
  

COALIA: a computational model of human EEG for consciousness 1 

research 2 

 3 

Siouar Bensaid1,*, Julien Modolo1,*, Isabelle Merlet1, Fabrice Wendling1,+, Pascal Benquet1 4 

1Univ Rennes, INSERM, LTSI – U1099, F-35000 Rennes, France 5 

* Co-first authors 6 

+Correspondence:  7 
Fabrice Wendling 8 
fabrice.wendling@inserm.fr 9 

Keywords: computational modeling, brain connectivity, feedforward inhibition, GABA, 10 
disinhibition, TMS-EEG, disorders of consciousness (DOC).  11 

Abstract 12 

Understanding the origin of the main physiological processes involved in consciousness is a major 13 
challenge of contemporary neuroscience, with crucial implications for the study of Disorders of 14 
Consciousness (DOC). The difficulties in achieving this task include the considerable quantity of 15 
experimental data in this field, along with the non-intuitive, nonlinear nature of neuronal dynamics. 16 
One possibility of integrating the main results from the experimental literature into a cohesive 17 
framework, while accounting for nonlinear brain dynamics, is the use of physiologically-inspired 18 
computational models. In this study, we present a physiologically-grounded computational model, 19 
attempting to account for the main micro-circuits identified in the human cortex, while including the 20 
specificities of each neuronal type. More specifically, the model accounts for thalamo-cortical 21 
(vertical) regulation of cortico-cortical (horizontal) connectivity, which is a central mechanism for 22 
brain information integration and processing.  The distinct neuronal assemblies communicate through 23 
feedforward and feedback excitatory and inhibitory synaptic connections implemented in a template 24 
brain accounting for long-range connectome. The EEG generated by this physiologically-based 25 
simulated brain is validated through comparison with brain rhythms recorded in humans in two states 26 
of consciousness (wakefulness, sleep). Using the model, it is possible to reproduce the local 27 
disynaptic disinhibition of basket cells (fast GABAergic inhibition) and glutamatergic pyramidal 28 
neurons through long-range activation of VIP interneurons that induced inhibition of SST 29 
interneurons. The model (COALIA) predicts that the strength and dynamics of the thalamic output on 30 
the cortex control the local and long-range cortical processing of information. Furthermore, the 31 
model reproduces and explains clinical results regarding the complexity of transcranial magnetic 32 
stimulation TMS-evoked EEG responses in DOC patients and healthy volunteers, through a 33 
modulation of thalamo-cortical connectivity that governs the level of cortico-cortical communication. 34 
This new model provides a quantitative framework to accelerate the study of the physiological 35 
mechanisms involved in the emergence, maintenance and disruption (sleep, anesthesia, DOC) of 36 
consciousness. 37 

 38 
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1 Introduction  39 

The characterization and understanding of the mechanisms underlying consciousness is one, if not 40 
the greatest challenge that contemporary neuroscience is facing. Beyond the purely fundamental 41 
interest of this question, a major clinical issue is also at stake: evaluating residual consciousness in 42 
patients suffering from Disorders of Consciousness (DOC), which can be extremely difficult, and 43 
have crucial implications in terms of clinical care. For example, motor imagery paradigms can reveal 44 
covert consciousness in coma patients, using functional magnetic resonance imaging (fMRI) (Owen, 45 
Coleman et al. 2006) for instance. This illustrates the pressing need for an improved characterization 46 
of the mechanisms that underlie consciousness, which could be exploited to propose novel quantified 47 
measures, or metrics, of consciousness.  48 

Many theories have attempted, at various levels of description, to integrate the multifaceted aspects 49 
of consciousness. One of the first theories that found a significant echo in the neuroscience 50 
community is the Dynamic Core Hypothesis (Tononi and Edelman 1998), which was the first to 51 
relate the concept of information with consciousness. In this theory, functional clusters in the 52 
thalamocortical system are central, and involve fast re-entrant interactions, as well as a high level of 53 
integration and differentiation giving rise to complex patterns of neuronal activity. Another popular 54 
theory that has been gradually expanded over the years, and that has solid ties with neurophysiology, 55 
is the Global Workspace Theory (GWT) (Dehaene, Kerszberg et al. 1998, Dehaene and Changeux 56 
2011). In short, GWT states that conscious information is globally available within the brain, and that 57 
the “ignition” of large-scale networks, i.e. the sudden communication between distant brain regions 58 
to engage into the processing of information, enables a stimulus to reach the global workspace, hence 59 
consciousness. Ignition is thought to involve long-range glutamatergic fibers that enable long-60 
distance communication between cortical regions. Several experiments have supported GWT, for 61 
example that non-masked words involve the activation of much wider networks as compared to 62 
masked words (Dehaene, Naccache et al. 2001), with a similar result found for sub-liminal versus 63 
supra-threshold visual stimuli (Modolo, Hassan et al. 2018, van Vugt, Dagnino et al. 2018). The 64 
Integrated Information Theory (IIT) is based on a different approach. Instead of beginning from the 65 
large-scale structure of the thalamo-cortical system as in the DCH and GWT, IIT introduces several 66 
axioms to derive general principles of consciousness. One of the leading ideas of IIT is that 67 
consciousness involves the integration of information between distant areas (reminiscent of ignition 68 
in GWT), which increases the complexity of the processed information. Segregation, or 69 
differentiation of information, is also key in IIT: for example, large-scale synchronization of several 70 
regions with the same activity is indeed integrated, however with low complexity (Koch, Massimini 71 
et al. 2016). Therefore, integration and differentiation appear as the two concepts leading to 72 
increasing the complexity of the information conveyed by brain-scale networks. A more recent theory 73 
named algorithmic information theory of consciousness a.k.a. Kolmogorov Theory (KT) (Ruffini 74 
2017) is also based on the idea that conscious states are associated with higher levels of complexity, 75 
and that subjective experience occurs following processes of information compression. 76 

In contrast with the aforementioned theoretical studies of consciousness, only few studies have 77 
actually attempted to simulate brain activity associated with consciousness states using 78 
neurophysiologically-plausible computational models. Obviously, the in silico implementation of 79 
neural mechanisms that underlie the emergence and maintenance of consciousness represents a 80 
considerable challenge. However, capturing the main features of the most significant common 81 
principles from the main theories of consciousness using a computational neuroscience framework 82 
appears at reach. For example, a computational model exploring how cortico-cortical connectivity is 83 
functionally impaired during sleep (“connectivity breakdown”) has been proposed  (Esser, Hill et al. 84 
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2009). However, most of these models are limited in terms of spatial scale and the represented micro-85 
circuitry. This limitation hinders bridging the micro-circuit scale with the brain-scale, which is of 86 
interest in consciousness. The present study proposes to fill this gap, and provides new links between 87 
different levels of description (from local neuronal population to whole-brain scale). 88 

Using a bottom-up approach, we developed a new computational model of brain-scale 89 
electrophysiological activity. The model starts from neuronal micro-circuits involving different 90 
cellular subtypes that have been reliably identified through neurobiological studies. The basic unit of 91 
the model is the neural mass, representing a local population of a few thousands of neurons, which 92 
has proven its ability to capture the dynamics of actual neuronal assemblies (Wendling, Bartolomei et 93 
al. 2002). At the local level, the model includes subsets of pyramidal neurons (glutamatergic), and 94 
three different types of interneurons (GABAergic) with appropriate physiologically-based kinetics 95 
(fast vs. slow). At the global level, the large-scale model is then constructed on the basis of a standard 96 
66-region brain atlas (Desikan, Segonne et al. 2006), with one neural mass representing the local 97 
field activity of one atlas region. Neural masses are spatially distributed over the cortex, using the 98 
template brain morphology (Colin). As they account for distinct cortical regions, neural masses are 99 
synaptically connected through long-range glutamatergic projections among pyramidal neurons and 100 
GABAergic interneurons, Connectivity is derived from DTI (Diffusion Tensor Imaging) data. 101 
Results show that the model captures the large-scale structure of brain connectivity between regions, 102 
while accounting for the properties of local micro-circuits. It can accurately reproduce EEG activity 103 
for different conscious states (e.g., sleep vs. wake), and the breakdown of functional connectivity 104 
during sleep as assessed through the replication of TMS-EEG experiments. 105 

In this article, we first describe basic concepts of cortico-cortical and thalamo-cortical networks 106 
involved in theories of consciousness. Then, we present the neural mass modeling approach used to 107 
develop the brain-scale model, along with the various microcircuits considered and their functional 108 
role. A toy model involving a limited number of neuronal populations is then investigated in order to 109 
validate the implemented micro-circuits, before an extension to the whole-brain model. Simulated 110 
responses to TMS are generated and quantified in two consciousness states, namely awake and 111 
asleep. Results are discussed according to the novelty, performance and limitations of the model, 112 
along with its usefulness in consciousness studies. Future extensions are described. 113 

2 Background: role of cortico- and thalamo-cortical networks in consciousness 114 

Consciousness is a global functional state of the brain that is intrinsically linked with neuronal 115 
oscillations generated by large-scale cortico-cortical and thalamo-cortical networks (Llinas, Ribary et 116 
al. 1998). More specifically, wakefulness is determined by widespread thalamocortical projections 117 
(Timofeev and Steriade 1996, Laureys 2004) while awareness requires the activation of a wide 118 
cortico-cortical network, involving lateral and medial frontal regions parieto-temporal and posterior 119 
parietal areas, bilaterally (Laureys, Goldman et al. 1999). In the model, we included these two key 120 
components of consciousness that are briefly reviewed below. 121 

2.1  “Horizontal” cortico-cortical connectivity 122 

Functional connectivity studies have shed light on the functional networks involved in various 123 
conscious states (Jin and Chung 2012). During general anesthesia-induced loss of consciousness, 124 
there is a breakdown in cortical effective connectivity (Ferrarelli, Massimini et al. 2010, Hudetz 125 
2012, Gomez, Phillips et al. 2013). As a reminder, effective connectivity is defined as the ability of a 126 
neuronal group to causally affect the firing of other neuronal groups (Friston 2011). In unresponsive 127 
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patients, impaired consciousness was associated with altered effective connectivity (Varotto, Fazio et 128 
al. 2014, Crone, Schurz et al. 2015). A protocol of TMS triggered a simple local EEG response 129 
indicating a breakdown of effective connectivity at the cortical level, similar to the one previously 130 
observed in unconscious sleeping or anaesthetized subjects (Casali, Gosseries et al. 2013). Sleep 131 
stages have a drastic impact on consciousness and also on functional connectivity. For example, there 132 
is a strong reduction of both wakefulness and awareness components of consciousness during NREM 133 
sleep, associated with thalamic up-and-down state and cortical slow wave sleep. However, brain 134 
effective connectivity changes significantly (Tononi and Sporns 2003, Esser, Hill et al. 2009). More 135 
specifically, cortical activations become more local and stereotypical upon falling into NREM sleep, 136 
which indicates an impaired effective cortical connectivity (Massimini, Ferrarelli et al. 2010). 137 
“Horizontal” communication through coherence that involves high frequency oscillations 138 
synchronization is a fundamental mechanism in cortical function and perception (Fries 2005, Fries 139 
2009). Overall, the “awareness” component of consciousness depends on large-scale synchronized 140 
communication among distant neuronal populations distributed over the neocortex (see Figure 1A, 141 
left panel).  142 

2.2 “Vertical” thalamo-cortical connectivity 143 

As reported in IIT (Tononi 2004, Tononi 2012), consciousness depends on the brain's ability to 144 
integrate information, which relies on the effective connectivity among functionally specialized 145 
regions (or clusters) of the thalamocortical system, and on the segregation of information. One 146 
important modulator of cortical connectivity is the activity pattern of thalamocortical cells, tonic vs 147 
up-and down, which is able to modify the excitability level of cortical neuron subpopulations. The 148 
thalamic-mediated synchronization of distant cortical areas may coordinate the large-scale integration 149 
of information across multiple cortical circuits, consequently influencing the level of arousal and 150 
consciousness (Saalmann 2014). Conversely, during sleep or anesthesia-induced transitions in 151 
consciousness, both thalamo-cortical and intra-thalamic functional connectivity are modified (Kim, 152 
Hwang et al. 2012, Hale, White et al. 2016). In addition, thalamic input to neocortex modifies 153 
cortico-cortical connectivity. Upon falling into NREM sleep (when rhythmic thalamo-cortical up-154 
and-down activity develops), cortical activations become more local and stereotypical, indicating a 155 
significant decrease of cortico-cortical connectivity (Esser, Hill et al. 2009, Massimini, Ferrarelli et 156 
al. 2010, Usami, Matsumoto et al. 2015). Recently, it was shown that direct and tonic optogenetic 157 
activation of thalamic reticular nuclei (TRN) GABAergic interneurons induces a spatially restricted 158 
cortical slow wave activity (Lewis, Voigts et al. 2015). This activity was reminiscent of sleep 159 
rhythms, and animals exhibited behavioral changes that were consistent with a decrease of arousal.  160 

Overall, this brief literature review suggests that both components of consciousness, namely 161 
awareness and wakefulness, are impaired when large-scale cortico-cortical functional connectivity 162 
mediated through the binding of synchronized high-frequency oscillations in the beta-gamma band 163 
(Schoenberg, Ruf et al. 2018) and regulated through the thalamus is (Nakajima and Halassa 2017). 164 
Meanwhile, during this decrease of awareness and wakefulness, an increase of “vertical” thalamo-165 
cortical connectivity is observed, along with a stronger synchronization of delta oscillations between 166 
TC cell assemblies and isolated groups of neocortical neurons (Hill and Tononi 2005) (Figure 1A, 167 
right panel). 168 

3 Materials and Methods 169 

3.1 Modeling of micro- and macro-circuits: neural mass model approach  170 
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Neural mass models (NMMs) are a mathematical description of neural dynamics at a mesoscopic 171 
scale (from a millimeter to several centimeters of the cortex). This class of models was proposed in 172 
the 1970’s as an alternative to detailed microscopic models that require a more extensive 173 
computational cost (Wilson and Cowan 1973, Nunez 1974, Lopes da Silva, van Rotterdam et al. 174 
1976, Freeman 1978). NMMs can indeed model the local field potential (LFP) of an entire cortical 175 
region using only few state variables (Breakspear 2017), whereas in detailed models this activity is 176 
meticulously described at the level of spatially distributed and interconnected neuron models, each 177 
including the properties of ionic channels, axons and dendrites (Wang and Buzsáki 1996, 178 
Whittington, Traub et al. 2000, Maex and De Schutter 2007).  179 

Despite their simplicity, NMMs are neurophysiologically grounded, since they include the 180 
connectivity, synaptic kinetics and firing rates of neuronal sub-types present in the region of interest. 181 
The reduced complexity and performance (in term of reproducing actual LFPs) of the NMM 182 
approach made it a powerful tool to investigate various cerebral mechanisms, such as the generation 183 
of brain rhythms (Jansen and Rit 1995, David and Friston 2003, Ursino, Cona et al. 2010). NMMs 184 
have also been extensively used to study pathological dynamics such as in epilepsy (Wendling, 185 
Bartolomei et al. 2002, Traub, Contreras et al. 2005, Molaee-Ardekani, Benquet et al. 2010) (for a 186 
review, see (Wendling, Benquet et al. 2016)), Alzheimer’s disease (Bhattacharya, Coyle et al. 2011) 187 
and Parkinson’s disease (Liu, Wang et al. 2016, Liu, Zhu et al. 2017). 188 

Designing a NMM involves identifying the main subsets of neurons implied in the modeled brain 189 
tissue and describing their synaptic interconnections. Based on an exhaustive literature review, we 190 
developed a models consisting of coupled NMMs able to simulate both cortical and thalamic activity, 191 
as described hereafter. 192 

3.2 A local neural mass model of neocortical activity  193 

Until recently, the classification of GABAergic interneurons was a highly challenging task, regarding 194 
the electrophysiological properties, morphology, biochemistry markers and connectivity. However, 195 
all recent studies converge towards much simpler functional categories, involving three main classes 196 
of GABAergic interneurons in the neocortex (Rudy, Fishell et al. 2011). As briefly reviewed below, 197 
these classes account for (1) somatic-targeting parvalbumine positive (PV+) basket cells (BC), (2) 198 
dendritic-targeting somatostatin positive (SST) interneurons and (3) vasoactive intestinal-peptide- 199 
(VIP) expressing interneurons (Tremblay, Lee et al. 2016), (Figure 1B, left panel). 200 

3.2.1 Basket cells and fast oscillations 201 

 PV+ participate to the generation of cortical gamma oscillations through: 1) thalamocortical 202 
feedforward inhibition in layer 4; 2) feedback inhibition in layer 2/3; and 3) via direct PV+/PV+ 203 
coupling through electrical gap-junctions (Povysheva, Zaitsev et al. 2008, Buzsáki and Wang 2012, 204 
Lewis, Curley et al. 2012, Varga, Oijala et al. 2014, Womelsdorf, Valiante et al. 2014, Chen, Zhang 205 
et al. 2017). Recent optogenetic experiments have demonstrated the causal role of somatic-targeting 206 
interneurons BC in mediating fast oscillations (> 20 Hz)(Chen, Zhang et al. 2017). 207 

3.2.2 Surround inhibition by SST GABAergic interneurons and slow oscillations 208 

Neocortical SST neurons can exhibit high levels of spontaneous slow oscillations, and their tonic 209 
activity might facilitate fine scale up-and down regulation of global inhibition levels in the neocortex 210 
(Urban-Ciecko and Barth 2016). Lateral inhibition is a fundamental principle in neuronal networks 211 
(Harris and Mrsic-Flogel 2013, Karnani, Agetsuma et al. 2014, Harris and Gordon 2015). Lateral 212 
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inhibition between nearby pyramidal cells (PCs) is thought to work through SST interneurons 213 
(Kapfer, Glickfeld et al. 2007, Silberberg and Markram 2007, Adesnik, Bruns et al. 2012). Dendritic 214 
inhibition is more effective than perisomatic inhibition in regulating excitatory synaptic integration, 215 
therefore SSTs are the key regulator of input-output transformations (Lovett-Barron, Turi et al. 216 
2012). Furthermore, the slow kinetics of dendritic-targeting inhibitory postsynaptic membrane 217 
potentials (IPSPs) are particularly suited to maximize the localized shunting inhibition effect (Gidon 218 
and Segev 2012, Paulus and Rothwell 2016). Finally, it was shown that this cell type is especially 219 
involved in slow oscillations (Womelsdorf, Valiante et al. 2014, Urban-Ciecko and Barth 2016, 220 
Funk, Peelman et al. 2017).    221 

3.2.3 Cortical column communication through VIP-controlled disinhibition  222 

The disinhibition of cortical PCs gates information flow through and between cortical columns 223 
(Walker, Möck et al. 2016). One of the factors underlying this PC disinhibition is the inhibition of 224 
SST cells during active cortical processing, which enhances distal dendritic excitability (Gentet, 225 
Kremer et al. 2012). The activation of VIP neurons strongly inhibits dendritic-targeting SST 226 
interneurons mediating surround inhibition, which leads to PCs disinhibition (suppress the inhibition 227 
on PCs) (Lee, Kruglikov et al. 2013, Pi, Hangya et al. 2013, Fu, Tucciarone et al. 2014, Pfeffer 2014, 228 
Yang, Murray et al. 2016). This disynaptic mechanism of disinhibition seems to be a generic motif 229 
able to suppress the blanket of inhibition mediated by SST neurons (Fino and Yuste 2011, Karnani, 230 
Agetsuma et al. 2014). It has been demonstrated indeed in  motor, sensory and associative neocortical 231 
areas that transient SST activity suppression by VIP activation occurs during visual processing (Lee 232 
and Mihalas 2017), somatosensory integration (Lee, Kruglikov et al. 2013, Sohn, Okamoto et al. 233 
2016), locomotion (Dipoppa, Ranson et al. 2018), top-down modulation (Ayzenshtat, Karnani et al. 234 
2016) and plasticity during perceptual learning (Williams and Holtmaat 2018). Since VIP neurons are 235 
targeted by long-range cortical glutamatergic projections, they represent a key factor for distal 236 
cortico-cortical activation through disynaptic disinhibition. 237 
 238 
3.2.4 Formal description of neocortical model 239 

Based on the above information, we have developed a neocortical module involving PCs and three 240 
types of inhibitory subpopulations, namely, BC, SST and VIP (see Error! Reference source not 241 
found.B, left panel). BC and SST receive excitatory inputs from PCs that are reciprocally inhibited 242 
by both of them. Pyramidal collateral excitation was also implemented via an excitatory feedback 243 
loop passed by a supplementary excitatory population (PC’) analogous to PC, except that it projects 244 
only from and to subpopulation PC. The electrical gap-junction mentioned in section 3.2.1 was 245 
implemented through an inhibitory feedback loop characterized by a connectivity constant ���

� , 246 
where n is the index of the NMM. Communication through disinhibition mentioned in section 3.2.3 247 
was modeled by inhibitory projections; first from VIP to SST, and second, from the latter to BC. The 248 
nonspecific influence from neighboring and distant populations was modeled by a Gaussian input 249 
noise corresponding to an excitatory input ��

����
 that globally describes the average density of 250 

afferent action potentials. The set of ordinary differential equations (ODEs) modeling the neocortical 251 
module is included as a Supplementary Material (see Supplementary section 1.1). 252 

3.3 A local neural mass model of thalamic activity  253 

The thalamus is considered as a complex relay extensively connected with the cortex, as well as most 254 
subcortical areas. This central position underlies its key role in several cognitive functions including 255 
perception, attention, memory and consciousness. Importantly, even a limited damage in the 256 
thalamus can have major consequences on all the aforementioned functions (Ward 2013). The 257 
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thalamo-cortical circuitry as a neural correlate of consciousness has been mentioned by 258 
consciousness theories. More evidence for this role was provided by a study analyzing the metabolic 259 
activity of posterior midline cortical areas driven by the thalamic nuclei, across different altered 260 
consciousness states (Laureys, Boly et al. 2006). The authors reported that unresponsive wakefulness 261 
syndrome (UWS) patients can be differentiated from minimally conscious state (MCS) patients by a 262 
difference in glucose metabolism in these areas. The pivotal role of thalamo-cortical loop in the 263 
generation of slow waves and the up-and-down state was appraised in the review of Crunelli et al. 264 
(Crunelli, David et al. 2015) where they enumerated the main lines of evidence supporting this 265 
assertion, namely, the strong interconnection between thalamic cells (TCs) and neocortical layers 266 
involved in slow waves suggesting that thalamic nuclei can control up-and-down state dynamics in 267 
neocortical circuits, the early TC firing in relation to the initiation of cortical UP states, the rhythmic 268 
up-and-down state generated by TC neurons and TRN in isolated conditions, and the neocortical UP 269 
states readily induced in head-restrained mice by selective optogenetic activation of TC neurons 270 
proving the stimuli role of the latter. 271 

The importance of thalamo-cortical connectivity has motivated the development of thalamo-cortical 272 
models simulating the interactions between the cortex and thalamus at a mesoscopic level 273 
(Suffczynski, Kalitzin et al. 2004, Sotero, Trujillo-Barreto et al. 2007, Bhattacharya, Coyle et al. 274 
2011, Roberts and Robinson 2012, Mina, Benquet et al. 2013, Sen Bhattacharya, Cakir et al. 2013, 275 
Cona, Lacanna et al. 2014). While some models were developed to generate alpha activity (8-12 Hz) 276 
(Sotero, Trujillo-Barreto et al. 2007, Bhattacharya, Coyle et al. 2011, Sen Bhattacharya, Cakir et al. 277 
2013), others were used to simulate the sleep-wake cycle (Suffczynski, Kalitzin et al. 2004, Roberts 278 
and Robinson 2012, Cona, Lacanna et al. 2014). 279 

Since our aim is to develop a computational model able to reproduce brain rhythms corresponding to 280 
different consciousness states (e.g. sleep-wake cycle), the inclusion of the thalamus in the model is 281 
crucial. A description of the thalamus model is provided in Error! Reference source not found..B. 282 
The thalamic module includes one population of excitatory glutamatergic neurons TCs, and two 283 
inhibitory interneurons from the TRN, TRN1 and TRN2 accounting for fast and slow GABAergic 284 
IPSPs, respectively. TCs receive GABAergic IPSPs with slow and fast kinetics from the TRNs, 285 
whereas the latter receive excitatory inputs from the former. Similarly to the cortical module, a 286 
Gaussian input noise corresponding to excitatory input ���

� ��� was used to represent nonspecific 287 
inputs on TCs. The set of ODEs modeling the thalamic module is provided as a Supplementary 288 
Material (see Supplementary section 1.2). 289 

3.4 Modeling of large-scale cortico-cortical and thalamo-cortical connectivity  290 

3.4.1 Cortico-cortical connections 291 

PCs originating from a single cortical column target several cell types in distant cortical columns. 292 
Glutamatergic PCs target not only remote PCs by common feedforward excitation, but also 293 
GABAergic cells by disynaptic cortico-cortical feedforward inhibition (FFI)(see Figure 2). Even if 294 
PV+ BCs have been shown to receive stronger thalamocortical and intracortical excitatory inputs than 295 
SST neurons, it appears that cortico-cortical FFI could be mediated by both types of interneurons 296 
(Ma, Liu et al. 2010, Tremblay, Lee et al. 2016). Importantly, cortico-cortical glutamatergic axons 297 
also target VIP neurons (Sohn, Okamoto et al. 2016).  298 

Therefore, feedforward excitation was included in the model by means of a connectivity constant 299 
��,�

	,
  modeling the average strength of glutamatergic projections from pyramidal subpopulations in 300 
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NMM “i” to their counterpart in NMM “j”. Disynaptic cortico-cortical feedforward inhibition was 301 
similarly integrated via the connectivity constants ��,��

	,
 , ��,���

	,
  and ��,�
�

	,
  denoting glutamatergic 302 
projections from PC subpopulations in NMM “i” to BC, SST and VIP in NMM “j”, respectively. The 303 
set of ODEs modeling the cortico-cortical connections is included as a Supplementary Material (see 304 
Supplementary section 1.3, equations (9)-(12)). 305 

In long-range cortico-cortical connections, the time-delay between NMMs “i” and “j” was controlled 306 
by a distance parameter �	,
  that reports the Cartesian distance in centimeters (cm) between the two 307 
populations. By setting the conduction velocity of action potentials in the brain to 	 (	 
308 
 �10, 100� cm/s), the time-delay taken by NMM “j” to receive a firing rate is straightforwardly 309 
deduced as �	,
 	⁄ .     310 

3.4.2 Thalamo-cortical connections 311 

The main connections between the thalamus and neocortex were taken into consideration in the 312 
model (see Figure 2). As in classical thalamocortical models, TCs receive glutamatergic excitatory 313 
postsynaptic potentials (EPSPs) from PCs. In turn, PCs receive excitatory input from TCs. Similarly, 314 
TRNs also receive excitatory cortical projections. In terms of GABAergic cortical targets, thalamic 315 
projections mainly target PV+ basket cells (Cruikshank, Lewis et al. 2007, Yang, Carrasquillo et al. 316 
2013). In the adult brain, thalamic projections onto SST neurons are present but are much weaker as 317 
compared to the projections onto PCs and PV+ cells (Ji, Zingg et al. 2016). However, robust 318 
thalamocortical activation of non-Martinotti dendritic-targeting GABAergic interneurons has been 319 
demonstrated (Tan, Hu et al. 2008). Long-range connections from cortical areas and/or thalamic 320 
nucleus areas can activate VIP neurons, which in turn inhibit SST neurons, and disinhibit PCs 321 
dendrites. Such dendritic disinhibitory circuit has been proposed to gate excitatory inputs targeting 322 
pyramidal dendrites (Yang, Murray et al. 2016, Williams and Holtmaat 2018). Note that the thalamic 323 
compartment implements FFI, since it induces first an EPSP (PCs activation) followed later on by an 324 
IPSP (cortical interneurons activation). 325 

Since only one thalamic population was considered in this model, the TC projections to - and from - 326 
PCs were included in the model. Connectivity constants ���,�

�  and ��,��
� , allow to adjust the strength 327 

of efferent TC projections to PCs of NMM “n” and efferent pyramidal projections from the NMM 328 
“n”  to TC, respectively. Projections from PCs of NMM “n” onto TRN1 and TRN2 were also 329 
integrated and adjusted with the connectivity constants ��,����

�  and ��,����
� , respectively. Likewise, 330 

projections from TC to GABAergic interneurons in NMM “n”, namely BCs, SSTs and VIPs, were 331 
included through the connectivity constants ���,��

� , ���,���
�  and ���,�
�

� , respectively. The set of 332 
ODEs modeling the thalamo-cortical connections is described in Supplementary section 1.3 333 
(equations (13)-(19)). It is noteworthy that time-delays between the thalamus and the cortical NMMs 334 
were included as in the cortico-cortical long-range connections.   335 

3.5 Implementation and parameter tuning  336 

An important step in NMM approaches consists in tuning the model parameters. Some of these 337 
parameters, namely time constants in the three modules, were set close to the “standard values” used 338 
in neuronal population models, while other parameters such as connectivity constants were adjusted 339 
according to the target EEG activities. Two classical well-known examples of conscious and 340 
unconscious states are deep sleep- a.k.a. slow wave sleep (SWS) characterized by delta oscillations 341 
(0-4 Hz), and wakefulness (background activity). The objective was to reproduce these 342 
manifestations of consciousness modulation in the model.  343 
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In Supplementary Table 1, we provide physiological interpretation and values of model parameters. 344 
Regarding the model output, the signal simulated at the level of PCs in the cortical compartment was 345 
chosen as the model output since it corresponds to the sum of PSPs, which is the main contribution to 346 
LFPs recorded in the neocortex.  347 

When several cortical NMMs are interconnected, a simple way to handle large-scale connectivity is 348 
to arrange the connectivity constants in arrays where line and column indices refer to source and 349 
target NMMs, respectively. Based on section 3.4, there are two categories of connectivity array, 350 
“excitatory to excitatory” and “excitatory to inhibitory” arrays. In the first category, we consider the 351 
matrix ���� whose (i, j)th element represents the glutamatergic projections from NMM “i” onto an 352 
excitatory subpopulation in NMM “j”. Hence, if both of them belongs to the cortical module, the (i, 353 
j)th element would correspond to ��,�

	,
 . However, if NMM “i” coincides with a thalamic population, 354 

the (i, j)th element would be then equal to ���,�


 . In the second category, a similar scheme is 355 
considered with the difference that the target subpopulation is always an inhibitory interneuron (BC, 356 
SST, VIP or TRNs). Consequently, fives arrays are considered, namely, ���, ����, ����, �����

 and 357 
�����

 (see Supplementary Figure 1) . Note that when only one thalamic NMM is considered, the 358 
two last matrices are reduced to vector arrays. Cortico- and thalamo-cortical time-delays were 359 
similarly arranged in matrix � whose (i, j)th element coincides with the aforementioned �	,
 .  360 

The set of second order stochastic nonlinear ODEs obtained for all synaptic interactions present in 361 
the model was numerically solved using a fixed step (Δt = 1 ms) 4th-order Runge-Kutta method. The 362 
model was implemented using an object-oriented language (Objective-C).  363 

To study the model behaviour, we followed a two-step approach. We first implemented a “toy 364 
model” with small number of coupled neural masses. This reduced-complexity model allowed to 365 
assess the effects of cortico- and thalamo-cortical connectivity matrices on cortical activities 366 
associated with different consciousness states (see sections 3.2, 3.3 and 3.4). After validation in the 367 
toy model, all mechanisms were implemented in an extended, more realistic model, where the whole 368 
brain was considered. 369 

3.5.1 Toy model of cortical activity  370 

The toy model was composed of one thalamic population connected to four cortical populations (N = 371 
4) that were identically tuned. The default values of NMMs intrinsic parameters are listed in 372 
Supplementary Table 1. Unless explicitly mentioned, these parameters were kept unchanged for all 373 
neural activities generated afterwards (SWS and background activity). The objective was to verify, in 374 
a simplified model, the hypothesis that cortical activity is modulated from deep sleep to wakefulness 375 
by tuning only thalamo- and cortico-cortical connectivity, so that, when thalamocortical connectivity 376 
increases, the model goes deeper into sleep. This connectivity mechanism was implemented in all 377 
connectivity matrices in the model (see Supplementary Figure 2).   378 

3.5.2 Whole brain model: from cortical activity to EEG  379 

The pipeline used for the simulation of scalp EEG data is described in Figure 3. In order to obtain a 380 
“realistic” activity during wakefulness and SWS over the entire neocortex, we considered one 381 
thalamic population and 66 cortical populations (N+1 = 67). Each time-course at the output of these 382 
populations represented the activity of one macro-region of the anatomical parcellation described in 383 
(Desikan, Segonne et al. 2006), in which the activity was assumed to be homogenous. In order to 384 
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generate 67 time-courses from the coupled NMMs (66 cortical regions plus the thalamus), we used a 385 
combination of connectivity arrays (Figure 3B). First, a matrix of connection weights 386 
���� representing a density of fibers between all pairs of 66 cortical regions was used to set the 387 
structural connectivity. This matrix, obtained from DTI, is provided in (Hagmann, Cammoun et al. 388 
2008). Second, we considered additional functional horizontal (i.e. cortico-cortical) matrices ���, 389 
reproducing the coefficients weights used for both wakefulness and sleep in the toy model, taking 390 
also into account the new number of populations.  In order to apply the connectivity weights defined 391 
earlier in the toy model only to pairs of NMMs that are structurally connected. Structural and 392 
horizontal functional matrices were combined using the Hadamard product. Finally the vertical (i.e. 393 
thalamo-cortical) connectivity ���  was added to this product to obtain a set of anatomo-functional 394 
connectivity matrices �� such that 395 

�� �  ���� � ��� �  ��� 

with � � ����, �� , !�, "#$,  %&1,  %&2(. All connectivity matrices are described in 396 
Supplementary  Figure 3. 397 

Using this combination of connectivity weights, and specific parameters defined in Supplementary 398 
Material for delta and background activity, we built a spatio-temporal source matrix ) containing the 399 
time-varying activities of the thalamus and of all cortical macro-regions.  400 

To reconstruct simulated scalp EEG data, we first solved the forward problem using the Boundary 401 
Element Method (BEM, OpenMEEG, (Gramfort, Papadopoulo et al. 2010). To this end, a realistic 402 
head model was built in Brainstorm (Tadel, Baillet et al. 2011) from the segmentation of a template 403 
T1 MRI (Colin 27 template brain, (Holmes, Hoge et al. 1998)) previously obtained using the 404 
Freesurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/, (Dale, Fischl et al. 1999, Fischl, 405 
Sereno et al. 1999)), as illustrated in Figure 3A. The head model consisted in three nested 406 
homogeneous mesh surfaces shaping the cortical surface (642 vertices), the skull (642 vertices) and 407 
the scalp (1082 vertices) with conductivity values of 0.33 Sm-1, 0.0082 Sm-1 and 0.33 Sm-1, 408 
respectively (Goncalves, de Munck et al. 2003). The forward problem was then numerically 409 
calculated for each vertex of the source mesh obtained from the segmented white matter/ grey matter 410 
interface of the same template brain. As a result, the leadfield matrix * represented the contribution 411 
of each dipole of the source mesh at the level of 257 scalp electrode positions (high density EEG), 412 
placed over the scalp according to the geodesic convention (EGI®, Eugene, USA). All leadfield 413 
vectors of * belonging to a common region of Desikan Atlas were added to obtain a simplified 66 x 414 
257 matrix +. The spatio-temporal matrix , of simulated EEG data was given by the matrix product: 415 
 416 

, � +) 

The entire pipeline enabling the simulation of scalp EEG is provided in Figure 3. Finally, as detailed 417 
in the Supplementary Material, a total number of 1060 ODE’s must be solved to run the model. To 418 
give an idea of the required computing time,  60 seconds of simulated EEG could be simulated in 49 419 
seconds on a 3.5 GHz 6-Core Intel Xeon EG with 64GB of 1866 MHz RAM (OsX Mojave) and in 72 420 
seconds on a standard Intel 2.5 GHz 2-Core Xeon EG with 8GB RAM (Windows 10). Therefore, the 421 
model performed almost real-time simulation on a standard PC. 422 

3.6 Cortical response to TMS and PCI 423 

In order to simulate TMS-evoked EEG responses that can be compared to those recorded 424 
experimentally (Casali, Gosseries et al. 2013), we included the effect of an exogenous, TMS-induced, 425 
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stimulation in the whole-brain model. The model can simulate not only the activity of the 67 pre-426 
defined anatomical regions, but also the EEG signals recorded by 257 scalp electrodes. Furthermore, 427 
since the model includes, as a connectivity matrix between the 67 regions, a DTI-derived 428 
connectivity matrix (Hagmann, Cammoun et al. 2008), it is possible to track the spatio-temporal 429 
dynamics of the stimulation-evoked network, i.e. the activated regions, along with the peak latency 430 
for each region. In addition, since the model can simulate “wake” and “sleep” states, it provides the 431 
opportunity to compare TMS-evoked responses in these two states of consciousness, which have 432 
been experimentally recorded in humans. Therefore, the structure of our computational model 433 
provides a unique framework to interpret TMS-evoked EEG responses obtained in humans. 434 

In principle, TMS involves a high-intensity current flowing through the stimulation coil, thereby 435 
generating a magnetic field penetrating without attenuation through the head. Since the stimulation 436 
pulse is very short (-0.1 ms), the magnetic field gradient dB/dt is extremely high (> 30,000 T/s), 437 
resulting per Maxwell-Ampere’s law into an electric field at the level of brain tissue. Since the 438 
electric field induced in brain tissue is high (> 100 V/m, (Miranda, Hallett et al. 2003)), this induces 439 
neuronal firing, presumably at the bending point of cortical axons, triggering a series of complex 440 
activations within the stimulated area (Di Lazzaro and Ziemann 2013).  441 

We used a simple approach to represent the effect of TMS, consisting in simulating an afferent volley 442 
of action potentials (in terms of pulses/s) to the stimulated cortical region. Since the 1 ms time step 443 
used to numerically solve the equations of the model was higher than the duration of an actual TMS 444 
pulse, the simulated length of this volley of incoming action potential was adapted and fixed to 5 ms. 445 
The amplitude of the simulated evoked volley of action potentials was fixed to 1000 pulses/s, and 446 
was applied to each cellular subtype of the stimulated region (i.e., PCs and all types of GABAergic 447 
interneurons). For the purpose of this paper, we chose to simulate the stimulation of the right cuneus 448 
in both conditions (“wake” and “sleep”), which is known to have a number of anatomical 449 
connections that should result in the propagation of the TMS-evoked responses in several cortical 450 
structures. The repetition rate of the TMS protocol was fixed to 2 seconds, and the total simulation 451 
duration was a full minute, resulting in a total of 30 TMS-evoked responses available at the source 452 
level. The EEG activity at the level of each scalp electrode was then computed from the simulated 453 
source activity using our EEG forward problem pipeline, as described previously. From the simulated 454 
TMS-evoked responses, the studied outcomes were the anatomical regions activated by TMS, and 455 
also their latency from the onset of the TMS pulse. 456 

Finally, simulated EEG responses were used to compute the Perturbational Complexity Index (PCI) 457 
(Casali, Gosseries et al. 2013). PCI is a measure of TMS-evoked responses complexity, based on the 458 
Lampel-Ziv compression algorithm. The basic idea is that, if a sequence of information is complex, 459 
then it can be only marginally compressed (low compression rate); and on the opposite a very simple 460 
sequence can be described by a very limited amount of information (high compression rate). To 461 
derive PCI, a process similar to the one proposed by Casali et al. was used (Casali, Gosseries et al. 462 
2013): 463 

- The sources activity is stored in a 2D matrix (number of lines equal to the number of channels, 464 
number of columns equal to the number of time points). 465 

- A threshold value for the simulated sources activity was set by preserving the highest 20% 466 
(proportional threshold) of values once fixing to 0 values below it. 467 
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- Each value of the sources activity matrix that is above or equal to the threshold value is set to 1, 468 
while all other values are set to 0 (binarization process). 469 

- The Lempel-Ziv algorithm is then applied to the resulting binary matrix. 470 

PCI values were computed in the two different scenarios, corresponding to the “wake” and “sleep” 471 
state, respectively. 472 

Overall, our implementation of TMS-evoked responses enables a meaningful comparison with 473 
human data, since it results in similar experimentally measurable quantities: impacted anatomical 474 
regions, latency of the TMS-evoked response within specific regions, and complexity of the brain-475 
scale response through PCI.  476 

4 Results 477 

4.1 Toy model: the impact of cortico- and thalamo-cortical connectivity on the cortical 478 
rhythms during sleep and wakefulness 479 

During the deep sleep state, the thalamocortical connectivity is meant to be strong compared to the 480 
cortico-cortical one (see Supplementary Figure 2, first column). Our strategy consisted in 481 
progressively and simultaneously decreasing and increasing the thalamo- and cortico-cortical 482 
connectivity, respectively, in order to switch to wakefulness (see Supplementary Figure 2, column 2). 483 
Note that this connectivity process was mostly reflected by arrays ���� and ���, to simulate the 484 
strong thalamic projections onto PCs and BCs as reported in section 0. It is also noteworthy that no 485 
time delays were injected in the toy model example.   486 

In Figure 4, we provide an example of simulated LFPs a.k.a. intracerebral EEG (iEEG) in 487 
comparison with real (human) ones. The left column depicts the scheme of high (and low) thalamo- 488 
(and cortico-) cortical connectivity. As depicted, the reinforcement of the thalamocortical loop 489 
(TC�PC�TRNs and TC�BC) resulted in the generation of delta oscillations that characterize 490 
SWS. In this example, the simulated delta was around 2-3 Hz (slightly faster than real iEEG). 491 
Conversely, by reducing the thalamocortical loop (right column), delta waves disappeared and were 492 
replaced by background activity, indicative of oscillatory changes observed during the switch from 493 
sleep to wake. We emphasize that only the large scale connectivity was tuned while all remaining 494 
parameters were kept unchanged, confirming the crucial role of thalamo- and cortico-cortical 495 
connectivity in modulating consciousness.     496 

4.2 Whole brain model: the impact of cortico- and thalamo-cortical connectivity on scalp 497 
EEG rhythms during sleep and wakefulness 498 

The morphology of simulated intracerebral signals was not modified when connectivity matrices 499 
were adapted to a larger number of NMMs in order to account for whole-brain activity. In the case of 500 
low thalamo-cortical connectivity (wakefulness condition), background activity was similar to 501 
signals obtained in the toy model and resembled real intracerebral background activity recorded 502 
during wakefulness in humans. Similarly, by increasing thalamo-cortical connectivity, the whole-503 
brain model generated delta activity at a mean frequency of 3.8 Hz that was consistent with the 504 
morphology and spectral content of delta activity obtained both from the toy model and from real 505 
intracerebral recordings during SWS.   506 
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Signals obtained with the whole-brain model in both conditions of wakefulness and SWS were used 507 
in the forward calculation to generate simulated scalp EEG data at the level of 257 electrodes (Figure 508 
5). In the low-thalamocortical connectivity condition, simulated scalp EEG (Figure 5A) resembled 509 
scalp EEG background activity as recorded in humans during wakefulness (Figure 5C). The spectral 510 
analysis disclosed similar sub-band distribution in the simulated vs. real case, although simulated 511 
signals contained more beta frequency than real background activity. In the high-thalamo-cortical 512 
connectivity condition, simulated scalp EEG (Figure 5B) was comparable to scalp EEG signals 513 
recorded in humans during SWS (Figure 5D). In the simulation case, the peak frequency was 3.8 Hz, 514 
thus slightly higher than in the real case (2 Hz). Topographical voltage maps at the peak of delta 515 
waves showed analogous distribution over the vertex, the activity in the simulated case being slightly 516 
more posterior than on the real case example.  517 

4.3 Bridging brain circuits, TMS-evoked EEG responses and complexity metrics  518 

In Figure 6, we describe the process used to estimate the complexity of TMS-evoked EEG responses 519 
within our brain-scale model and in humans (Casali, Gosseries et al. 2013). As depicted, the 520 
simulated TMS-evoked EEG response (Figure 6B) was very similar to the human response (Figure 521 
6A), not only in terms of length (250 and 350 ms, respectively) but also in term of regions distant 522 
from the right motor cortex (the stimulated area) that are activated post-stimulation. Indeed, in the 523 
simulated and experimental data, a first activation of the right pre-central gyrus occurred within 15 524 
ms from the TMS pulse, followed by activity evoked notably in the right precuneus within 40 ms and 525 
a common propagation in the contralateral left precuneus at about 60 ms from the stimulus. In both 526 
simulated and experimental TMS-evoked responses, activity was evoked in the right frontal lobe 527 
within 110-120 ms, with activation of the right superior parietal cortex within 175 ms (human data) 528 
and 150 ms (model data). The most important difference is that the human TMS-evoked response 529 
was notably longer as compared to the model.  530 

We then compared the simulated and experimental TMS-evoked responses in wakefulness and in 531 
sleep, along with their PCI value, which is presented in Figure 7. In the two cases, the right motor 532 
area is stimulated. In the case of wakefulness, as also illustrated in Figure 6, there was a satisfactory 533 
agreement in the duration and global shape of the response, and also in terms of the sequence of 534 
activated brain regions. More precisely, by comparing Figure 7A (upper) and B (upper), we can 535 
conclude that the tracking of the propagation of the TMS-evoked activity revealed that this 536 
propagation occurred, as expected, along documented inter-regional connections from the DTI-537 
derived connectivity matrix used in the model. PCI values obtained were also extremely similar (0.52 538 
and 0.51 for the model and for humans, respectively). Conversely, in the “Sleep” condition, the time 539 
course of the TMS-evoked response was significantly shorter (less than 200 ms), which is also 540 
comparable to TMS-EEG human recordings. In addition, another striking similarity with human data 541 
is that the TMS-evoked activity remained confined to the stimulated area, i.e. the right motor area. 542 
The PCI value in this condition was 0.19, which is very similar to the value obtained in humans 543 
during sleep (0.23, see Figure 7A, lower panel), notably lower than the “Wakefulness” condition, 544 
which is also consistent with human data (Casali, Gosseries et al. 2013). Therefore, despite using the 545 
exact same TMS pulse characteristics within the two conditions (“Wakefulness” and “Sleep”), the 546 
simulated response was drastically different within the model: in wakefulness, the TMS-evoked 547 
response resulted in a complex sequence of successive activations within distant, anatomically 548 
connected areas in ipsilateral and contralateral regions; while during sleep the TMS-evoked activity 549 
remained confined to the stimulation site, even when the anatomical connections were present as in 550 
the “sleep” condition. 551 
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5 Discussion and perspective  552 

In this paper, we have developed the first brain-scale computational model that can reproduce 553 
neuronal activity patterns associated with various conscious states, while accounting for key 554 
microcircuits at the cellular type scale. A major asset of the model is its strong link with recent 555 
neurophysiological and neuroanatomical data: the main cellular types are included (PCs and different 556 
types of interneurons), along with their recently elucidated connections that underlie the selective 557 
disinhibition of distant neural populations (through VIP to SST projections), realistic synaptic 558 
kinetics, large-scale structural connectivity obtained in humans through DTI and propagation delays 559 
between regions based on their spatial distance. Furthermore, since the model features detailed 560 
micro-circuits, DTI-derived brain connectivity matrix and large-scale macro-circuits results also 561 
provided a bottom-up description of TMS-evoked responses in human. 562 

The model offers novel, key insights into the maintenance of the neuronal activity associated with 563 
conscious states. Interestingly, this model including a variety of cellular subtypes with accurate 564 
synaptic kinetics provides realistic electrophysiological signals both at the level of cortical sources 565 
and of the EEG. First, it explains how thalamo-cortical (vertical) connectivity is critically involved in 566 
the gating of cortico-cortical (horizontal) information propagation. If thalamo-cortical activity is 567 
indeed rhythmically patterned, the communication between cortical areas is disrupted due to the 568 
resulting rhythmic inhibition. This result is therefore in line with the “connectivity breakdown” 569 
observed during sleep (Esser, Hill et al. 2009, Ferrarelli, Massimini et al. 2010, Casali, Gosseries et 570 
al. 2013).  571 

Crucially, the various conscious states simulated with the model can be tuned by modulating only the 572 
thalamo-cortical input, which supports our hypothesis that this represents the crucial control 573 
parameter for consciousness, i.e. the dimension of wakefulness. It can be seen essentially as the 574 
possibility for information processing to take place between spatially distant cortical areas. Since the 575 
propagation of activity is impaired at the cortical level during sleep (absence of wakefulness), no 576 
cortical processing can take place, which explains the absence of consciousness. Second, regarding 577 
cortico-cortical activity (horizontal connectivity), since the model reproduces with a satisfactory 578 
qualitative and quantitative agreement the TMS-evoked EEG responses observed in awake humans 579 
(Casali, Gosseries et al. 2013), this suggests that 1) our modeling hypotheses and choices appear 580 
sufficient to capture the essence of TMS-EEG responses; 2) TMS-EEG responses are mainly driven 581 
by the underlying structural connectome, which is in line with recent research pointing at the tight 582 
links between structural and functional connectivity (Avena-Koenigsberger, Misic et al. 2017); 3) 583 
this modeling approach could be used to assist in the interpretation of TMS-evoked EEG responses in 584 
DOC patients, since our model links explicitly the underlying connectivity with the observed TMS-585 
evoked response. Finally, the model validates that, at the brain scale, the disynaptic disinhibition of 586 
distant pyramidal cells through the activation of VIP neurons is indeed an effective mechanism 587 
enabling the transmission of activity between a few cortical regions. The model therefore confirms 588 
the role of a cellular-scale micro-circuit that regulates brain-scale propagation of activity within the 589 
cortex.  590 

Among the possibilities to improve the realism and predictive power of our brain-scale model, the 591 
most immediate would be the use of structural connectivity matrices averaged among a large number 592 
of healthy participants, such as those from the Human Connectome Project (see the link 593 
http://www.humanconnectomeproject.org). Furthermore, no regional specificities were accounted for 594 
between the 66 cortical regions included within the model, since we used standard parameter values 595 
for the synaptic gains (e.g., A, B and G) and the same within-population connectivity parameters. By 596 
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doing so, we have assumed that the large-scale anatomic structure of brain connectivity and the 597 
cellular-scale micro-circuits included are the main factors explaining the resulting simulated EEG 598 
signals.  599 

It should be mentioned that in the case of deep sleep simulated signals, the median frequency of delta 600 
activity was higher in the model (2-3 Hz) as compared to human data (~1 Hz). This discrepancy is 601 
explained by the fact that model does not implement the mechanisms underlying slow oscillations 602 
(~1 Hz) generated in cortical and thalamic networks, among which: i) the sequence of depolarizing 603 
periods followed by silent periods (up to 2 s) during up-and-down states as well as ii) GABAB-604 
mediated pre-synaptic slow inhibition that also appears to play some role (see review in (Neske 605 
2015)). Other limitations likely explain the moderate discrepancies between the simulated and 606 
experimental TMS-EEG responses in terms of latencies and localizations, such as the lack of 607 
asymmetry in connectivity weights (i.e., all connections were assumed bidirectional and identical). 608 

The future prospects regarding our brain-scale EEG model are numerous: in terms of consciousness 609 
studies, the model could be used to study the mechanisms underlying the so-called “slow-wave 610 
activity saturation”, delta-band activity that appears when the blood concentration of anesthetics is 611 
increased (Ni Mhuircheartaigh, Warnaby et al. 2013), and that constitutes a solid marker of the 612 
conscious state. Furthermore, this study improves our understanding of active probing paradigms of 613 
brain circuits in DOCs, such as the PCI and paves the way toward the design of optimized 614 
stimulation-based metrics to measure consciousness. The model indeed allows to test in silico novel 615 
neuromodulation protocols based on TMS, transcranial direct current stimulation (tDCS) and 616 
transcranial alternating current stimulation (tACS), aiming at quantifying the level of residual 617 
consciousness in DOC patients. Beyond applications for consciousness, the model could be exploited 618 
to understand the detailed dynamics of TMS-EEG responses and their underlying mechanisms, or to 619 
shed light on the mechanisms underlying the generation and propagation of epileptiform activity. 620 
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Figure 1. (A) Illustration of “horizontal” and “vertical” connectivity. Left: Horizon637 
connectivity refers to the cortico-cortical connections which are functionally effective duri638 
wakefulness, with a weak level of thalamo-cortical coupling. Right: Vertical connectivity refers 639 
thalamo-cortical projections that functionally impair cortico-cortical connectivity during sleep. (640 
General architecture of the micro- and macro-circuits implemented in the computation641 
model. The local NMM of cortical activity is composed of a PC exciting two GABAerg642 
interneurons, namely, the somatic-projecting BC and the dendritic-projecting SST, responsible f643 
the generation of fast and slow oscillations, respectively; the VIP were introduced as they play644 
crucial role in cortical column communication through disinhibition of SST. The subcortical modu645 
consisted in TC sending excitatory glutamatergic projections to the TRN block composed of fast a646 
slow GABAergic interneurons TRN1 and TRN2, respectively.  VIP: vasoactive intestinal pepti647 
positive GABAergic interneurons. SST:Somatostatin-positive GABAergic interneurons. BC: Bask648 
type  GABAergic interneurons. PC: Glutamatergic Pyramidal Cells. 649 
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 650 

 651 
 652 

Figure 2. Large-scale architecture of the model. Illustration of the synaptic projections between 653 
cortical modules, and between thalamic and cortical modules. Note the presence of long-range 654 
thalamocortical and cortico-cortical feedforward inhibition. For the sake of clarity, long-range  655 
connections between cortical NMMi and NMMj are unidirectional, whereas in the model, pyramidal 656 
cells of NMMj also project on neurons of NMMi. The strengh of the synaptic input of PC onto distant 657 
VIP cells  is larger than the input onto the other distant interneurons (SST, Basket).  658 

 659 
 660 

 661 

 662 
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663 
Figure 3. Full processing pipeline leading to the simulation of scalp EEGs. The pipeline 664 
simulate EEG is a two-step process. (A) First, the forward problem is solved at the level of 257 sca665 
electrodes from a dipole layer constrained to the surface of a cortical mesh (15000 vertices) midw666 
between the Grey/White matter interface and the cortex surface. The boundary Element Method667 
used for the calculation within a realistic head model that accounts for the conductivity properties a668 
the geometry of brain, skull and scalp. This step provides a 257x150000 leadfield matrix669 
representing the contribution of each individual cortical dipole at each of the 257 scalp electrodes. 670 
this matrix, leadfield vectors belonging to a common region of the Desikan Atlas are added to obta671 
a simplified 66 x 257 matrix G. Second, the time courses S at the whole brain level are obtained672 
the mean field model from a set of 66 cortical and one thalamic coupled NMMs. (B) Coupli673 
between these 67 NMMs is done using combination of connection weight matrices. Pairs 674 
structurally connected cortical NMMs are first defined from a matrix of connection weigh675 
representing a density of fibers between all pairs of 66 cortical regions of the Desikan Atlas. Th676 
matrix is provided in (Hagmann, Cammoun et al. 2008). Using an element-wise multiplication, th677 
matrix is combined with a set of horizontal (i.e. cortico-cortical) functional connectivity matrices th678 
reproduce the coefficients weights used for wakefulness and sleep in the toy model. Vertical (i679 
thalamo-cortical) connectivity matrices are added to each of these products to obtain connectiv680 
weight matrices that account for anatomical connections as well as cortico-cortical and thalam681 
cortical connectivity matrices. Cortico- and thalamo-cortical time-delays were similarly organized682 
the form of matrices where the elements represent the Cartesian distance between cortical NMM683 
divided by the mean velocity of travelling for action potentials. (C) The mean field model includ684 
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explicitly the contribution of an external stimulus term that represents the effect of TMS. At t685 
output of the pipeline, scalp EEG signals at the level of 257 channels are obtained as the product 686 
leadfield G and source time courses S. 687 

 688 

 689 

 690 

691 
 692 
 693 

Figure 4. Comparison of real and simulated intracerebral EEG (iEEG) (toy model, N = 4). L694 
column: In the condition of high thalamo-cortical connectivity (i.e. low cortico-cortical connectivit695 
signals generated by the mean field model are characterized by delta waves (~ 4 Hz). The696 
simulated signals are similar (although slightly faster) to delta waves recorded by intracerebral EE697 
(iEEG) during SWS in non-epileptic cortical regions of one patient undergoing an invasive EE698 
exploration. Right column: In the condition of low thalamo-cortical connectivity, signals generat699 
by the mean field model are similar to background activity recorded by iEEG in real conditio700 
during wakefulness. Note that these iEEG recordings are performed in patients who are candidate701 
epilepsy surgery. For the sake of this study, only iEEG signals that do not show epileptic activ702 
were retained. 703 

 704 
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 706 
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 707 
Figure 5. Simulated vs. Real EEG during wakefulness and SWS. Signals simulated with t708 
whole-brain model using weak thalamo-cortical connectivity parameters (A) display backgrou709 
activity. The morphology and spectral content of these simulated signals is similar to scalp EE710 
recorded in a human subject during wakefulness in humans (C), except for a higher power spect711 
density in the beta sub-band. Signals simulated with the whole-brain model using strong thalam712 
cortical connectivity parameters (B) display delta waves similar to the activity recorded in re713 
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condition during SWS in humans (D). The spectral content of signals as well as the topographical 714 
voltage distribution at the peak of delta waves were similar in the simulated and real conditions. 715 

716 
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 717 
Figure 6. Comparison of TMS-EEG evoked responses in silico and in humans. (A) Time cour718 
of a human TMS-EEG response (modified from Casali et al., 2013) following stimulation of t719 
motor cortex during wakefulness. Once that cortical sources have been computed from EE720 
recordings, a spatio-temporal matrix of significant sources was built and the Lempel-Z721 
compression algorithm was used to compute the complexity of the evoked response (Perturbation722 
Complexity Index, PCI). (B) Time course of a simulated TMS-EEG response using our brain-sca723 
following stimulation of the motor area in the wakefulness mode. Cortical sources were reconstruct724 
from the simulated EEG, and a similar procedure was used to compute PCI. A similar PCI value w725 
obtained in the simulated and experimental TMS-evoked EEG responses in the awake state.  726 
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729 

Figure 7. Comparison of TMS-evoked EEG responses in wakefulness and sleep. (A) TM730 
evoked EEG responses obtained through TMS of the motor cortex in humans (upper panel, duri731 
wakefulness; lower panel, during sleep) with associated PCI values. (B) TMS-evoked EEG respons732 
obtained through simulated TMS of the motor region (upper panel, in the wakefulness mode; low733 
panel, during the sleep mode) with associated PCI values.  734 
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