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Abstract 

Background: The integration of large-scale drug sensitivity screens and genome-wide 

experiments is changing the field of pharmacogenomics, revealing molecular determinants of 

drug response without the need for previous knowledge about drug action. In particular, 

transcriptional signatures of drug sensitivity may guide drug repositioning, prioritize drug 

combinations and point to new therapeutic biomarkers. However, the inherent complexity of 

transcriptional signatures, with thousands of differentially expressed genes, makes them hard to 

interpret, thus giving poor mechanistic insights and hampering translation to clinics. 

Methods: To simplify drug signatures, we have developed a network-based methodology to 

identify functionally coherent gene modules. Our strategy starts with the calculation of drug-gene 

correlations and is followed by a pathway-oriented filtering and a network-diffusion analysis 

across the interactome. 

Results: We apply our approach to 189 drugs tested in 671 cancer cell lines and observe a 

connection between gene expression levels of the modules and mechanisms of action of the 

drugs. Further, we characterize multiple aspects of the modules, including their functional 

categories, tissue-specificity and prevalence in clinics. Finally, we prove the predictive capability 

of the modules and demonstrate how they can be used as gene sets in conventional enrichment 

analyses. 
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Conclusions: Network biology strategies like module detection are able to digest the outcome of 

large-scale pharmacogenomic initiatives, thereby contributing to their interpretability and 

improving the characterization of the drugs screened. 
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Background 

Gene expression profiling has become a mainstay approach to characterize cell properties and 

status, unveiling links between gene activities and disease phenotypes. Early efforts were 

channeled into discovering transcriptional signatures that are specific to a disease state. This 

work involved the comparison of a relatively small number of diseased and healthy samples [1]. 

Although providing a rich account of disease biology, these studies have failed to yield better drug 

therapies, as causality and response to drug perturbations cannot be inferred directly from two-

state (diseased vs. healthy) differential gene expression analysis [2, 3]. To address this issue, 

initiatives have flourished to profile the basal gene expression levels of hundreds of cell lines, 

together with their response to treatment over an array of drug molecules using a simple readout 

such as growth rate [4-7]. Provided that the panel of cell lines is large enough, this approach 

allows for a new type of gene expression analysis where basal expression levels are correlated 

to drug response phenotypes. A series of recent studies demonstrate the value of this strategy 

for target identification, biomarker discovery, and elucidation of mechanisms of action (MoA) and 

resistance [8-13]. 

The largest cell panels available today are derived from cancerous tissues, since a crucial step 

towards personalized cancer medicine is the identification of transcriptional signatures that can 

guide drug prescription. However, current signatures are composed of several hundred genes, 

thereby making them difficult to interpret, harmonize across platforms and translate to clinical 

practice [14-16]. Recent assessment of sensitivity signatures for over two hundred drugs [9] 

revealed that key genes include those involved in drug metabolism and transport. Intended 

therapeutic targets, though important, are detected in only a fraction of signatures, and cell line 

tissue of origin has been identified as a confounding factor throughout the signature detection 

procedure. In practice, the length of the signatures largely exceeds the number of sensitive cell 

lines available for each drug, which often yields inconsistent results between cell panels from 

different laboratories [14]. The current challenge is to filter and characterize transcriptional 

signatures so that they become robust, informative and more homogeneous, while still retaining 

the complexity (hence the predictive power) of the original profiles [17]. 

Network biology offers means to integrate a large amount of omics data [18]. Most network biology 

capitalizes on the observation that genes whose function is altered in a particular phenotype tend 

to be co-expressed in common pathways and, therefore, co-localized in specific network regions 

[19]. Following this principle, it has been possible to convert genome-wide signatures to network 

signatures, or modules, that are less noisy and easier to interpret [20]. Raphael and co-workers, 
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for instance, developed an algorithm to map cancer mutations on biological networks and identify 

“hot” regions that distinguish functional (driver) mutations from sporadic (passenger) ones [21]. 

Califano’s group combined gene expression data with regulatory cellular networks to infer protein 

activity [22]. Overall, network-based methods come in many flavors and offer an effective 

framework to organize the results of omics experiments [23]. 

While many genes and proteins have enjoyed such a network-based annotation (being 

circumscribed within well-defined modules such as pathways and biological processes), drug 

molecules remain mostly uncharacterized in this regard. For a number of drugs the mechanism 

of action is unclear [3] and off-targets are often discovered [24]. Recent publications of drug 

screens against cancer cell line panels, and the transcriptional signatures that can be derived 

from there, provide a broader view of drug activity and enable the full implementation of network 

biology techniques. Here we undertake the task of obtaining and annotating transcriptional 

modules related to 189 drugs. We show how these modules are able to capture meaningful 

aspects of drug biology, being robust to inherent biases caused by, for example, the cell’s tissue 

of origin, and having a tight relationship to mechanisms of action and transportation events 

occurring at the membrane. Finally, we perform a series of functional enrichment analyses, which 

contribute to a better understanding of the molecular determinants of drug activity. 

 

Methods 

Data preparation and drug-gene correlations. We collected gene expression and drug 

response data from the GDSC resource (https://www.cancerrxgene.org). We first discarded those 

genes whose expression levels were low or stable across cell lines (Additional file 1: Fig. S1A). 

To this end, we analyzed the distribution of basal expression of each gene in every CCL and 

filtered out those with an expression level below 4.4 (log2 units) across the panel (see Additional 

file 1: Fig.S1B for a robustness analysis). Regarding drug response data, GDSC provides 

measurements of cell survival at a range of drug concentrations (Area Under the dose-response 

Curve, AUC). Since this measure is inversely proportional to drug sensitivity (i.e. the more 

sensitive the cell, the shorter its survival), we used the 1-AUC as a measure of potency. Thus, 

positive correlations denote drug sensitivity cause by gene over-expression while negative 

correlations indicate that sensitivity is associated with gene under-expression.  

Recent studies report a confounding effect of certain tissues in the global analysis of drug-gene 

correlations [9]. In order to identify these potential biases in our dataset, we performed a principal 
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component analysis (PCA) on the matrix of raw drug-gene correlations (Pearson’s ⍴ between 1-

AUC and gene expression units). Then, we correlated the loadings of the first PC with gene 

expression values for each CCL. Finally, we filtered out CCLs belonging to tissues that were 

strongly correlated to the drug-gene correlation profiles (Additional file 1: Fig. S2A). We removed 

leukemia, myeloma, lymphoma, neuroblastoma, small cell lung cancer (SCLC) and bone CCLs. 

In addition, we considered only drugs with sensitivity measurements available for at least 400 

CCLs, as recommended by Rees et al. [9]. 

After this filtering process, we recalculated, for each drug-gene pair, the Pearson’s correlation 

between basal gene expression and 1-AUC drug potencies across CCLs. We applied Fisher’s z-

transformation to the correlation coefficients in order to account for variation in the number of 

CCLs available for each drug [25]. Overall, we obtained positive and negative drug-gene 

correlations for 217 drugs and 15,944 genes across a total of 671 CCLs. Drug gene correlations 

(zcor) beyond +/- 3.2 were considered to be significant (Additional file 1: Fig. S1C; Additional file 

1: Fig. S1D shows that this cutoff is a robust choice). 

Frequently correlated genes.  For each gene, we counted the number of correlated drugs (zcor 

beyond +/- 3.2) and inspected the resulting cumulative distribution (Additional file 1: Fig. S3). 

Genes at the 5% end of the distribution were considered to be “frequently correlated genes” 

(FCGs). We found 869 positive and 799 negative FCGs, which were removed from further 

analyses. Finally, we performed enrichment analyses on those genes using the Gene Ontology 

database [26] and the DAVID toolbox (https://david.ncifcrf.gov/summary.jsp) (hypergeometric 

tests). 

Tissue-specific correlations.  First, we split the CCL panel into sets of CCLs belonging to the 

same tissue. We then calculated drug-gene correlations (zcor) separately for each of the 13 tissues 

represented in our dataset. In order to verify that measures of positively correlated genes (PCGs) 

and negatively correlated genes (NCGs) were consistent across tissues, we calculated the 

median zcor across tissues for each drug-PCG/NCG pair. In general, tissue-specific correlations 

had the same “direction” (i.e. same sign of zcor) as the global correlation used throughout the study 

(Additional file 1: Fig. S4A, left panel). 

Drug-target correlations. We obtained drug targets from the GDSC resource (disambiguating 

them with DrugBank [27], when necessary). We assigned at least one target to 202 of the 217  

drugs. We focused on the zcor correlation of the targets to check whether target expression 

(positively) correlates with drug sensitivity. When more than one target was annotated per drug, 

we kept the maximum correlation. To validate the statistical significance of this measure, we 
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randomly sampled genes (corresponding to the number of known targets per drugs; here again 

we kept the maximum correlation). This process was repeated 1,000 times for each drug. The 

mean and the standard deviation of this null distribution were used to derive a z-score, making 

results comparable between drugs. 

Drug module detection. After removing frequently correlated genes from the list of drug-gene 

correlations, we kept 182 [median; Q1: 84, Q3: 372] positively and 122 [median; Q1: 41, Q3: 337] 

negatively correlated genes (PCGs, NCGs) per drug. Further, we used correlation values (zcor) to 

run a gene-set enrichment analysis (GSEA) [28] for each drug and identify the genes that 

participate in enriched Reactome pathways [29, 30]. We only considered Reactome pathways 

composed of at least 5 genes. Then, for each drug, we kept the significantly correlated genes 

found in any of the enriched pathways (P-value < 0.01).  The resulting GSEA-filtered list of genes 

retained 100 [median; Q1: 49, Q3: 277] positive and 77 [median; Q1: 30, Q3: 221] negative 

correlations per drug. Then, taking the zcor values as input scores, we submitted the GSEA-filtered 

list of genes to HotNet2 [31], using a high-confidence version of STRING [32] (confidence score 

> 700). We ran HotNet2 iteratively, keeping the largest module and removing its genes for the 

next iteration, until the modules had fewer than 5 genes or were not statistically significant (p-

value > 0.05). To recall strong drug-gene correlations “proximal” to the drug modules (missed, 

most likely, by the incomplete coverage of Reactome), we used the DIAMOnD module-expansion 

algorithm [29]. We considered only genes that: (i) were correlated to the drug response; (ii) were 

not present in any of the Reactome pathways; and (iii) were in the top 200 closest genes to the 

module, according to DIAMOnD (this cutoff was proposed by the authors of DIAMOnD based on 

orthogonal functional analyses). Hence, we obtained at least one positively correlated module for 

175 of the drugs (48 genes [median; Q1: 23, Q3: 83]) and one negatively correlated module for 

154 of the drugs (40 genes [median; Q1: 21, Q3: 78]). Robustness analysis of this procedure is 

found in Additional file 1: Fig. S1D. A GMT list of the drug modules can be found in Additional file 

2. The correlation values of the genes in the drug modules is available in Additional file 3.  

Distances between drug targets and modules. DIAMOnD [29] provides a list of genes sorted 

by their network-based proximity to the module. Accordingly, we retrieved from the STRING 

interactome the top closest 1,450 genes (~10% of the largest connected component of the 

network) for every drug module. We then checked the ranking of drug targets in the resulting 

DIAMOnD lists, (conservatively) taking the median value when more than one target was 

available. To assess the proximity of drug targets to the modules, we measured distances to three 

different sets of random proteins. The first random set corresponded to the STRING proteome. 
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For the second, we collected all genes defined as Tclin or Tchem in the Target Central Resource 

Database [33] (i.e. “druggable proteins”). Finally, the third random set included all 

pharmacologically active drug targets reported in DrugBank (https://www.drugbank.ca/). 

Distances between modules. We calculated distances between positively and negatively 

correlated modules separately using the network distance proposed by Menche et al. [34]. This 

distance measure is sensitive to the number of genes (size) included in the modules. To normalize 

this measure, we devised the following procedure. First, we grouped drug modules on the basis 

of their size. Then, for each module, we calculated the distribution of shortest distances from each 

gene to the most central one [35]. We used this distribution to sample random modules from the 

network. When the distribution constraint could not be fully met, we used the DIAMOnD algorithm 

[29] to retrieve the remaining genes (50% of the genes at maximum). We repeated this process 

to obtain 10 random modules of each size. Next, we distributed the random modules into ranges 

(intervals) of 5 (i.e. from 10 to 14 genes, from 15 to 19, etc.; 50 random modules per interval). 

Then, for each pair size, we randomly retrieved 100 pairs of modules and calculated the network-

based distance between them. The mean and standard deviation of the distances at each pair 

size were used to normalize the observed distances, correspondingly (z-score normalization) (we 

checked that 100 random pairs were sufficient to approximate the mean and standard deviation 

of the population). The more negative the network distance (dnet), the more proximal the modules 

are. We provide the network distances as an Additional file 4. 

Drug response prediction using drug modules. We performed drug response predictions in 

the GDSC dataset by using drug modules (only first PCMs and NCMs, to make results 

comparable between drugs). We devised a simple GSEA-like predictor in which CCLs were 

evaluated for their up/down-regulation of the modules, correspondingly. To this end, we first 

normalized the expression of each gene across the CCL panel (z-score). Then, for each drug, we 

ranked CCLs based on the GSEA enrichment scores (ES), taking drug modules as gene sets. To 

evaluate the ranking, we chose the top 25, 50 and 100 CCLs based on the known drug sensitivity 

profile. Performance was evaluated using the AUROC metric. Results were compared to those 

obtained with positively and negatively correlated genes (PCG, NCG) from the full signatures (zcor 

beyond +/- 3.2). 

To check whether modules derived from GDSC generalize to other CCL panels, we applied the 

same procedure to the Cancer Therapeutics Response Portal (CTRP) 

(https://ocg.cancer.gov/programs/ctd2/data-portal). As done with the GDSC panel, we removed 

all CCLs derived from neuroblastomas, hematopoietic, bone and small cell lung cancer tissues, 
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leaving a total of 636 CCLs, 397 in common with our GDSC panel (67 drugs in common). Drug 

response predictions for CTRP were performed as detailed above. We used the best ES among 

all modules associated with the drug. In addition, we did the analysis using CCLs exclusive to 

CTRP (i.e. not shared with the GDSC panel). 

Module enrichment in Hallmark gene sets. We downloaded the Hallmark gene set collection 

from the Molecular Signature Database (MSigDB) of the Broad Institute 

http://software.broadinstitute.org/gsea/index.jsp). We evaluated each gene set independently 

using a hypergeometric (Fisher’s exact) test (first and second modules were merged, when 

applicable; the gene universe was that of GDSC). Enrichments can be found in the Additional file 

5. 

Drug module enrichments in the TCGA cohort. We downloaded gene expression data (median 

z-scores) for 9,788 patients and 31 cancer tissues from the PanCancer Atlas available in the 

cBioPortal resource (http://www.cbioportal.org). “Presence” or “expression” of the module in each 

patient was evaluated using GSEA (P-value < 0.001), ensuring that the direction (up/down) of the 

enrichment score corresponded to the “direction” of the module (PCM/NCM). For a complete list 

of enrichment results, please see Additional file 6 (results are organized by tumor type). Further, 

to identify associations between drug modules and cancer driver genes, we checked whether 

patients “expressing module of drug X” (P-value < 0.001) were “harboring a mutation in driver 

gene Y” (Fisher’s exact test). We considered 113 driver genes (obtained as described in [36], 

using the “known” flag) (Additional file 7). 

Characterization of drug modules. In order to characterize drug modules from different 

perspectives, we designed 21 features belonging to the following categories: (i) General features 

derived directly from the pharmacogenomics panel; (ii) Network features related to network 

measures such as topological properties; and (iii) Biological features encompassing a series of 

orthogonal analyses related to drug biology. For more information, please see Additional file 8 

and its corresponding legend. 

 

Results and discussion 

The Genomics of Drug Sensitivity in Cancer (GDSC) is the largest cancer cell line (CCL) panel 

available to date [8]. This dataset contains drug sensitivity data (growth-inhibition, GI) for 265 

drugs screened against 1,001 cell lines derived from 29 tissues, together with basal transcriptional 

profiles of the cells (among other omics data). Aware of the work by Rees et al. [9], we first looked 
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for the dominant effect of certain tissues in determining associations between drug response and 

gene expression. We found that CCLs derived from neuroblastoma, hematopoietic, bone and 

small cell lung cancers may confound global studies of drug-gene correlations due to their 

unspecific sensitivity to drugs (Additional file 1: Fig. S2A). These tissues were excluded from 

further analyses. We also excluded genes whose expression levels were low or constant across 

the CCL panel and drugs tested against fewer than 400 CCLs (see Methods for details). As a 

result, we obtained a pharmacogenomic dataset composed of 217 drugs, 15,944 genes and 671 

CCLs. 

Following the conventional strategy to analyze pharmacogenomic datasets, we calculated 

independent drug-gene associations simply by correlating the expression level of each gene to 

the potency of each drug (area over the growth-inhibition curve; 1-AUC) across the CCL panel. 

We used a z-transformed version of Pearson’s ⍴, as recommended elsewhere [25]. Figure 1A 

shows the pair-wise distribution of the z-correlation (zcor) measures between the 15,944 genes 

and the 217 drugs. We validated the correlations identified in the GDSC panel on an independent 

set by applying the same protocol to the Cancer Therapeutic Response Portal (CTRP) panel [9] 

(Additional file 1: Fig. S4B ). To identify the strongest drug-gene associations, we set a cutoff of 

+/- 3.2 zcor, based on an empirical null distribution obtained from randomized data (see Additional 

file 1: Fig. S1C and Methods). Please note that this is a widely adopted procedure that is not 

designed to detect single drug-gene associations (which would require multiple testing correction) 

[37]. Instead, and similar to signature identification in differential gene expression analysis, the 

goal is to identify sets of genes that are (mildly) correlated with drug response. For each drug, we 

obtained a median (Med) of 249 positively correlated genes [first quartile (Q1): 120, third quartile 

(Q3): 584], and Med of 173 negatively correlated genes [Q1: 59, Q3: 484] (Figure 1B). Some 

drugs, like the BRAF inhibitor Dabrafenib or the EGFR inhibitor Afatinib, had over 1,500 positively 

and negatively correlated genes, while others, like the antiandrogen Bicalutamide or the p38 

MAPK inhibitor Doramapimod, had hardly a dozen. We observed that the number of genes that 

correlate with drug response strongly depends on the drug class (Figure 1C), EGFR and ERK-

MAPK signaling inhibitors being the classes with the largest number of associated genes, and 

JNK/p38 signaling and chromatin histone acetylation inhibitors being those with the fewest 

correlations. This variation may be partially explained by the range of drug potency across the 

CCL panel, as it is “easier” to detect drug-gene correlations when the drug has a wide sensitivity 

spectrum (Additional file 1: Fig. S5). 
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Similarly, analysis of independent drug-gene correlations suggests that some genes are positively 

correlated to many drugs. For instance, we found 5% of the genes to be associated with more 

than 10% of the drugs (Figures 1B and Additional file 1: Fig. S3). The transcripts of these “frequent 

positively correlated genes” are enriched in membrane processes, specifically focal adhesion (P-

value < 5.2·10-12) and extracellular matrix (ECM) organization (P-value < 5·10-16), including 

subunits of integrin, caveolin and platelet-derived growth factors (PDGFs). These genes 

determine, among others, the activation of Src kinases [38-41]. Overall, ECM proteins are known 

to play an important role in tumor proliferation, invasion and angiogenesis [42, 43] and are often 

involved in the upstream regulation of cancer pathways [44] such as PI3K/mTOR [38-40],  MAPK 

[39] and Wnt signaling [45], and in cell cycle and cytoskeleton regulation [46]. It is thus not 

surprising that ECM genes determine drug response in a rather unspecific manner. 

On the other hand, “frequent negatively correlated genes” are associated with small molecule 

metabolism (xenobiotic metabolic processes, P-value < 3.2 x 10-3).  In this group, we found, 

among others, the cytochrome CYP2J2, and the GSTK1 and MGST glutathione transferases, 

which are highly expressed in cancers and known to confer drug resistance through their 

conjugating activity [47-50]. Following other studies that reported similar results [9], we checked 

for the presence of multidrug transporters (MDTs). Reassuringly, we found the efflux pump 

transporter ABCC3 and a total of 27 different solute carriers (SLCs) to be negatively correlated to 

the potency of many drugs. Of note, we also found the ABCA1 transporter and other 8 SLCs to 

be among the frequent positively correlated genes, thus emphasizing the key role of transporters 

and carriers in determining drug potency. 

All of the above suggests that systematic analysis of independent drug-gene correlations is 

sufficient to highlight unspecific determinants of drug sensitivity and resistance (i.e. frequent 

positively and negatively correlated genes). However, while these determinants are recognized 

to play a crucial role, they do not inform targeted therapies, as they are usually unrelated to the 

mechanism of action of the drug. Thus, we assessed whether measuring drug-gene correlations 

would also be sufficient to elucidate drug targets, i.e. we tested whether the expression level of 

the target correlates with the potency of the drug. Since most drugs had more than one annotated 

target, to measure significance we randomly sampled 1,000 times an equal number of genes and 

derived an empirical Z-score (Methods). Figure 1D shows that the expression level of most drug 

targets did not correlate with drug response. In fact, only ~10% of the drugs had “positively 

correlated targets” (Z-score > 1.9, P-value ~ 0.05). Remarkably, the 6 EGF pathway inhibitors in 

our dataset were among these drugs, as were 3 of the 4 IGF pathway and 3 of the 21 RTK 
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pathway inhibitors. We noticed that the molecular targets for these pathways were usually cell 

surface receptors, e.g. EGFR, IGFR, ALK, ERBB2, MET and PDGFRA. Overall, of the 20 drugs 

with positively correlated targets, 13 bind to cell surface receptors, showing a propensity of drug-

gene correlations to capture membrane targets (odds ratio = 15.13, P-value = 1.9 x 10-7). In 

Additional file 1: Fig. S6 we show how this trend is driven mostly by the over-expression of the 

target on the cell surface. 

The relatively small number of positively correlated targets illustrates how the analysis of 

expression levels alone is insufficient to reveal MoAs, especially when the drug target is located 

downstream of the cell surface receptors in a signaling pathway. Some authors have suggested 

that the tissue of origin of the cells might play a confounding role in defining drug response 

signatures. To address this notion, we repeated the calculation of Pearson’s zcor correlations 

separately for each of the 13 tissues in our dataset. In general, the trends observed at the tissue 

level were consistent with the global trends, although tissue-specific correlations were milder due 

to low statistical power (i.e. few cell lines per tissue) (Additional file 1: Fig. S4A, right panel). 

Accordingly, we confirmed that none of the tissues had a globally dominant effect on the measures 

of drug-gene correlations (Additional file 1: Fig. S2B) and verified that certain tissue-specific 

associations were still captured by the analysis. For instance, going back to the targeting of EGFR 

(which was positively correlated with Afatinib and Gefinitib), we show in Figure 1E that the “global” 

correlation can be partly attributed to non-small cell lung cancer (NSCLC) cells (zcor > 1.96, P-

value < 0.05). Indeed, Afatinib and Gefitinib have an approved indication for NSCLC. Both drugs 

correlate with EGFR also in the aerodigestive tract, an observation reported in an independent 

study dedicated to the discovery of drug-tissue/mutation associations (ACME) [7]. Moreover, and 

consistent with recent findings [51-54], Gefitinib has a significant correlation to EGFR in breast 

cancers, whereas Afatinib correlates with this target in pancreatic CCLs. Afatinib, in turn, is 

associated with ERBB2 in breast CCLs, as also confirmed by ACME analysis (Additional file 1: 

Fig. S4C). 

From drug-gene correlations to drug modules 

The previous analysis demonstrates that conventional drug-gene correlations do not directly 

identify drug targets, and suggests that standard transcriptional drug signatures contain unspecific 

and indirect correlations that may mislead mechanistic interpretation. Recent advances in network 

biology precisely tackle these problems, as they can: (i) filter signatures to make them more 

functionally homogeneous, and (ii) allow for the measurement of network distances so that genes 
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proximal to the target can be captured and connected to it, even if the expression of the target 

itself is not statistically associated with the drug. 

Hence, we set to mapping drug-gene correlations onto a large protein-protein interaction (PPI) 

network, retaining only genes that could be grouped in network modules (i.e. strongly 

interconnected regions of the network). In the Methods section, we explain in detail the module 

detection procedure. In brief, starting from drug-gene correlations (Figure 2A), we first filtered out 

those genes whose expression was frequently (and unspecifically) correlated to the potency of 

many drugs (Additional file 1: Fig. S3). This reduced the number of associations to 182 [median; 

Q1: 84, Q3: 372] positively and 122 [median; Q1: 41, Q3: 337] negatively correlated genes per 

drug, respectively. Next, in order to identify genes acting in coordination (i.e. participating in 

enriched Reactome pathways [29, 30]), we adapted the gene set enrichment analysis (GSEA) 

algorithm [28] to handle drug-gene correlations (instead of gene expression fold-changes) (Figure 

2B). The resulting GSEA-filtered list of genes kept 100 [median; Q1: 49, Q3: 277] positive and 77 

[median; Q1: 30, Q3: 221] negative correlations per drug. After this filtering, we submitted this list 

to HotNet2 [31], a module detection algorithm that was originally developed for the identification 

of recurrently mutated subnetworks in cancer patients (Figure 2C; Additional file 1: Fig. S7 shows 

the importance of the Reactome-based filtering previous to HotNet2). As a reference network 

(interactome) for HotNet2, we chose a high-confidence version of STRING [32], composed of 

14,725 proteins and 300,686 interactions. HotNet2 further filtered the list of genes correlated to 

each drug, keeping only those that were part of the same network neighborhood. Finally, we used 

the DIAMOnD module expansion algorithm [29] to recover strong drug-gene correlations that had 

been discarded along the process. Although this step made a relatively minor contribution to the 

composition of the modules (less than 5% of the genes; Additional file 1: Fig. S8), we did not want 

to lose any strong association cause by the limited coverage of the Reactome database (Figure 

2D). 

Our pipeline yielded at least one “positively correlated module” (PCM) for 175 of the 217 drugs 

(48 genes [median; Q1: 23, Q3: 83]). Similarly, we obtained “negatively correlated modules” 

(NCMs) for 154 of the drugs (40 genes [median; Q1:21, Q3:78]). Thus, compared to the original 

signatures, drug modules are considerably smaller (80% reduction) (Figure 3A) and are 

commensurate with manually annotated pathways in popular databases (Additional file 1:  Fig. 

S9). For roughly two thirds of the drugs, we obtained only one PCM and one NCM. For the 

remaining drugs, a second (usually smaller) module was also identified (Additional file 1:  Fig. 

S10A). The complete list of drug modules can be found in Additional file 2. Pair-wise drug-gene 
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correlations of the modules are listed as Additional file 3. Additionally, the code of the module-

detection pipeline is available at: https://github.com/sbnb-lab-irb-barcelona/GDSC-drug-modules. 

Drug modules are tightly related to mechanisms of action 

To assess the mechanistic relevance of drug modules, we measured their distance to the 

corresponding drug targets, i.e. we formulated the hypothesis that drug targets should be 

“proximal” to dysregulated network regions. To this end, we used the DIAMOnD algorithm again 

[29], this time to retrieve, for each drug, a list of genes ranked by their proximity to the 

corresponding drug module(s) (Methods). Figure 3B shows that drug targets are remarkably up-

ranked in these lists, making them closer to the drug modules than any other set of random 

proteins, including druggable genes and pharmacological receptors [33], which usually have 

prominent positions in the PPI network due to the abundant knowledge available for them. In 82% 

of the PCMs, the corresponding targets were among proximal proteins (top decile), which means 

a dramatic increase in mechanistic interpretability compared to the 12.25% of drugs that could be 

linked to their targets via conventional analysis of drug-gene correlations. 

A unique feature of drug modules is that network-based distances can be natively measured 

between them [34]. We computed the distance between drug modules pair-wise (Additional file 

4) and grouped them by drug class (Figure 3C) (see Methods and alternative statistical treatments 

in Additional file 1: Fig. S11). The diagonal of Figure 3C clearly indicates that drugs belonging to 

the same category tend to have “proximal” modules (some of them in a highly specific manner, 

like in the case of ERK-MAPK signaling cascade inhibitors). Most interestingly, we could observe 

proximities between modules belonging to different drug classes. For instance, modules of drugs 

targeting RTK signaling were “located” near to those of drugs affecting genome integrity, in good 

agreement with recently reported cross-talk between these two processes [55, 56]. Likewise, and 

as proposed by some studies [57-59], IGFR-related drugs were “proximal” to drugs affecting cell 

replication events such as mitosis, cell cycle and DNA replication. 

Drug modules retain the ability to predict drug response 

We have shown that drug modules are related to the MoA of the drug, but the question remains 

as to the extent to which they retain the predictive capabilities of the full transcriptional 

profiles/signatures. In the CCL setting, gene expression profiles are valuable predictors of drug 

response [5, 11, 60] and crucially contribute to state-of-the-art pharmacogenomic models. To test 

whether our (much smaller) drug modules retained predictive power, we devised a simple drug 

sensitivity predictor based on the GSEA score (see Methods). In brief, given a drug, we tested 
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whether cell lines sensitive to a certain drug were enriched in the corresponding drug modules. 

We expect genes in PCMs to be over-expressed in sensitive cell lines and those in NCMs to be 

under-expressed. Analogously, we took the positively and negatively correlated genes from the 

full drug-gene associations (signatures), and also performed a GSEA-based prediction. To 

nominate a cell “sensitive” to a certain drug, we ranked CCLs by their sensitivity and kept the top 

n CCLs, n being 25, 50 or 100, based on the distribution of sensitive cell lines provided by the 

authors of the GDSC (Additional file 1: Fig. S12A). This simple binarization is, in practice, 

proportional to more sophisticated “sensitive/resistant” categorizations such as the waterfall 

analysis [14], and it yields prediction performance metrics comparable between drugs. 

Additional file 1: Fig. S13 suggests that, when applied to the GDSC, drug module enrichment 

analysis can classify sensitive cell lines with high accuracy, especially for the top 25 sensitive cell 

lines (area under the ROC curve (AUROC): 0.77), which is a notable achievement considering 

that drug modules are 80% smaller than the original signatures. To assess the applicability of our 

modules outside the GDSC dataset, we performed an external validation with the CTRP panel of 

cell lines. About 37% of our drugs were also tested in this panel. In CTRP, drug sensitivity is 

measured independently of GDSC, which poses an additional challenge for prediction  as a result 

of experimental inconsistencies [14]. Of the CCLs, 397 are shared between GDSC and CTRP, 

and gene expression data are also measured independently. We performed the GSEA-based 

sensitivity prediction for all CTRP CCLs. Figures 3D and E show the distribution of prediction 

performances for the 70 drugs, and illustrative ROC curves corresponding to four drugs (namely 

Daporinad, Vorinostat, I-BET-762 and Docetaxel), respectively. We found that, when focusing on 

the top 25 sensitive CCLs, over a quarter of the drugs had AUROC > 0.7, including Daporinad. 

Acceptable (AUROC > 0.6) predictions were achieved for half the cases (e.g. Vorinostat and I-

BET-762), which is a comparable result to recent attempts to translate sensitivity predictors 

between different CCL panels [61]. For the remaining drugs, predictive performance did not differ 

to random expectation (AUROC < 0.6) (e.g. Docetaxel). Notably, performance declined only 

slightly when considering CCLs that were exclusive to the CTRP panel (i.e. not part of the GDSC 

dataset) (Figure 3D, blue boxes). The figure was comparable, if not better, to that obtained using 

full signatures (PCGs and NCGs) (Additional file 1: Fig. S13, gray boxes). These observations 

support previous recommendations to pre-filter pharmacogenomic data based on prior knowledge 

[62] (Additional file 1: Fig. S14). 

Module-based characterization of drugs 
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Since drug modules are highly connected in biological networks, they are expected to be (at least 

to some extent) functionally coherent and easier to interpret. Accordingly, we tested the 

enrichment of drug modules in a collection of high-order biological processes (the Hallmark gene 

sets) available from the Molecular Signatures Database (MSigDB) [63]. Additional file 1: Fig. S15A 

shows that the number of enriched Hallmark gene sets depends upon the MoA of the drug. The 

results of the enrichment analysis are given in Additional file 5 and as an interactive exploration 

tool based on the CLEAN methodology (Additional file 9; 

https://figshare.com/s/932dd94520d4a60f076d) [64]. We chose three drug classes to illustrate 

how to read these results, namely drugs targeting mitosis, RTK signaling inhibitors, and ERK-

MAPK signaling inhibitors (Figure 4A). 

Drugs targeting mitosis have modules enriched in cell cycle and replication processes (Figure 4A, 

top). Specifically, genes related to the Myc transcription factor are over-represented in three of 

the drug modules (NPK76-II-72-1, GSK1070916 and MPS-1-IN-1). The modules of these drugs 

have a rather distinct composition, NPK76-II-72-1 having the largest coverage of Myc-related 

genes and being, together with MPS-1-IN-1, related to both Myc1 and Myc2 processes. In 

Additional file 1: Fig. S15B we show how, for these two drugs, cell line sensitivity is dependent on 

Myc expression levels. 

In contrast to mitosis inhibitors, drugs targeting the RTK pathway are enriched in biological 

processes outside the nucleus (Figure 4A, middle), among these hypoxia and the epithelial-

mesenchymal transition (EMT). Both mechanisms are known to be associated with tyrosine 

kinases [65, 66]. Interestingly, a subgroup of RTK inhibitors (namely ACC220, CEP-701, NVP-

BHG712 and MP470) is characteristically associated with the PI3K-AKT-mTOR signaling 

cascade. With the exception of NVP-BHG712, these inhibitors have the tyrosine kinase FLT3 as 

a common target [67, 68]. Deeper inspection of FLT3 inhibitors reveals module proximities to 

certain PI3K inhibitors (e.g. GDC0941), and the PI3K-AKT-mTOR pathway is enriched in ERBB2 

inhibitors as well (Additional file 4 and 5). 

As for ERK-MAPK pathway inhibitors, we observed a total of 17 enriched Hallmarks, making this 

class of drugs the one with most variability in terms of enrichment signal of the modules (Figure 

4A, bottom; Additional file 1: Fig. S15A). However, while some processes like apoptosis are 

detected in most of the drugs in this category, others are target-specific. Oxidative 

phosphorylation (OXPHOS), for example, is represented in 3 of the 4 BRAF inhibitors. It is known 

that, while BRAF inhibitors boost OXPHOS (leading to oncogene-induced senescence), activation 

of glycolytic metabolism followed by OXPHOS inactivation yields drug resistance [69, 70]. 
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Similarly, VX11e (the only drug in our dataset targeting ERK2) shows a distinctive enrichment in 

Myc-regulated proteins, while FMK (the only drug targeting the Ribosomal S6 kinase) is enriched 

in p53 signaling pathway and inflammatory response processes. All these observations are 

consistent with previous studies [71-74], and Additional file 1: Fig. S15C demonstrates that the 

variability observed between drugs in this class is driven mostly by differences in the sensitivity 

profiles of the drugs. 

Overall, the enrichment signal (i.e. the functional coherence) of drug modules is substantially 

higher than that of full signatures (PCGs and NCGs) (Figure 4B,C). This facilitates, in principle, 

the mechanistic interpretation of drug-gene correlation results (Additional file 1: Fig. S15D). We 

show an illustrative module (CEP-701) in Figure 4D.  

We next examined whether our results could be extended beyond CCL panels. We found that 

drug modules are indeed identified (GSEA P-value < 0.001) in the majority of patients in the TCGA 

clinical cohort (Additional file 1: Fig. S15E; see Methods for details). Closer inspection by TCGA 

tumor type further supports the clinical relevance of our results (Additional file 6). For example, 

drugs affecting MAPK signaling (specifically, BRAF inhibitors, e.g. Dabrafenib) have a tendency 

to “occur” in skin cutaneous melanomas (SKCM), as expected (Figure 4E, blue). Of note, one 

PPAR inhibitor (FH535) was also found enriched in a high number of SKCM patients, in good 

agreement with work by others proposing the use PPAR inhibitors to treat skin cancer [75, 76]. 

Similarly, we observed an abundance of EGFR inhibitor modules among pancreatic cancers 

(PAAD) (Figure 4E, green), in line with the known crucial role of EGFR in pancreatic tumorigenesis 

[77, 78]. As for gliobastomas (GBMs) (Figure 4E, purple), we found two GSK3 inhibitors (CHIR-

99021 and SB216763) and one TNKS inhibitor (XAV939), all of them targeting WNT signaling, 

which is potential mechanism against this tumor type [79]. We also found one EGFR inhibitor 

(Gefitinib) and the PLK inhibitor NPK76-II-72-1 mentioned above in the context of Myc enrichment 

analysis. Both mechanisms have shown promise in EGFR- and Myc-activated gliomas, 

respectively [80, 81]. Finally, we encountered a more heterogeneous pattern in breast cancer 

patients (BRCA) (Figure 4E, orange), including mechanisms supported by the literature, such as 

AKT, IRAK1 and PLK3 inhibition [82-84]. 

Beyond the tumor-type level, we looked for modules that were significantly enriched (odds ratio > 

2, P-value < 0.001) in patients harboring specific driver mutations (Methods). A full account of this 

enrichment analysis is given in Additional file 7. We found, for instance, that modules of drugs 

targeting ERK/MAPK signaling are related to patients with mutations in HRAS and BRAF [85, 86], 

and that, in turn, BRAF is (together with KRAS) frequently mutated in patients “expressing” 
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modules of EGFR signaling inhibitors [87]. Taken together, and although TCGA treatment 

response data is too scarce to allow for prediction assessment [88], these results indicate that the 

drug modules identified in CCLs hold promise for translation to clinical practice.   

Conclusions 

Two limitations of large-scale pharmacogenomic studies are the difficulty to reproduce results 

across screening platforms and the eventual translation to clinics, as it remains unclear whether 

immortalized cells are able to model patient samples [89]. Another important limitation is the 

overwhelming number of drug-gene correlations that can be derived from these experiments, 

yielding signatures of drug sensitivity that are almost impossible to interpret.  We have shown, for 

example, that (i) the number of correlated genes is highly variable across drugs; (ii) some genes 

are unspecifically correlated to many drugs; and (iii) not all drug-gene pairs are equally correlated 

in every tissue. We propose that converting transcriptional signatures to network modules may 

simplify the analysis, since network modules are smaller, more robust and functionally coherent. 

We have validated this strategy by proving that drug response modules, which are enriched in 

biological processes of pharmacological relevance and exhibit comparable predictive power to 

the full signatures, are tightly related to the MoA. Further, we have characterized the modules 

extensively (Additional file 8 and e.g. Additional file 1: Fig. S16) and confirmed their occurrence 

in the TCGA clinical cohort (Additional file 6). 

However, our approach does have some of the limitations of ordinary transcriptomic analyses. 

Expression levels of mRNA do not perfectly match protein abundance, nor are they able to capture 

post-translational modifications such as phosphorylation events, which are key to some of the 

pathways studied here. Moreover, wide dynamic ranges in gene expression and drug sensitivity 

data are necessary for drug-gene correlations to be captured, thus requiring, in practice, 

considerably large panels of CCLs, which limits the throughput of the technique to a few hundred 

drugs. In particular, one cannot precisely measure correlations within poorly represented tissues, 

which in turn makes it difficult to disentangle tissue-specific transcriptional traits that may be 

irrelevant to drug response. Our module-based approach partially corrects for this confounding 

factor, although the integration of other CCL omics data (such as mutations, copy number variants 

and chromatin modifications) could further ameliorate these issues and also provide new 

mechanistic insights. In this context, systems biology tools that learn the relationships between 

different layers of biology are needed. Along this line, the release of CCL screens with readouts 

other than growth inhibition or proliferation rate [90, 91] will help unveil the connections between 

the genetic background of the cells and the phenotypic outcome of drug treatment. 
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All in all, transcriptomics is likely to remain the dominant genome-wide data type for drug 

discovery, as recent technical and statistical developments have drastically reduced its cost [92]. 

The L1000 Next-generation Connectivity Map, for instance, contains about one million post-

treatment gene expression signatures for twenty thousand molecules [90]. These signatures await 

to be interpreted and annotated and, more importantly, they have to be associated with pre-

treatment signatures in order to identify therapeutic opportunities. We believe that network biology 

strategies like the one presented here will enable this connection, encircling relevant “regions” of 

the signatures and measuring the distances between them. 
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Additional files 

Additional file 1. Contains Supplementary Figures 1-16 (PDF). 

Additional file 2. Collection of drug modules in GMT format. The first column indicates the name of the 

drug while the second column indicates whether the module is a secondary module (“second_module”) or 

not (“na”). From the third column onwards, there are the genes composing the module (gene names). Excel 

file (XLSX). 

Additional file 3. Drug module – gene correlations across tissues. Excel file (XLSX). 

Additional file 4. Pair-wise distances between drug modules. Network distances (dnet) are normalized (z-

scores): negative values denote proximity. Secondary modules receive with the suffix “_md2”. See Methods 

for a detailed explanation of the network distance measurement. Excel file (XLSX). 

Additional file 5. Enrichment scores and p-values between drug modules (rows) and Hallmark gene sets 

(columns). For simplicity, secondary modules were merged with the main ones. Excel file (XLSX). 

Additional file 6. Enriched (p-value < 0.001) drug module count across 31 TCGA cancer types, i.e. number 

of patients where each module is “expressed”. Excel file (XLSX). 

Additional file 7. Cancer driver and drug module associations (OR > 2, p-value < 0.001), based on patients 

“expressing/not-expressing” a module and “having/not-having” a driver mutation in the TCGA cohort. Excel 

file (XLSX). 

Additional file 8. We have chosen 21 features from network-based measures and other functional data: 

(i) General features (columns 2-9). They illustrate basic and general features derived from the omics panel. 
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We provide, for instance, the number of genes in each module, the average correlation among module 

genes and a measure of how “unique” are those genes with respect to other modules. Besides, we annotate 

drug classes and the AUROC predictions in both the GDSC and CTRP panels. (ii) Network features 

(columns 10-12). These include distances between module genes and drug targets, “connectivity” within 

module genes (i.e. distance between them), and proximity to genes from other modules. (iii) Biological 

features (columns 12-21). A series of biological features related to drug biology. We give most of them as 

simple proportions of genes/proteins. Among others, we provide the cellular compartmentalization of the 

genes, transcription factor specificity and the proportion of disease-related and “druggable” genes inside 

the module. Annotated drug targets are listed as well. Excel file (XLSX). 

Additional file 9. CLEAN cluster results using drug module genes and Hallmark gene sets. We provide an 

additional table with the significant associations between gene clusters and hallmark gene sets. 

Compressed folder (ZIP). The file can be found at https://figshare.com/s/932dd94520d4a60f076d 

Additional file 10. Peer Review file (PDF). 
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Figures 

 

Figure 1. Analysis of drug-gene correlations. (A) Observed drug-gene correlation distribution (purple) and 

randomized drug-gene correlation distribution (blue) (random permutation of expression values). Vertical 

lines denote the percentiles 5 and 95 of each distribution. (B) The left panel shows the “number of correlated 

genes per drug”, while the right panel shows the “number of correlated drugs per gene”. In the left panel 

one can read, for example, that there are about 25 drugs (y-axis) with at least 1,250 correlated genes (x-

axis). Likewise, in the right panel one can read that about 4,000 genes (y-axis) are correlated to at least 10 

drugs (x-axis). (C) Number of positively (red) and negatively (blue) correlated genes across drug classes. 

(D) Positively-correlated targets (see Methods for details on the z-score normalization procedure of this 

correlation measure). Each dot represents one drug-target correlation. A full account of drug-target 

annotations is provided in Additional file 8. The red boxplot shows the background (random) distribution. 

(E) Drug-gene correlations (zcor) between Afatinib/Gefitinib and the Epidermal Growth Factor Receptor 

(EGFR) across tissues. In the upper plots, we show the drug sensitivity (1-AUC) across tissues. In the 

middle plots, we show basal gene expression of EGFR across tissues. Bottom plots show the 

Afatinib/Gefitinib-EGFR correlation. The rightmost values refer to the correlation when all tissues are 

considered (Global). Size of the bubbles is proportional to the number of CCLs in each tissue. 
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Figure 2. Methodological pipeline to identify drug modules. (A) The process of obtaining modules starts 

with the calculation of z-transformed Pearson’s correlation (zcor) between gene expression and drug 

sensitivity data for each drug-gene pair. Correlations (zcor) beyond +/- 3.2 are considered to be significant. 

(B) We then run a gene-set enrichment analysis (GSEA) for each drug in order to identify genes that 

participate in enriched Reactome pathways. (C) GSEA-filtered genes are submitted to HotNet2 on the 

STRING interactome in order to identify drug modules. (D) Finally, modules are expanded (when possible) 

using the DIAMOnD algorithm to recall the few correlated genes that might have been excluded in step C 

as a result of the limited coverage of the Reactome database. This final step has a minor impact on the 

composition of the module.  
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Figure 3. Global drug module analysis. (A) Number of genes in positively and negatively correlated 

modules (PCMs and NCMs) (left). Proportion of genes in the modules with respect to PCGs and NCGs (i.e. 

full signature). (B) Distance between drug targets and PCMs/NCMs (purple cumulative distribution). Results 

are compared to random proteins from the STRING interactome (red), proteins sampled from the 

“druggable proteome” (Target Central Resource Database) (green) and proteins sampled from the 

pharmacological targets in DrugBank (blue). (C) Network-based distances between drug classes. The 

bigger the bubble, the closer the distance between drug classes. Drug classes are sorted by specificity in 

their proximity measures. Please note “distant” values in the diagonal are possible due differences in drug 

modules belonging to the same class. The network-based distance calculation is detailed in Methods. (D) 

Predictive performances (AUROC) of the drug modules evaluated in the CTRP panel (top 25, 50 and 100 

sensitive CCLs). Blue distributions correspond to results using unique CCLs (i.e. not shared with the GDSC 

panel). (E) Illustrative ROC curves for Daporinad (FMK866), Vorinostat, I-BET-762 and Docetaxel. 
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Figure 4. Drug module characterization. (A) Drug module enrichment analysis based on the Hallmark gene 

set (odds ratios in color, p-values < 0.05 are marked with a white dot). For simplicity, three drug classes 

are shown: drugs affecting mitosis, RTK signaling, and ERK/MAPK signaling. (B) Distribution of the 

enrichment scores in the Hallmark collection gene sets. Overall, higher enrichment scores are obtained 

using modules than using full signatures (PCGs and NCGs) (the gene universe used here is that of 

Reactome). (C) Similarly, number of Hallmark-drug pairs at different enrichment scores. We show the pairs 

found only with the modules (PCMs and NCMs, red), only with correlations (PCGs and NCGs, blue), or in 

both (orange). (D) A view of Lestaurtinib (CEP-701) module. For illustrative purposes, two out-of-the-

module (non-correlated) proteins are shown (gray), one being very central and one being peripheral but 

acting as a “bridging” node. (E) TCGA enrichment analysis of PCMs in four types of cancer: SKCM 

(Cutaneous Melanoma), PAAD (Pancreatic Adenocarcinoma), GBM (Glioblastoma Multiforme) and BRCA 

(Breast Carcinoma). 
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