Supplementary Material for Deep Learning on Chaos Game Representation for Proteins

Hannah F. Löchel, Dominic Eger, Theodor Sperlea and Dominik Heider

March 2019

Abstract

This sections contains the $\langle\phi, \delta>$ Armano and Giuliani 2018] the encoding used by Heider et al. [2011] for all drugs (Figure 1), and within the CGR encoding, for all configurations used in this study (left column Figure 3 to Figure 29. The difference between the average FCGR of positive and negative sequences in the datasets are shown in the middle column of Figure 3 to Figure 29 and the significance of the differences in $\log (\mathrm{p})$ values as calculated using a Bonferroni-corrected t-test in the right column. Blue pixels are significantly different between positively and negatively labeled sequences. Gray pixels contain no values or zeros.

References

Giuliano Armano and Alessandro Giuliani. A two-tiered 2d visual tool for assessing classifier performance. Information Sciences, jun 2018. doi: 10.1016/j.ins.2018. 06.052. URL/https://doi.org/10.1016\%2Fj. ins.2018.06.052

Dominik Heider, Jens Verheyen, and Daniel Hoffmann. Machine learning on normalized protein sequences. BMC research notes, 4(1):94, 2011.

Dominik Heider and Daniel Hoffmann. Interpol: An r package for preprocessing of protein sequences. BioData mining, 4(1):16, 2011.

Figure 1: $\langle\phi, \delta\rangle$ diagrams, calculated using the R package Interpol [Heider and Hoffmann 2011]

Figure 2: DLV, sf=0.5

Figure 3: DLV, $s f_{20}$

Figure 4: EFV, sf=0.5

Figure 5: EFV, $s f_{20}$

Figure 6: NVP, sf=0.5

Figure 7: NFV, $s f_{20}$

Figure 8: $3 \mathrm{TC}, \mathrm{sf}=0.5$

Figure 9: $3 \mathrm{TC}, s f_{20}$

Figure 10: $\mathrm{ABC}, \mathrm{sf}=0.5$

Figure 11： $\mathrm{ABC}, s f_{20}$

Figure 12: AZT, sf=0.5

Figure 13：AZT，$s f_{20}$

Figure 14: D4T, sf=0.5

Figure 15: D4T, $s f_{20}$

Figure 16: DDI, sf=0.5

Figure 17: DDI, $s f_{20}$

Figure 18: APV, $s f=0.5$

Figure 19: APV, $s f_{20}$

Figure 20: IDV, sf=0.5

Figure 21: $\operatorname{IDV}, s f_{20}$

Figure 22: LPV, sf=0.5

Figure 23: LPV, $s f_{20}$

Figure 24: NFV, sf=0.5

Figure 25: NFV, $s f_{20}$

Figure 26: RTV, $s f=0.5$

Figure 27: RTV, $s f_{20}$

Figure 28: $\mathrm{SQV}, \mathrm{sf}=0.5$

Figure 29: $\mathrm{SQV}, s f_{20}$

