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Abstract. Human adaptation depends upon the integration of slow life history, complex
production skills, and extensive sociality. Refining and testing models of the evolution of
human life history and cultural learning will benefit from increasingly accurate measurement
of knowledge, skills, and rates of production with age. We pursue this goal by inferring
individual hunters’ of hunting skill gain and loss from approximately 23,000 hunting records20
generated by more than 1,800 individuals at 40 locations. The model provides an improved
picture of ages of peak productivity as well as variation within and among ages. The data
reveal an average age of peak productivity between 30 and 35 years of age, though high skill
is maintained throughout much of adulthood. In addition, there is substantial variation
both among individuals and sites. Within study sites, variation among individuals depends25
more upon heterogeneity in rates of decline than in rates of increase. This analysis sharpens
questions about the co-evolution of human life history and cultural adaptation. It also
demonstrates new statistical algorithms and models that expand the potential inferences
drawn from detailed quantitative data collected in the field.
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LIFE HISTORY OF HUMAN FORAGING IN 40 SOCIETIES 3

1. Introduction
As a slow-developing primate, humans exhibit puzzling life history traits. Primates in

general, and especially the apes, have slow life histories, with late age of first reproduction
and singleton births. But even compared to other hominoids, humans have longer child-
hoods, shorter inter-birth intervals, and extended post-reproductive lifespans (Jones 2011).35
That is, human children are slower to develop and more dependent, but we nonetheless have
more of them, more quickly. These traits are plausibly unique to the genus Homo, but the
timing and adaptive origins of the human life history strategy remains unsettled (Schwartz
2012).

One way for humans to ease the costs of expensive childhoods is through alloparental40
investments from highly productive adults (Kramer 2010). There are at least two major
questions lurking within, however. The first is: Which individuals provide allocare? Any
answer to this question will have implications for how selection operates on other aspects
of life history. The second: Is childhood itself more than just a period required for growing
large and physically adept? Is it also required for individuals to learn complex, culturally-45
evolved skills (Gurven et al. 2006)? What role does childhood play in the cultural evolution
of complex, productive skills in the first place (Henrich and McElreath 2003)?

Any satisfactory model of human life history must address the integration of growth,
reproduction, cognitive development, skill development, sociality, and cultural evolution.
This is not easy. As a result, existing models make progress by omitting some features. The50
most advanced attempt we know is the optimal control model of González-Forero et al.
(2017). While this model omits cultural dynamics for acquired skills, it does successfully
integrate growth, cognitive and skill development, and reproduction in overlapping gen-
erations. By solving for the optimal life history, the model suggests natural selection for
delayed growth, early investment in cognition, and delayed reproduction. The brain gets55
big first, and only then the body, because this allows a longer window of learning and ulti-
mately higher adult productivity. These results are similar to the embodied capital hypothesis
(Kaplan et al. 2000), in which highly productive foraging and food sharing by adult men
supports alloparental investments in offspring. From this point of view, human life history
traits stem from the highly complex human foraging niche, which selects for delayed mat-60
uration by requiring an extended period of learning before adults are able to achieve high
productivity. In contrast, Hawkes et al. (1998) emphasize provisioning of grandchildren by
post-reproductive women, which selects for longer lifespans. This perspective sees child-
hood as a consequence of prolonged lifespan, not a trait that needs to be explained as having
its own direct function (Charnov 1993). A spectrum of models exists, in which adult forag-65
ing is variably influenced by size, skill, and culturally-transmitted knowledge, and different
amounts of time are needed for individuals to acquire and perfect adult skills.

To develop and test models, anthropologists have used observational studies of subsis-
tence hunting, with a focus on variation across the lifespan. For example, Walker et al.
(2002) and Gurven et al. (2006) report data from the southern Neotropics that subsistence70
hunters achieve high proficiency only after reaching advanced ages, roughly 35 to 45 years
old. Because hunters achieve adult size and strength much earlier in life, these results are
consistent with the embodied capital hypothesis and its emphasis on the gradual mastery
of cognitively complex hunting strategies. But comparative data from other contexts have
been scarce. Among the few other empirical studies, some find slow skill development (e.g.,75
Ohtsuka 1989) while others do not (Bird and Bliege Bird 2005).
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4 KOSTER ET AL.

More and better estimates of age-related foraging skill are necessary inputs into all evo-
lutionary models of human life history. Associations between brain development, cultural
knowledge, physical skill, and foraging performance at each age constrain the models we
specify: quantitative and representative estimates of these variables are needed to param-80
eterize optimal life history models like González-Forero et al. (2017). Variation across
individuals informs models of food sharing and other investments, both within and be-
tween generations. Variation across sites and contexts informs models of tradeoffs and how
individuals cope with them.

In principle, skill and production in other subsistence economies is equally relevant to85
understanding human life history. Garden production and animal husbandry depend upon
the same cognitive and developmental foundations as hunting and gathering. We focus on
subsistence hunting for two reasons. First, the data are easier to model than are gardening
and herding—hunting returns are easier to identify with specific individuals and labor al-
locations. Second, hunting is practiced, to some extent, everywhere. It is both a primitive90
economy and a modern one that has endured the emergence of other subsistence strate-
gies. The breadth of hunting in diverse ecological settings provides a compelling range of
evidence.

Studies of hunting returns are nevertheless inferentially challenging. A typical outcome
variable, such as kilograms of harvested meat, may be a mixture of zeros and skewed positive95
values that violate assumptions of conventional regression models (McElreath and Koster
2014). The available foraging data often exhibit imbalanced sampling of individuals and age
groups. Predictor variables may be missing or measured with uncertainty. These problems
are surmountable in any individual study, but comparative inferences are challenging when
studies rely on heterogeneous statistical solutions.100

In this paper, we address the inferential and comparative challenges within a novel sta-
tistical framework. We assemble the largest yet data base of individual human hunting
records, comprising over 21,000 trips from 40 different study sites. These data elucidate
the extent to which the ontogeny and decline of hunting skill are attributable to individual-
level or site-level factors, and the comparative analysis help to mitigate over-generalization105
from individual studies. The results of this study consequently inform subsequent theorizing
about the evolution of life history traits in humans.

Our statistical approach accepts the imperfections of the sample and conservatively pools
information, both among individuals within sites and among sites within the total sample.
The goal is not to substantiate any particular theoretical model of human evolution, nor to110
pretend that the data are sufficient for all inferential objectives. Rather, the goal is to show
what can be inferred from a statistical approach that uses all available data and treats missing
data and measurement error conservatively. One of the most important aims is to highlight
the limits of existing data and approaches so that future empirical and inferential projects
can make further progress.115

Our analysis supports the general conclusion that skill peaks between 30 and 35 years of
age, well after the age of reproductive maturity. Peak skill is typically not much higher than
skill during early adulthood, however. Declines with age are typically slow—an average
56 year old has the same proportion of maximum skill as an average 18 year old. There is
considerable variation both among sites and individual hunters within study sites. Variation120
among individuals is described more by heterogeneity in the rate of decline than the rate
of gain. Partly owing to heterogeneous data collection methods across sites and anticipated
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Figure 1. Distribution of study sites. For the key, see Table 1.

biases from omitted variables, not much can be inferred yet from this sample and model
about the causes of differences among sites.

These results are computed conservatively, but as with any analysis, the results are depen-125
dent on the model and sample. In the future, alternative statistical approaches may enhance
the inferences provided by the present study. Consequently, we are careful to describe both
the nature of the model and the data, and all of the code and data are publicly available.¹
Our objective is to involve more theorists and empiricists in the long-term project of con-
straining and informing models of how life history is integrated with human behavioral130
adaptation.

2. Description of the data
The total sample contains 1,821 individual hunter, 23,747 hunter-level outcomes, and

21,160 trips across 40 study sites (Figure 1). To compile the dataset, the first author searched
for relevant studies on subsistence hunting in the anthropological and biological literature,135
subsequently contacting authors to invite them to contribute data. The contributors sub-
mitted data in a standardized format that included variables for the biomass acquired on
terrestrial hunting trips, the ages of the hunters at the time of the hunt, the duration of the
trip, the hunting weaponry carried by the hunters, and the presence of dogs or assistants
(e.g., porters). Our data are restricted to hunting, and exclude gathering, because of the140
paucity of data on gathered plant foods.

There is tremendous imbalance in sample size across units. One site contributes only 6
trips from 2 individuals. Another contributes more than 14,000 trips from 147 individuals.
Some individuals contribute only a single outcome, while others contribute dozens. The
majority of the sample comprises male hunters, with too little data on female hunters to145
infer generalizable sex differences. (This does not imply that men’s production and skill is
more relevant to human evolution, nor that women’s foraging skill would necessarily exhibit

¹https://osf.io/2kzb6/?view_only=682fcab2dd614dbdb015612b83044f49
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6 KOSTER ET AL.

Table 1. Study sites and their numerical and text codes. See the help file
of the cchunts package for related citations.

Number Code Country Group Dataset in cchunts package
1 CRE Canada Cree Winterhalder
2 MYA Belize Maya Pacheco
3 MYN Nicaragua Mayangna Koster
4 QUI Ecuador Quichua Siren
5 ECH Colombia Embera Chami Ross
6 WAO Ecuador Waorani Franzen
7 BAR Venezuela Bari Beckerman
8 INU Canada Inuit Ready
9 MTS Peru Matsigenka Yu_et_al

10 PIR Peru Piro Alvard
11 CLB Colombia Van_Vliet_et_al_South_America_sites
12 PME Venezuela Pume Kramer_Greaves
13 TS1 Bolivia Tsimane Fernandez_Llamazares
14 TS2 Bolivia Tsimane Reyes-Garcia
15 TS3 Bolivia Tsimane Trumble_Gurven
16 ACH Paraguay Ache Hill_Kintigh
17 GB1 Gabon Coad
18 GB2 Gabon Van_Vliet_et_al_Gabon
19 GB3 Gabon Van_Vliet_et_al_Ovan
20 CN1 DR Congo Van_Vliet_et_al_Phalanga
21 GB4 Gabon Van_Vliet_et_al_Djoutou
22 BK1 Cameroon Baka Gallois
23 BK2 Cameroon Baka Duda
24 CN2 Congo Van_Vliet_et_al_Ingolo
25 CN3 Congo Van_Vliet_et_al_Ngombe
26 BFA Central African Republic Bofi and Aka Lupo_Schmitt
27 CN4 DR Congo Van_Vliet_et_al_Baego
28 BIS Zambia Valley Bisa Marks
29 HEH Tanzania Nielsen
30 DLG Russia Dolgan Ziker
31 BTK Malaysia Batek Venkataraman_et_al
32 PN1 Indonesia Punan Gueze
33 PN2 Indonesia Punan Napitupulu
34 AGT Philippines Agta Headland
35 MRT Australia Martu Bird_Bird_Codding
36 NUA Indonesia Nuaulu Ellen
37 NIM Indonesia Nimboran Pangau_Adam
38 NEN Papua New Guinea Nen Healey_Nen_PNG
39 MAR Papua New Guinea Maring Healey
40 WOL Papua New Guinea Wola Sillitoe
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LIFE HISTORY OF HUMAN FORAGING IN 40 SOCIETIES 7

either the same or a different functional relationship with age.) Most sites contribute pri-
marily cross-sectional data, while a few others exhibit impressive time series. The statistical
framework is designed to make use of all these data.150

3. The life history foraging model
Since skill cannot be directly observed, what is required is a model with latent age-varying

skill. This unobservable skill feeds into a production function for observable hunting re-
turns. In this section, we define a framework that satisfies this requirement. We explain
it one piece at a time, with a focus on the scientific justification. The presentation in the155
supplemental contains more mathematical detail, and the model code itself is available to
resolve any remaining ambiguities about the approach. Our framework was developed and
reviewed in the initial grant proposal (NSF #1534548) prior to seeing the assembled sam-
ple. Therefore, whatever the model’s flaws, they do not include being designed specially for
these observations or chosen to produce a desired result.160

One advantage of the latent skill approach is that it allows us to use different observations
from different contexts—both solo and group hunting, for example—to infer a common
underlying dimension of skill. But modeling even the simplest foraging data benefits from
this approach, as hunting returns often are highly zero-augmented. Separate production
functions for zeros and non-zeros are needed to describe such data. In principle, more165
than one dimension of latent skill could be modeled. We restrict ourselves to only one in
the current analysis. With more detailed data, describing additional dimensions should be
possible.

We implemented the model both as a forward simulation and as a statistical model. The
forward simulation generates data with known parameter values, which are used to confirm170
that the estimated statistical model can recover the parameters. The code is available as part
of the cchunts R package.

3.1. Latent skill model. One of the simplest life history models is the von Bertalanffy
(1934) asymptotic growth model. We use this model to represent the increasing compo-
nents of hunting skill as a function of age. These increasing components include knowledge,175
strength, cognitive function, and many other aspects that contribute to hunting success and
increase but decelerate with age. For convenience, label the composite of these components
knowledge. Assume that the rate of change in knowledge with respect to age x is given by
dK/dx = k(1 − K(x)). This means only that knowledge increases at a rate proportional
to the remaining distance to the maximum—the more there is left to learn, the more one180
learns. Solving this differential equation yields the age-specific knowledge of a hunter at
age x:

K(x) = 1− exp(−kx) (1)

where k > 0 is a parameter that determines the rate of increase. To account for senes-
cence, we assume that production capacity M declines at a constant rate, given by dM/dx =
−mM(x). Solving this yields:185

M(x) = exp(−mx) (2)
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8 KOSTER ET AL.

age age age

“knowledge” “senescence” “skill”

Figure 2. The age-specific skill model. Top row: Increasing components,
“knowledge,” and decreasing components, “senescence,” multiply to produce
relative productive potential at each age, “skill.” See the supplemental ma-
terial for equations. Bottom row: Variation in the components combines to
produce a diverse array of possible skill functions.

where m > 0 represents the rate of decline. The total age-specific skill is given by a weighted
product of these two functions:

S(x) = M(x)K(x)b (3)

where the parameter b controls the relative importance of K. In economic terms, b is the
knowledge elasticity of skill. We assume that k and m may vary across individuals—some
people learn faster or senesce more slowly—while b is a property of the production context190
at a given study site.

This model is among the simplest we can construct. Nevertheless, it is capable of de-
scribing diverse age-specific skill curves. Figure 2 illustrates the general shapes of each
component of the model, as well how variation in each component may produce variable
life histories. Each plot in this figure shows age on the horizontal axes. The top row of the195
figure illustrates the general shape of each component (left and middle) and one possible
resulting lifetime skill curve (right). The bottom row shows 10 different, random knowl-
edge and senescence curves, with their implied random skill curves. These demonstrate that
even a model as simple as this one, with only three parameters, is nevertheless capable of
producing many diverse age-specific curves. This approach brings two more advantages, as200
compared to the use of polynomial functions of age. First, the parameters have straightfor-
ward biological interpretations. Second, these functions do not exhibit instabilities such as
Runge’s phenomenon (Runge 1901) that complicate fitting and prediction.

These functions also have clear weaknesses. Neither the rate of gain k nor the rate of
loss m is plausibly constant over large age ranges. The rate of variation in body growth,205
for example, will produce rate variability in skill growth. And near the end of life, skill
loss should accelerate rather than slow down. Although the data analyzed in this paper do
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Site 1

Site 2

Site 40

Individual curves
within each site Site distributions

Global distribution
of site distributions

Figure 3. Hierarchical structure of skill functions within the inferential
model. Within each site (left) a skill curve is inferred for each hunter. In-
dividuals within each site are pooled using a distribution of individual skill
curves (middle). Finally, the distributions of parameters within each site are
again pooled using a distribution of distributions (right). This formulation
allows variation among individuals to vary by site.

not span the age ranges in which this variation would occur, we should be cautious about
overgeneralizing from this analysis.

The final component of the core skill model is partial pooling of information. Since210
these data contain repeat measurements on the same units—individuals and sites—as well
as substantial imbalance in sampling of these units, partial pooling via multilevel modeling
provides superior estimates. The variation among individuals is also a target of inference.
We employ two levels of hierarchical pooling (Figure 3). First, the life history parameters
k and m are pooled across individuals within each site (left column, Figure 3). In stan-215
dard terminology, kid and mid for each individual are random effects drawn from a bivariate
distribution. Each site also has its own value for b, reflecting variation in the relative im-
portance of knowledge across sites. Therefore each site has its own distribution of skill
functions (middle column). Finally, the site distributions are pooled together to regularize
inference at the second level (right column), producing a distribution of site distributions.220
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10 KOSTER ET AL.

To an extent, this global distribution is a statistical fiction that is necessary to pool informa-
tion properly among sites. However, it is also a target of inference, providing a weighted
summary of all of the evidence across sites.

3.2. Production model. Skill is not directly observable. Rather, we must infer it by its
effects on hunting productivity. This requires introducing a layer of production functions225
through which skill acts. The production data available to us contain two correlated com-
ponents: (1) the probability of a successful trip that produces a non-zero harvest and (2)
the size of harvests obtained on successful trips. We model each with a standard log-linear
function of labor, skill, and technology. Specifically, for successful trips, the mean expected
harvest at skill S is given by:230

h(S) = SηhLβh expαh (4)

where ηh is the elasticity of skill, which determines the magnitude of skill differences on
harvest, Lβh is the labor allocated with its elasticity βh, and αh is a linear model including
terms for technology and cooperation variables. Notice that harvest increases with both
skill and labor, but that the elasticity of each determines the impact of any increase. The
full distribution of harvests is assumed to follow a gamma distribution, which allows for the235
highly skewed distributions typical of many hunting data sets. We have used this assump-
tion in previous work (McElreath and Koster 2014). However, a log-normal distribution
of harvests would work as well. The important features are to impose a zero lower bound
and to allow for positive skew. If we had detailed data on the encounters and pursuits of
individual prey types, we could build a mixture distribution to better describe observed har-240
vest sizes. But such data are available in very few cases. For comparability across sites and
compatibility with the logit function described next (equation 5), we have proportionally
standardized harvests relative to the maximum harvest size at the respective study sites.

A similar approach provides a Bernoulli distribution of success/failure. The probability a
trip produces a non-zero harvest is:245

p(S) = 2
(
logit−1(SηpLβp expαp)− 1

2

)
(5)

The terms enclosed within the interior parentheses recapitulate the log-linear production
function of the above equation (4). The remainder of the function re-scales the log-linear
model so that p(S) varies continuously from zero to one and p(0) = 0.

This is a descriptive approach. It has the advantage of being able to describe many possible
relationships between skill, labor, and technology. Figure 4 illustrates some of the model’s250
features. Each plot in this figure shows labor input—hours allocated to foraging—on the
horizontal axis. From left to right, the plots show the probability of a non-zero harvest, the
expected harvest size on a successful trip, and the expected returns resulting from the product
of the two. Each row illustrates the impact of one type of variation—variation in individual
skill in the top row and variation in hunting group size in the bottom row. The first thing255
to notice is that the function implies monotonic returns to labor. Marginal returns must
always either increase or decrease with labor. Second, skill and labor can influence hunting
success and harvest size quite differently. There is no assumption that skill or labor is equally
important for both components of production. And since technology can influence elasticity
of skill and labor, technology can have independent effects as well.260
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Figure 4. Example production functions for observed harvests. Expected
harvest (righthand column) is the product of the probability of a non-zero
harvest (lefthand column) and the expected size of a non-zero harvest (mid-
dle column). The top row shows how each component may vary with skill.
The bottom row shows how each may vary with number of hunters.

3.3. Cooperative trips and aggregated harvests. Many of the hunting trips in our sam-
ple are cooperative, in the sense that multiple hunters of varying skill interact in producing
returns. The harvests on these trips may be assignable to individual hunters or alternatively
credited to the group as a whole. We handle cooperative trips by treating them as analo-
gous to technology, with group size represented as a coefficient in the production equation.265
When returns are aggregated to the level of the group rather than assigned to individual
hunter, we replace individual hunter skill in the production equation with average skill of
the group.

3.4. Missing values and measurement error. Our sample embodies common statistical
challenges. First, there are many missing values, notably for trip duration and the presence270
of dogs on trips. Second, there is measurement error, notably for individual ages. The
customary solution to these problems is to drop all cases with any missing values and to
replace uncertain measurements with their means. Instead of dropping cases with missing
values, however, we model the unknown values. This allows Bayesian imputation of missing
values, averaging over uncertainty in unobserved durations. We rely upon the same principle275
to handle measurement error in age. The co-authors who contributed datasets to our sample
assigned a standard error to each recorded age. Within the model, each hunter’s date-of-
birth is replaced with an unknown parameter with a prior centered on the recorded age
and with standard deviation equal to the recorded standard error. In a few cases, no age
is recorded for an individual. In those cases, we assign a vague prior that covers the entire280
range of observed ages. For more details on these techniques, see Chapter 14 of McElreath
(2015).
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3.5. Inference. The full model contains just under 28,000 parameters. A wry quotation
comes to mind, attributed to John von Neumann, “With four parameters I can fit an ele-
phant, and with five I can make him wiggle his trunk” (Dyson 2004). With 28,000 param-285
eters, maybe we can animate an entire stampeding herd?

In principle, perhaps, but in this application, we cannot. The reason is that these pa-
rameters are not free parameters. Many of these correspond to missing durations and age
uncertainties, and so contribute little fit to the sample. Many of the remaining parame-
ters arise from the hierarchical structure of the life history model. These parameters do not290
make it easier to fit the sample, but rather harder. They reduce overfitting, by pooling infor-
mation among sampling units. For the remaining parameters, we adopt regularizing priors
that are more conservative than the implied flat priors of typical non-Bayesian procedures
(see Chapter 6 of McElreath 2015, for aa explanation). We present a complete description
of the priors in the supplemental. Having fit alternative parameterizations of the model, we295
believe the results that we present in the next sections are qualitatively robust to changes in
priors and even the hierarchical structure of the model. To facilitate alternative estimates
of model parameters, though, we provide our annotated statistical code in the supplement.

Inference for a model with so many dimensions remains a challenge. Optimization ap-
proaches can fail in high dimensions. In high dimensions, a typical draw can be very far from300
the mode, a phenomenon known as concentration of measure. The most common Markov
chain Monte Carlo algorithms, such as Gibbs sampling, also fail in high dimensions, since
they tend to get stuck in local neighborhoods and poorly explore the posterior distribution.
A family of algorithms known as Hamiltonian Monte Carlo perform much better in these
settings (Neal 2010, Betancourt 2017). We used Stan’s implementation of Hamiltonian305
Monte Carlo (Stan Development Team 2016) to sample from the posterior distribution
of the full model. We present the results in the next section as summaries of 500 draws
each from 10 chains. We assessed chain convergence and mixing efficiency by means of
the Gelman-Rubin diagnostic R̂ and an estimate of the autocorrelation adjusted number of
samples, n_eff, both as calculated by rstan version 2.16.1. We also visually inspected trace310
plots of the chains to ensure that they converged to the same target distribution. Finally,
we compared the posterior predictions to the raw data to ensure that the model corresponds
to descriptive summaries of the sample. All parameters demonstrate good mixing, with R̂
values below 1.01. Since there are more than 20,000 parameters, we cannot conveniently
provide a table of these diagnostics. However, an R data file with samples and functions for315
diagnostics are available as an online supplement.

4. Results
The are many ways to summarize the model inferences. We focus on three foundational

issues that motivated the project.
(1) What is the overall pattern of skill development?320
(2) How variable is this pattern within and between societies?
(3) Which components of the model—increases early in life or declines later in life—

describe variation?
We consider each of these issues in order.

4.1. Overall pattern. At the highest level of pooling, the model provides a statistical an-325
swer to the question, “What is a typical human life history of hunting skill?” This is very
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Figure 5. Global mean skill (top-left plot) and skill at each site. Each curve
is the posterior mean skill for an individual. In the header of each individual
plot, the site number and three letter code are shown along with the num-
ber of individual hunters in each sample, followed by the number of observed
harvests in parentheses. The orange span of ages correspond to ages observed
within each site, while the gray ranges were unobserved and are instead im-
plied by the underlying model. The vertical dashed lines show the average
ages at peak.

much an abstraction, one that attempts to factor away all the variation in production func-
tions and associated elasticities to reveal an underlying, dimensionless skill function. It
cannot say much about absolute levels of production, either within or between societies.
But it can inform comparisons of relative skill at different stages of life.330

The statistically average hunter in this sample peaks at 33 years of age (top-left plot,
Figure 5). However, this peak is not sharp. At age 18, this fictional average hunter has 89%
of maximum skill. And skill declines slowly, such that skill falls below 89% of maximum
only after age 56. The blue shading around the posterior mean in this plot shows the entire
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posterior distribution, fading out to transparent as probability declines. The narrowness of335
this interval reflects high confidence about the global mean of this sample.

While the overall pattern is clear, not every site nor individual hunter exhibits the same
pattern. The individual site plots in Figure 5 illustrate this variation. Each site displays the
mean skill function for each hunter in the sample from that site, but note that the plots
do not depict the uncertainty around individual skill curves. Nevertheless, there is strong340
evidence of high individual variation at some sites, such as the Matsigenka (9 MTS), the
Aché (16 ACH), and the Martu (35 MRT). Differences among individuals can be quite
large. Some individuals have half the adult skill of others in the same community.

At some sites, such as the Dolgan (30 DLG), the individual curves tend to cluster to-
gether around a central mean. This is not an indication that the model believes these hunters345
are all the same. Rather, there is not sufficient evidence to indicate that they are different,
often stemming from relatively small sample sizes. In the supplemental, we present an-
other version of this grid that instead shows simulated hunters sampled from the posterior
distribution, which better represents the individual-level variation implied by the model
(Supplemental Figure 7).350

For each site, the figure also displays the age of peak skill for a statistically average hunter,
as indicated by the vertical dashed lines. While these peak ages cluster around 30 years of
age, there is some noteworthy variation. On the low end, the Matsigenka (9 MTS) and
Wola (40 WOL) peak early, near 24 years of age. Note that the best hunters at these sites
tend to peak even earlier, a trend that is also evident among the Barí (7 BAR). On the higher355
end, the Aché (16 ACH) and Valley Bisa (28 BIS) peak at 37 and 45, respectively, but with
relatively slow declines.

These skill functions are inputs into site-specific production functions. This means that
the relationship between age and skill is further modified by labor allocation and site-specific
details like technology. In the supplemental material, we produce versions of the grid in360
Figure 5 that display the other components of production, such as failure rates. One feature
of the production components is that variation can arise from different sources. In some set-
tings, hunters are distinguished primarily by the frequency of unsuccessful hunts. In other
settings, there is greater individual-level variation in the amounts acquired on successful
hunts.365

4.2. Structureof variation. Skill functions vary both within sites and between sites. Which
components of skill contribute to this variation? To address this question, we examine the
model parameters that measure variation in the components k (rate of increase) and m (rate
of decline) of the skill function. Since this is a non-linear model, we cannot exactly partition
total variance. The impact of variation in a component of skill depends upon the values of370
all the other components (Goldstein et al. 2002). We can, however, consider relative sizes
of components of variation on the latent scale.

First, we find greater variation in m than k within sites (top-left plot, Figure 6, cyan den-
sity). Between sites (orange), both m and k contribute about equally. This implies that while
variation among hunters within each site is explained more by heterogeneous senescence,375
both components are important to variation across sites. Some caution is necessary here,
since the relationship between m and k is not additive. However, the implication is that skill
functions vary more late in life than early in life. This comports with the posterior means
visualized in Figure 2.
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Figure 6. Variation in components of skill. Top-left: Relative variation in
k and m. Horizontal axis is the ratio of the standard deviation of k to the
standard deviation of m. The vertical line at 1 indicates equality of variances.
Orange density is between site variation. Blue density is within site varia-
tion. There is more variation in m than k, both between and within sites,
but the difference is much greater within sites, where m contributes more to
variation among individuals than does k. Top-right: Correlation between k
and m among individuals within sites. The orange density is the global av-
erage. Each blue density is a single site. The Aché stand out and are labeled
separately. Bottom-left and bottom-right: Variation in k (left) and m (right)
comparing within and between sites.

We also find a modest positive correlation between k and m (upper-right plot), suggesting380
that hunters who develop skill relatively quickly also show reduced declines in skill at higher
ages. Each density is the upper-right plot is the posterior correlation between k and m
for an individual site. This correlation is particularly pronounced for the Aché and modest
otherwise. This may reflect the lack of longitudinal data on individual hunters at most study
sites, limiting what can be learned about this correlation. In contrast, the Aché site contains385
enough time series data on individuals to make stronger inferences about the correlation.
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Finally, variation in m and k can be decomposed additively within and among sites. We
show the posterior distributions of the standard deviations in both k (bottom-left) and m
(bottom-right) in Figure 6. The cyan densities are the standard deviations within sites,
which correspond to the plausible values for variation among individuals. The orange den-390
sities are the standard deviations between sites, corresponding to the plausible values for
variation among site means. The dashed curves in both plots show the prior distributions,
which were the same for both within and between components. Because the orange curves
remain flatter than the cyan curves, these plots show that for both k and m, there is relatively
less information about variation among sites than within sites. While there is a hint that395
variation between sites contributes more to variation in k while variation within sites con-
tributes more to variation in m, no strong inferences can be drawn until more information
is available for inferring the between-site variance.

5. Discussion
Hunting is not an easy task. It is demanding of physical stamina, bio-geographical400

knowledge, experience reading environmental cues, close observation of animal behavior,
technical finesse in the construction and maintenance of equipment, and often the ability to
collaborate with partners. Even the most skilled hunters in our sample often return home
with nothing. A hunter might spend hours tracking a trail that goes cold. A hunter might
pass lots of small prey but never encounter something large enough to be worth pursuing.405
A hunter could strike prey but subsequently fail to catch or locate it. A hunter might even
run out of arrows or ammunition and be forced to return with nothing. Every failure case
implicates physical skills, cognitive skills, and knowledge. How these components interact
and how quickly each develops weighs heavily on theories of the evolution of our species’
unusual life history and our equally unusual reliance on socially-transmitted behavior. The410
variation among hunters, both within and among ages, weighs as heavily on models of co-
operation and parental investment.

Estimates of hunting skill as a function of age help to constrain and inform theory. A
successful theory should predict these functions with an internal logic, or otherwise explain
why the data have misled us. And when a model cannot generate observed patterns, it415
must be either discarded or amended. A detailed model like González-Forero et al. (2017)
makes amendments easier because the anomalies have biological meaning. For example,
the González-Forero et al. (2017) model predicts that skill increases plateau soon after the
onset of reproduction. This may be because learning and production are separate activi-
ties in the model. In a generalized linear model, in contrast, a violation has no specific420
biological interpretation, because the model contains no causal assumptions, only statisti-
cal assumptions. While more mechanistic models have advantages over typical generalized
linear models, they share many flaws. For example, it is still possible—even likely—that the
inferences from data are confounded by factors like cohort effects or the absence of data on
components of skill, like ecological knowledge. Combined with an explicit causal model425
(Pearl et al. 2016), these suggestions guide us to improve future research designs and in-
ferential procedures. So while the work we have accomplished here cannot settle the most
important debates, it takes stock of available evidence in a unified framework that will focus
and improve future effort.

Our analysis found both a clear central pattern and variation around it. In every site,430
skill peaks after reproductive maturity. In no society do we find adolescents who regularly
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display peak individual performance. The average hunter exhibits peak skill around 33 years
of age, long after men have reached physical and reproductive maturity. Skill functions are
rather flat in the region of the peak, however. Most skill has been achieved by age 18, and
declines are typically slow, such that an 80 year old may retain two-thirds of maximum skill.435
Several sites show peaks that are either much later or much earlier than the average. Among
societies such as the Aché of Paraguay (16 ACH, Figure 5), skill increases throughout much
of the 30s, peaking only around age 37. This contrasts with sites such as the Matsigenka (9
MTS), where the average peak is at age 24.

Why does skill develop at the observed rates? Are cognitive skills, cultural knowledge,440
or physical strength to thank? The most plausible answer, based on both data and theory,
may be “all of the above.” The average skill function strongly resembles age-related variation
in physical strength, both among hunters in subsistence-oriented societies and in modern
contexts (Supplemental Figure 12). There are cases where skill arguably peaks after phys-
ical strength (Walker et al. 2002), but this does not rule out an important contribution of445
physical strength to adult skill (Blurton Jones and Marlowe 2002). Adults in their twenties
and thirties have also accumulated substantial ecological knowledge (Zent and López-Zent
2004, Demps et al. 2012, Koster et al. 2016). From a theoretical perspective, an optimal
life history should develop these components together, with the important caveat that brain
growth may need to precede body growth, to enable learning (e.g. González-Forero et al.450
2017). Taken together, individual hunters develop physical and cognitive abilities in con-
cert, resulting in high hunting success by their late 20s and early 30s.

The data reveal considerable heterogeneity among hunters. Much of this variation evi-
dently pertains to unmeasured site-level factors, which especially impact the rate at which
hunters develop peak skill. On average, for instance, Matsigenka hunters of Peru exhibit455
their peak more than a decade earlier than Paraguayan Aché hunters, and it is not clear
what factors explain such variation. It is common and reasonable for anthropologists to
emphasize ecological predictors of cross-cultural variation (e.g. Blurton Jones et al. 1994).
But varying rates of skill development may stem as well from mediating social factors that
relate only indirectly to ecological differences. Additional theorizing is needed to generate460
hypotheses about the cross-cultural ontogeny of hunting skill in response to variables such
as experience, motivation, opportunities for social learning, and the physical and cognitive
demands of hunting in different socio-ecological environments. As opposed to a canalized
human life history strategy, this study suggests potential developmental plasticity in traits
associated with foraging skill, which manifest not just in contemporary settings but poten-465
tially in ancestral settings as well. Therefore, these results imply that singular study sites
can rarely be viewed as straightforward analogues for evolutionarily relevant environments
(Irons 1998). Regardless of the causes of individual and between-site variation, these dif-
ferences inform downstream models of risk and sharing economies. Heterogeneity among
hunters’ productive abilities alters the effectiveness of food sharing for buffering risk (Boyd470
1992). Accordingly, the between-site variation in age-related productivity implies that food
sharing has diverse adaptive consequences across sites.

Such questions imply an agenda for future research. Few datasets include longitudi-
nal data on individual hunters, thus hindering analysis of correlations and tradeoffs across
the lifespan. Moreover, this study focuses on the hunters’ ages, but hunting returns are475
expected to vary as a function of traits that covary with age, such as physical strength or
ecological knowledge (Gurven et al. 2006). Longitudinal data collection of these and other
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individual-level variables would permit research on the proximate mechanisms that underlie
the skill functions that we have modeled in this study. As a final consideration, our cross-
cultural data are observational and subject to self-selection biases, implying that potentially480
hunters enter the dataset only at times when they are expecting to be successful (Heck-
man 1979). Such biases perhaps explain the divergence of foraging skill across the lifespan,
and methodological approaches are needed that explain the representation of hunters in the
sample. These are ambitious objectives, but given evidence that subsistence challenges and
complexity are a key determinant of life history evolution (Kaplan et al. 2000, DeCasien485
et al. 2017), a renewed emphasis on foraging skill and production is merited.
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Figure 7. Simulated samples from the posterior distributions of skill func-
tions in each site. This figure is similar to the skill grid in the main text, but it
shows simulated hunters, not the posterior means for the observed hunters.
This is much better for showing that the model expects more empirical vari-
ation than can be seen in the previous skill figure.
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Model definition. Let y be an indicator variable for hunting success (produced a non-zero harvest)
and h any observed non-zero harvest. Let i index observed outcomes (harvests). Then:

yi ∼ Bernoulli(pi)

hi ∼ Gamma(µi2, νsite[i])

The expressions for p and µ specify the production functions, indexed by j for the outcome type (for
successes or harvest size, respectively):565

pi = 2
(
logit−1(µi1)− 1

2

)
log(µij) = ηsite[i]jStrip[i] + βsite[i]1j log Li + αij

The labor input is Li, the duration of the trip, standardized so that the average trip at each site has
L = 1.

The skill input S into the above is given by the average skill among the individuals contributing
labor to a particular observed harvest:

Strip[i] = n−1
trip[i]

ntrip[i]∑
f=1

exp(−mid[f]ℓid[f],trip[i])
(
1− exp(−kid[f]ℓid[f],trip[i])

)bsite[trip[i]]

where n is the number of productive foragers for trip[i] (excluding individuals categorized as assis-570
tants, such as porters) and id[f] is the forager ID of the f-th forager on each trip. This means that for
aggregated harvests, in which individual contributions cannot be identified, the model uses average
skill. The age ℓf,trip[i] is the estimated age for forager f at the time of trip[i]. We describe the age
model further down. Note that all ages within the model are standardized by dividing calendar age
by the reference age of 80, making ℓ = 1 equivalent to 80 years old.575

The intercept component of each production function, αij, is composed from:
• A site-specific intercept asite[i]j
• A site-specific and outcome-type specific set of coefficients (elasticities) for the impact of

group size, number of assistants, firearms, and dogs. The latter two variables are binary
variables indicating whether the hunter had use of a gun (as opposed to other weaponry) or580
at least one dog.

On the log scale, these combine additively:

αij = asite[i]j + groupsize + assistants + firearms + dogs

All of these effects are allowed to vary by site as random effects. These assumptions are visible in
precise detail in the code to follow.

Random effects on skill. The life history parameters k, m, and b make use of partial pooling both585
within and between sites. We use a two-level pooling structure that allows each site to have its own
covariance between k and m. Specifically, let id be the unique ID number of each forager. Then each
kid and mid are defined by:

kid = exp(W1 + Vsite[id[i]],1 + vid,1)

mid = exp(W2 + Vsite[id[i]],2 + vid,2)

The parameters W1 and W2 are overall means, across all sites, and the parameters Vs,1 and Vs,2 are
the offsets of these means for site s. This leaves vid,1 and vid,2 as the offsets for individual id.590
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Starting at the lowest level, each pair of parameters vid = {vid,1, vid,2} are allocated probability
from a bivariate normal:

vid ∼ MVNormal((0, 0),Σsite[id])

ΣS =

(
σ2

S,1 σS,1σS,2ρS
σS,1σS,2ρS σ2

S,2

)
Each site is characterized by 6 parameters: offsets for k, m, and b, as well as standard deviations for k
and m and their correlation ρ. These 6 parameters are themselves pooled across sites. This produces
the distinction between variance among sites and the variance of the individual hunters, as described595
in the text.
Age error model. We accommodate uncertainty in observed ages by defining:

ℓid,i = (agei − υid)/80

υid ∼ Normal(lid, eid)
where lid is the observed year of birth and eid is the assigned standard error. In the limit where
eid → 0, the age is purportedly known with certainty. Some sites reported ages using uniform
intervals. We converted those to Gaussian representations with equivalent variances, so that the600
imputed ages were unconstrained. In most cases, when a researcher records a uniform age interval,
they imply that the true age is closer to the middle of the interval and do not imply that it is impossible
for the true age to be outside the interval. To allow this information into the model, we had to use
something other than a uniform probability distribution. Gaussian is the most conservative choice,
in that case. The irony of the effort put into dealing with age uncertainty is that it has no detectable605
impact on inference. Fixing all of the ages at their central value produces the same inferences that
we reported in the main text.
Production functions. The skill functions presented in Figure 5 of the main text are inputs into site-
specific production functions. These functions have their own elasticities and therefore characteristic
shapes. Here we present versions of Figure 5 to illustrate these production functions. There are three610
different perspectives on the production function. The first component is the probability of success
at each age. The second component is the distribution of harvest sizes at each age. These two
components multiply to produce the distribution of expected harvests at each age.

To make these components easier to understand, consider all four implied components of the
production function for only the Aché sample (Figure 8). The orange functions in the upper-left615
are the same latent skill functions as in the main text. The red functions in the upper-right are
the probabilities of success for each hunter, with the horizontal dashed line showing 50% success
rate. The points are the raw data—the proportion of successes at each observed age, aggregated
across individuals who were observed at those ages. The lower-left blue functions are the expected
harvest sizes, conditional on a non-zero harvest. Again the points are raw data—the average harvest620
observed at each age. The violet functions in the lower-right are just the product of the red and blue
functions, showing the expected harvests at each age.

Each component may be of interest in itself. In some sites, such as the Ache (16 ACH), the
success of each hunt contributes more to variation than does the harvest size. The red curves in
Figure 8 vary more both across age and across individuals than do the blue curves. As a result, more625
of the variation in the resulting expected production curves, seen in violet, arises from success rates
rather than variation in harvest sizes. The Matsigenka sample (9 MTS) shows the same pattern—
more variation in success rates than harvest sizes. This is possibly a result of the prey types available
at the respective sites. Regardless of the explanation, decomposing the expected production in this
way shows how skill can influence some aspects more than others.630
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Figure 8. Components of the forager production functions for the Aché
sample. See text for description.
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Figure 9. Posterior mean probabilities of hunting success across age. The
axis ranges from 0 to 1, and is the probability of hunting success (a non-zero
harvest). Several sites, such as GB4 (21) and DLG (30), show essentially
no variation in hunting success, since virtually all documented trips result in
a non-zero harvest. Other sites, such as MRT (35) and WOL (40), show
substantial failure rates and variation arising from it. nb: Variation in meth-
ods for documenting unsuccessful hunts imposes limitations on comparisons
across sites.
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Figure 10. Posterior mean non-zero harvest size across age. The vertical
axis is proportion of maximum harvest at each site. So while the units are
uninformative, variation remains interesting.
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Figure 11. Expected production across age. These functions are just the
product of the success function and the expected harvest function. In consid-
ering relative expected energy contributions of individuals at different ages,
these curves are perhaps the most relevant representations of the data.
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Figure 12. Strength and ecological knowledge as a function of age. Points
depict the strength and knowledge of males at the lead author’s field site in
Nicaragua. Strength is measured using methods described by Gurven et al.
(2006). Knowledge reflects performance on questions about fish behavior, as
described by Koster et al. (2016). Fitted lines reflect smoothing splines, and
they are superimposed atop the average skill function from Figure 5. All fit-
ted lines are standardized to have the same maximum value, but knowledge
has an expected minimum of 50% of the maximum, reflecting the guessing
probability of the binary questions. Note that there is minimal residual cor-
relation (ρ = 0.09) between individual men’s knowledge and strength after
partialling linear and quadratic effects of age from the respective response
variables.
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Detailed model code. The code for the model is available in the accompanying R package. In this
section, we explain the model block of the code, focusing on how the marginalization over missing
values is accomplished.

The first portion of the model block defines local variables, used in calculations, and priors. The
only unusual code here is the Jacobian adjustment applied to lifehistmeans[4] and lifehistmeans[5].635
This adjustment allows us to apply the prior on the natural, instead of logarithmic, scale.
model{

// temp variables
real k[N_hunters];
real m[N_hunters];640
real b[N_societies];
vector[N_trips] lm_f;
vector[N_trips] lm_h;
real p;
real mu;645
matrix[2,2] Sigma;
vector[N_trips] trip_duration_merge;

// priors
// society-level life history means --- centered on global means650
// equivalent to:

//vs ~ multi_normal( lifehistmeans , quad_form_diag(Rho_societies,sigma_societies) );
//see transformation in transformed parameters block
to_vector(zs) ~ normal(0,1);

655
lifehistmeans[1:2] ~ normal( 1, prior_scale ); // log k,m
lifehistmeans[3] ~ normal( 1, prior_scale ); // log b
lifehistmeans[6] ~ normal( 0, prior_scale ); // shifted logit rho_km
// do prior for stddev k,m between [4,5] as normal on transformed scale
// this allows us to define same prior for sigma_societies[1:2]660
exp(lifehistmeans[4]) ~ normal( 0 , prior_scale );
exp(lifehistmeans[5]) ~ normal( 0 , prior_scale );
// need Jacobian adjustments for these priors
// log|d/dy exp y| = log|exp y| = y
// see also section 33.2 of Stan reference manual665
target += lifehistmeans[4];
target += lifehistmeans[5];

sigma_societies[1:3] ~ normal( 0 , prior_scale2 );
sigma_societies[4] ~ normal( 0.5 , prior_scale2 );670
sigma_societies[5:6] ~ normal( 0 , prior_scale2 );

dogs_mu ~ beta(2,10); // weighted to stop mode switching in site 8
guns_mu ~ beta(2,4);

675
ache_fix_rho ~ normal( 0, prior_scale );

afbar ~ normal(0, prior_scale );
ahbar ~ normal(0, prior_scale );
sigma_af ~ normal(0, prior_scale );680
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sigma_ah ~ normal(0, prior_scale );

for ( s in 1:N_societies ) {
af[1,s] ~ normal(afbar,sigma_af);
ah[1,s] ~ normal(ahbar,sigma_ah);685
for ( i in 2:4 ) {

af[i,s] ~ normal(0,prior_scale);
ah[i,s] ~ normal(0,prior_scale);

}
sef[s] ~ normal(0,prior_scale);690
seh[s] ~ normal(0,prior_scale);
for ( i in 1:2 ) {

b_hours[i,s] ~ normal(0,prior_scale);
b_dogs[i,s] ~ normal(0,prior_scale);
b_firearms[i,s] ~ normal(0,prior_scale);695
se_dogs[i,s] ~ normal(0,prior_scale);
se_firearms[i,s] ~ normal(0,prior_scale);

b_xday[s,i] ~ normal(0,prior_scale);
}700

}//s
hscale ~ normal( 1 , prior_scale );

// varying effects
// foragers --- these are zero-centered705
// see translation to vh in transformed parameters block
to_vector(zh) ~ normal(0,1);

The next chunk of code handles imputation of missing ages and trip durations. For each missing
age, there is a corresponding standard error of the age. This comprises a Gaussian prior for the error
of each missing age. Combined with the prior for each missing age, this provides a way to average710
over the uncertainty. For each missing trip duration, similarly a parameter is used. Then a vector that
merges observed and missing values is generated. The prior formed from each site’s (standardized)
trip durations constrains the imputed values.

// age imputation
for ( i in 1:N_hunters ) {715

if ( age_impute_idx[i] > 0 ) {
if ( age_impute_table[i,1]==1 )

age_err[age_impute_idx[i]] ~
normal( 0 , age_impute_table[i,3] );

}720
}

// trip durations
for ( j in 1:N_societies ) trip_duration_mu[j] ~ normal(0,1);
trip_duration_sigma ~ exponential(1);725
for ( i in 1:N_trips ) {

if ( trip_hours[i]<0 ) {
// missing
trip_duration_merge[i] = trip_duration_imputed[hours_miss_idx[i]];
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} else {730
// observed
trip_duration_merge[i] = log(trip_hours[i]);

}
// prior (when missing) or likelihood (when observed)
trip_duration_merge[i] ~ normal( trip_duration_mu[trip_soc_id[i]] ,735

trip_duration_sigma[trip_soc_id[i]] );
}//i

The next short section computes hunter-specific and society-specific skill parameters. These are
then reused in the likelihood calculations to follow.
// prep hunter effects so can re-use740
for ( j in 1:N_hunters ) {

k[j] = exp( lifehistmeans[1] + vs[forager_soc_id[j],1] + vh[j,1] );
m[j] = exp( lifehistmeans[2] + vs[forager_soc_id[j],2] + vh[j,2] );

}
// prep b for each society, so only have to compute once745
for ( s in 1:N_societies ) {

b[s] = exp( lifehistmeans[3] + vs[s,3] ); // ensure positive with log link
}

The main loop of the model block comes next. This loop passes over trips, and then harvests within
trips. The first chunk of code just prepares local variables. The xdogsvec and xgunsvec arrays750
exist to help us construct marginal log-probabilities when both dogs and firearms are unobserved
(missing). The relevant code appears later down.
// likelihoods
lm_f = rep_vector(0,N_trips);
lm_h = lm_f;755
// loop over trips and compute likelihoods
for ( i in 1:N_trips ) {

real skillj;
real sefx;
real sehx;760
real ai;
int hid;
real avg_skill;
vector[2] LLterms;
vector[4] LL4terms;765
int xdogs;
int xguns;
int n_foragers_index;
int coopidx;
// prep binary tree for possible combinations of missing values770
int xdogsvec[4];
int xgunsvec[4];
xdogsvec[1] = 1;
xdogsvec[2] = 1;
xdogsvec[3] = 0;775
xdogsvec[4] = 0;
xgunsvec[1] = 1;
xgunsvec[2] = 0;
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xgunsvec[3] = 1;
xgunsvec[4] = 0;780

Next, when a trip has a pooled harvest, average skill for the entire group of hunters must be
calculated. This is because we assume that production depends upon average skill in this case, where
we cannot identify individual contributions. The coopidx variable tells us later which intercept
parameter is needed, as the intercept in production differs depending upon pooled or individual
harvests.785

// compute avg skill (when needed)
avg_skill = 0;
if ( trip_pooled[i]==1 ) {

// pooled harvest
// compute average skill in foraging group790
for ( j in 1:n_foragers[i] ) {

hid = forager_ids[i,j];
if ( age_impute_idx[hid]==0 ) {

// simple case, just fetch observed age
ai = forager_age[i,j]; // from trip variables795

} else {
// need some kind of imputation
ai = forager_age[i,j] + age_err[age_impute_idx[hid]];

}
ai = ai/ref_age;800
skillj = exp(-m[hid]*ai)*pow(1-exp(-k[hid]*ai),b[trip_soc_id[i]]);
avg_skill = avg_skill + skillj;

}//j
avg_skill = avg_skill/n_foragers[i] + 0.001;
n_foragers_index = 1; // loop over just "one" forager805
coopidx = 3;

} else {
// independent harvests
n_foragers_index = n_foragers[i];
coopidx = 2;810

}
The big loop over individual foragers comes next. The loop begins by calculating individual forager

skill, but only when harvest is not pooled. This code is structural the same as that used above to
compute average skill, but it omits the averaging.
for ( j in 1:n_foragers_index ) {815

// if trip pooled, only one harvest (n_foragers_index==1)
// otherwise loops over each harvest and predicts each

if ( trip_pooled[i]==1 ) {
skillj = avg_skill;820

} else {
hid = forager_ids[i,j];
if ( age_impute_idx[hid]==0 ) {

// simple case, just fetch observed age
ai = forager_age[i,j]; // from trip variables825

} else {
// need some kind of imputation
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ai = forager_age[i,j] + age_err[age_impute_idx[hid]];
}
ai = ai/ref_age;830

skillj = exp(-m[hid]*ai)*pow(1-exp(-k[hid]*ai),b[trip_soc_id[i]]) + 0.001;
}

Next we build “stem” expressions for each harvest log-probability. These stems contain all terms
except those for dogs and firearms. Dogs and firearms must be added conditional on missingness.
In that case, these stems are reused for each missingness state.835

// failures production
lf_stem = exp( af[1,trip_soc_id[i]] +

af[coopidx,trip_soc_id[i]]*(n_foragers[i]-1) +
af[4,trip_soc_id[i]]*n_assistants[i,j] +
b_xday[trip_soc_id[i],1]*trip_xday[i]840

) *
exp(trip_duration_merge[i])^b_hours[1,trip_soc_id[i]];

// harvests production
lh_stem = exp( ah[1,trip_soc_id[i]] +

ah[coopidx,trip_soc_id[i]]*(n_foragers[i]-1) +845
ah[4,trip_soc_id[i]]*n_assistants[i,j] +
b_xday[trip_soc_id[i],2]*trip_xday[i]

) *
exp(trip_duration_merge[i])^b_hours[2,trip_soc_id[i]];

// failures skill elasticity850
sef_stem = exp( sef[trip_soc_id[i]] );
// harvests skill elasticity
seh_stem = exp( seh[trip_soc_id[i]] );

Now we can do target updates. Different expressions need to be built, depending upon whether
dogs, firearms, or both are missing. The simplest case is when both are observed. In this case, we just855
add the observed values to the stems, compute probability of failure, average harvest, and update.
Note that −1 as the missingness indicator is chosen during data initialization. Note that the code
here considers the probability of a zero harvest, instead of the probability of a non-zero harvest.
This is equivalent to the analytical model definition given earlier, even though the expression looks
different.860

if ( n_dogs[i,j] != -1 && n_firearms[i,j] != -1 ) {
// dogs and guns both observed
// use obs values to update base rates of dogs and guns
n_dogs[i,j] ~ bernoulli(dogs_mu[trip_soc_id[i]]);
n_firearms[i,j] ~ bernoulli(guns_mu[trip_soc_id[i]]);865
// build production functions with observed values
lm_f[i] = lf_stem * exp( b_dogs[1,trip_soc_id[i]]*n_dogs[i,j] +

b_firearms[1,trip_soc_id[i]]*n_firearms[i,j] );
lm_h[i] = lh_stem * exp( b_dogs[2,trip_soc_id[i]]*n_dogs[i,j] +

b_firearms[2,trip_soc_id[i]]*n_firearms[i,j] );870
sefx = sef_stem * exp( se_dogs[1,trip_soc_id[i]]*n_dogs[i,j] +

se_firearms[1,trip_soc_id[i]]*n_firearms[i,j] );
sehx = seh_stem * exp( se_dogs[2,trip_soc_id[i]]*n_dogs[i,j] +

se_firearms[2,trip_soc_id[i]]*n_firearms[i,j] );
// compute failure probability and harvest mean875
p = 2*(1 - inv_logit( skillj^sefx * lm_f[i] ));
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mu = lm_h[i] * skillj^sehx;
if ( trip_harvests[ i , j ]==0 )

// failure
1 ~ bernoulli(p);880

else {
// observed harvest
0 ~ bernoulli(p);
trip_harvests[ i , j ] ~ gamma( mu/hscale[trip_soc_id[i]] ,

1/hscale[trip_soc_id[i]] );885
}

}

The next two cases are when either dogs or firearms are missing. In these cases, we need to
marginalize over missingness states. This generates two log-probability terms in a mixture.

// now dogs missing, guns observed890
if ( n_dogs[i,j] == -1 && n_firearms[i,j] != -1 ) {

n_firearms[i,j] ~ bernoulli(guns_mu[trip_soc_id[i]]);
// average over missingness
// LLterms holds terms to mix over
// LLterms[1] is where dogs == 0895
// LLterms[2] is where dogs == 1
for ( nterm in 1:2 ) {

xdogs = nterm-1;
lm_f[i] = lf_stem * exp( b_dogs[1,trip_soc_id[i]]*xdogs +

b_firearms[1,trip_soc_id[i]]*n_firearms[i,j] );900
lm_h[i] = lh_stem * exp( b_dogs[2,trip_soc_id[i]]*xdogs +

b_firearms[2,trip_soc_id[i]]*n_firearms[i,j] );
sefx = sef_stem * exp( se_dogs[1,trip_soc_id[i]]*xdogs +

se_firearms[1,trip_soc_id[i]]*n_firearms[i,j] );
sehx = seh_stem * exp( se_dogs[2,trip_soc_id[i]]*xdogs +905

se_firearms[2,trip_soc_id[i]]*n_firearms[i,j] );
p = 2*(1 - inv_logit( skillj^sefx * lm_f[i] ));
mu = lm_h[i] * skillj^sehx;
LLterms[nterm] = 0;
if ( trip_harvests[i,j]==0 ) {910

LLterms[nterm] = LLterms[nterm] + log(p);
} else {

LLterms[nterm] = LLterms[nterm] + log1m(p);
LLterms[nterm] = LLterms[nterm] +

gamma_lpdf( trip_harvests[i,j] |915
mu/hscale[trip_soc_id[i]] , 1/hscale[trip_soc_id[i]] );

}
}// nterm
// do the mixture
// Pr(dogs==1)*Pr(harvest|dogs==1) + Pr(dogs==0)Pr(harvest|dogs==0)920
// log_mix here is for numerical stability
target += log_mix( dogs_mu[trip_soc_id[i]] , LLterms[2] , LLterms[1] );

}
// now dogs observed but firearms missing
if ( n_dogs[i,j] != -1 && n_firearms[i,j] == -1 ) {925
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n_dogs[i,j] ~ bernoulli(dogs_mu[trip_soc_id[i]]);
// average over missingness
// similar to above, but LLterms now average over missing guns
for ( nterm in 1:2 ) {

xguns = nterm-1;930
lm_f[i] = lf_stem * exp( b_dogs[1,trip_soc_id[i]]*n_dogs[i,j] +

b_firearms[1,trip_soc_id[i]]*xguns );
lm_h[i] = lh_stem * exp( b_dogs[2,trip_soc_id[i]]*n_dogs[i,j] +

b_firearms[2,trip_soc_id[i]]*xguns );
sefx = sef_stem * exp( se_dogs[1,trip_soc_id[i]]*n_dogs[i,j] +935

se_firearms[1,trip_soc_id[i]]*xguns );
sehx = seh_stem * exp( se_dogs[2,trip_soc_id[i]]*n_dogs[i,j] +

se_firearms[2,trip_soc_id[i]]*xguns );
p = 2*(1 - inv_logit( skillj^sefx * lm_f[i] ));
mu = lm_h[i] * skillj^sehx;940
LLterms[nterm] = 0;
if ( trip_harvests[i,j]==0 ) {

LLterms[nterm] = LLterms[nterm] + log(p);
} else {

LLterms[nterm] = LLterms[nterm] + log1m(p);945
LLterms[nterm] = LLterms[nterm] +

gamma_lpdf( trip_harvests[i,j] |
mu/hscale[trip_soc_id[i]] , 1/hscale[trip_soc_id[i]] );

}
}//nterm950
// do the mixture
target += log_mix( guns_mu[trip_soc_id[i]] , LLterms[2] , LLterms[1] );

}

Finally, both dogs and firearms could be missing. In this case, we need a mixture over four possible
states.955

// finally, both dogs and guns missing
if ( n_dogs[i,j] == -1 && n_firearms[i,j] == -1 ) {

// L4terms holds combinations of possible values of dogs and guns
// dogs guns {probability at site k}
// [1] 1 1 dogs_mu[j] * guns_mu[k]960
// [2] 1 0 dogs_mu[j] * ( 1 - guns_mu[k] )
// [3] 0 1 ( 1 - dogs_mu[j] ) * guns_mu[k]
// [4] 0 0 ( 1 - dogs_mu[j] ) * ( 1 - guns_mu[k] )
for ( nterm in 1:4 ) {

xdogs = xdogsvec[nterm];965
xguns = xgunsvec[nterm];
lm_f[i] = lf_stem * exp( b_dogs[1,trip_soc_id[i]]*xdogs +

b_firearms[1,trip_soc_id[i]]*xguns );
lm_h[i] = lh_stem * exp( b_dogs[2,trip_soc_id[i]]*xdogs +

b_firearms[2,trip_soc_id[i]]*xguns );970
sefx = sef_stem * exp( se_dogs[1,trip_soc_id[i]]*xdogs +

se_firearms[1,trip_soc_id[i]]*xguns );
sehx = seh_stem * exp( se_dogs[2,trip_soc_id[i]]*xdogs +

se_firearms[2,trip_soc_id[i]]*xguns );
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p = 2*(1 - inv_logit( skillj^sefx * lm_f[i] ));975
mu = lm_h[i] * skillj^sehx;
LL4terms[nterm] = 0;
if ( trip_harvests[i,j]==0 ) {

LL4terms[nterm] = LL4terms[nterm] + log(p);
} else {980

LL4terms[nterm] = LL4terms[nterm] + log1m(p);
LL4terms[nterm] = LL4terms[nterm] +

gamma_lpdf( trip_harvests[i,j] |
mu/hscale[trip_soc_id[i]] ,
1/hscale[trip_soc_id[i]] );985

}
// add leading factor for probability of combination of missingness
if ( xdogs==1 )

LL4terms[nterm] = LL4terms[nterm] + log(dogs_mu[trip_soc_id[i]]);
else990
LL4terms[nterm] = LL4terms[nterm] + log1m(dogs_mu[trip_soc_id[i]]);

if ( xguns==1 )
LL4terms[nterm] = LL4terms[nterm] + log(guns_mu[trip_soc_id[i]]);

else
LL4terms[nterm] = LL4terms[nterm] + log1m(guns_mu[trip_soc_id[i]]);995

}//nterm
// do the mixture
target += log_sum_exp( LL4terms );

}
In the end, the model block just loops over foragers j and trips i until all trips have been processed.1000

} //j over foragers
} //i over trips

} //model

Model robustness. We went through a lot of effort to handle age uncertainty, missing values in trip
durations, and missing values in technology (dogs and firearms). Models that ignore these issues1005
produce very similar inferences for skill functions. On the one hand, this is disappointing, because it
really was not trivial to do the right thing, and it did not seem to matter much. On the other hand,
it is important to do the right thing, even if it turns out not to matter.
Marginal posterior distributions. Many of the parameters in the production functions are inter-
esting in themselves. For example, the marginal effects of group size and technology inform debates1010
about human economies. In the figures that follow, we present marginal posterior distributions for
all of these parameters, labeled informatively.
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Figure 13. Marginal posterior distributions for production components
(success). In the code, these parameters are named af[1], af[2], af[3],
af[4], sef, and bhours[1], respectively. Note that marginal distributions
centered on zero with standard deviation 0.5 correspond to the prior. In
those cases, the society contained no information to inform the parameter.
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Figure 14. Marginal posterior distributions for production components
(harvest). In the code, these parameters are named ah[1], ah[2], ah[3],
ah[4], seh, and bhours[2], respectively. Note that marginal distributions
centered on zero with standard deviation 0.5 correspond to the prior. In
those cases, the society contained no information to inform the parameter.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/574483doi: bioRxiv preprint 

https://doi.org/10.1101/574483
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 KOSTER ET AL.

WOL
MAR
NEN
NIM
NUA
MRT
AGT
PN2
PN1
BTK
DLG
HEH
BIS
CN4
BFA
CN3
CN2
BK2
BK1
GB4
CN1
GB3
GB2
GB1
ACH
TS3
TS2
TS1
PME
CLB
PIR
MTS
INU
BAR
WAO
ECH
QUI
MYN
MYA
CRE

0.0 0.2 0.4 0.6 0.8
Value

Frequency of dogs on trips

WOL
MAR
NEN
NIM
NUA
MRT
AGT
PN2
PN1
BTK
DLG
HEH
BIS
CN4
BFA
CN3
CN2
BK2
BK1
GB4
CN1
GB3
GB2
GB1
ACH
TS3
TS2
TS1
PME
CLB
PIR
MTS
INU
BAR
WAO
ECH
QUI
MYN
MYA
CRE

-1.0 -0.5 0.0 0.5 1.0
Value

Marginal effect of dogs (success)

WOL
MAR
NEN
NIM
NUA
MRT
AGT
PN2
PN1
BTK
DLG
HEH
BIS
CN4
BFA
CN3
CN2
BK2
BK1
GB4
CN1
GB3
GB2
GB1
ACH
TS3
TS2
TS1
PME
CLB
PIR
MTS
INU
BAR
WAO
ECH
QUI
MYN
MYA
CRE

-0.5 0.0 0.5 1.0 1.5
Value

Marginal effect of dogs (harvest)

WOL
MAR
NEN
NIM
NUA
MRT
AGT
PN2
PN1
BTK
DLG
HEH
BIS
CN4
BFA
CN3
CN2
BK2
BK1
GB4
CN1
GB3
GB2
GB1
ACH
TS3
TS2
TS1
PME
CLB
PIR
MTS
INU
BAR
WAO
ECH
QUI
MYN
MYA
CRE

0.0 0.2 0.4 0.6 0.8 1.0
Value

Frequency of firearms on trips

WOL
MAR
NEN
NIM
NUA
MRT
AGT
PN2
PN1
BTK
DLG
HEH
BIS
CN4
BFA
CN3
CN2
BK2
BK1
GB4
CN1
GB3
GB2
GB1
ACH
TS3
TS2
TS1
PME
CLB
PIR
MTS
INU
BAR
WAO
ECH
QUI
MYN
MYA
CRE

-0.5 0.0 0.5 1.0
Value

Marginal effect of firearms (success)

WOL
MAR
NEN
NIM
NUA
MRT
AGT
PN2
PN1
BTK
DLG
HEH
BIS
CN4
BFA
CN3
CN2
BK2
BK1
GB4
CN1
GB3
GB2
GB1
ACH
TS3
TS2
TS1
PME
CLB
PIR
MTS
INU
BAR
WAO
ECH
QUI
MYN
MYA
CRE

-0.5 0.0 0.5 1.0
Value

Marginal effect of firearms (harvest)

Figure 15. Marginal posterior distributions for dogs (top row) and firearms
(bottom row). In the code, these parameters are named dogs_mu, bdogs[1],
bdogs[2], firearms_mu, bfirearms[1], and bfirearms[2], respec-
tively. Marginal distributions centered on zero with standard deviation 0.5
correspond to the prior. In those cases, the society contained no informa-
tion to inform the parameter. Dogs are used at two sites, MTS and HEH,
in which their use on trips was not documented. These missing data were
averaged into the intercept and set to zero in this figure.
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Figure 16. Marginal posterior distributions for dispersion and variance
components. In the code, these parameters are named hscale (top-left),
sigmas_hunters[1] (top-middle), sigmas_hunters[2] (top-right), and
sigma_societies (bottom-middle). In the bottom-middle, k indicates the
standard deviation among sites in mean skill growth, m the standard devi-
ation among sites in mean skill decay, b the standard deviation in b across
sites, rho_km the standard deviation (on the latent scale) of the correlations
between k and m across sites, and then sigma_k and sigma_m are standard
deviations across sites of standard deviations among foragers in each site.
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