were transferred to PY79 either by natural transformation [69] 

or by SPP1-mediated generalized transduction [70]. Integration of amyE integration plasmids 

into the zjd89::amyEΩ Cm Kan [71] was done in two steps. First, the plasmid was integrated 

into a PY79 strain (AES2864) carrying the zjd89 construct and was screened for an Amy+ 

phenotype. A SPP1 lysate [70] of the resulting strain was then inserted into other strains with 

selection for either Kan or Cm, depending on the genetic background of the integrated genome. 

Construction of zjd-89::(Phs-comXP Kan Cm Sp) was performed by PCR amplification of 

comXP, using AES101 as a template and the comXP-F/comXP-R primer pair (Table S3). The 

PCR fragment was digested with NheI and SphI and ligated downstream of the hyperspank 

promoter (Phs) of the pDR111 vector containing Sp resistance. 
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Construction of zjd-89::(PsrfA-comXP Kan Cm Sp) was performed by restricting of the srfA 

promoter (PsrfA) from AEC945 with EcoRI and NheI, and subcloning it into pDR111::Phs-

comXP plasmid (AEC1054) instead of the hyperspank promoter (Phs). 

Construction of zjd-89::(Pspac-comXP Kan Cm Sp) was performed by PCR amplification of the 

spac promoter (Pspac), using BD1916 as a template and the Pspac-F/ Pspac-R primer pair (Table 

S3). The PCR fragment was digested with EcoRI and NheI and ligated into pDR111::Phs-

comXP plasmid (AEC1054) instead of the hyperspank promoter (Phs). 
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