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Abstract  
White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked 
to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, 
current approaches to its quantification on clinical MRI often rely on time intensive manual delineation 
of the disease on T2 fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses 
such as genetic discovery.  

In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale 
studies of AIS. The pipeline incorporates automated brain extraction, intensity normalization and WMH 
segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully 
convolutional deep learning architecture, specifically designed for clinical FLAIR images. We 
demonstrate that our method for brain extraction outperforms two commonly used and publicly 
available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, 
based on dice coefficient (median 0.95; inter-quartile range 0.94-0.95) and Pearson correlation of total 
brain volume (r=0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study 
(N=2783) and identify a decrease in total brain volume of -2.4cc/year. Additionally, we show that the 
resulting total brain volumes can successfully be used for quality control of image preprocessing. 

Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm 
that delineates and distinguishes between different cerebrovascular pathologies. The learning method 
mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-
encoder. This enables successful computation of WMH volumes of 2,533 clinical AIS patients. We utilize 
these results to demonstrate the increase of WMH burden with age (0.950 cc/year) and show that single 
site estimates can be biased by the number of subjects recruited.  

Introduction 
White matter hyperintensity (WMH) burden is a clinically important and highly heritable cerebrovascular 
phenotype (Atwood et al., 2004; Debette and Markus, 2010). Utilizing magnetic resonance imaging (MRI), 
WMH can be readily identified on T2 fluid attenuated inverse recovery (FLAIR) images due to the increased 
contrast (DeCarli et al., 2005). FLAIR is a common MRI sequence used for clinical assessment in acute 
ischemic stroke (AIS) patients. Additionally, WMH burden has been linked to cerebrovascular disease 
outcomes (Wardlaw et al., 2013), especially in ischemic stroke (Smith, 2010), where the underlying genetic 
effects are still largely unknown (Giese et al., 2017). Manual or semi-automatic methods for delineating 
WMH are labor intensive and time consuming, making them impractical in large-scale studies. Fully 
automatic approaches are therefore necessary to enable genetic discovery based on image-derived 
phenotypes in large-scale studies. 

Recently, several groups have presented automatic algorithms to identify and differentiate WMH from 
other hyperintense signals on T2 MRI (Caligiuri et al., 2015; Dadar et al., 2017). Most algorithms are 
developed using research quality scans with isotropic, or close to isotropic, resolution. Additionally, these 
methods require significant (often multimodal) preprocessing of the images, such as brain extraction and 
spatial normalization to a template (Caligiuri et al., 2015), which is particularly challenging with clinically 
acquired data. When imaging patients hospitalized with acute stroke, isotropic sampling is infeasible as 
the increased acquisition time would interfere with demands of acute clinical care. The resulting images 
have high in-plane, but low through-plane resolution, due to large slice thickness and/or spacing between 
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slices. Subsequently, image analysis steps essential for automatic WMH delineation often fail, and 
therefore dedicated workflows (also called computational pipelines) are required to accommodate clinical 
images (Schirmer et al., 2017; Sridharan et al., 2014, 2013).  

Segmenting WMH in AIS populations is particularly challenging (Dalca et al., 2014), as the T2 hyperintense 
stroke lesion may also be visible on the FLAIR sequence, and are not separated from the underlying WMH 
burden by most algorithms. Therefore, manual or semi-automatic protocols have been used to segment 
WMH in AIS patients (Cloonan et al., 2015; Etherton et al., 2017). These approaches preclude large-scale 
analysis.  

In this work, we develop a high-throughput, fully automated WMH analysis pipeline for clinical grade 
FLAIR images, which promises to facilitate rapid phenotypic evaluation and demonstrate our pipeline in a 
large-scale multi-site study of AIS patients. The pipeline incorporates: (a) brain-extraction specifically 
designed for clinical FLAIR images, (b) intensity normalization to accommodate for multi-site 
heterogeneity, and (c) automatic atlas-based segmentation of WMH in the image. We introduce a new 
algorithm for brain extraction, utilize a mean-shift algorithm for intensity normalization, and build on 
previously demonstrated methods for WMH segmentation in stroke patients (Dalca et al., 2014). We 
validate the efficacy of this pipeline on a carefully curated validation image set and demonstrate the 
pipeline efficacy in a large multi-site study of AIS patients, where we analyze WMH volume (WMHv) 
associations with age in a cross-sectional AIS study cohort. 

Methods 
Neuroimaging data 
The MRI-GENetics Interface Exploration (MRI-GENIE) study is a large-scale, international, hospital-based 
collaborative study of AIS patients (Giese et al., 2017). Approval from the institutional review board or 
ethics committee was obtained by each site in line with their institutional guidelines. Informed consent 
was obtained for all patients by the individual sites. FLAIR scans of 2,781 patients from 12 sites (7 
European, 5 US based) were acquired over a period of more than eight years, ending 2011, as part of each 
hospital’s clinical AIS protocol. The axial FLAIR images have a mean resolution of 0.7mm in-plane 
(minimum: 0.4mm, maximum: 1.9mm) and 6.3mm through-plane (minimum: 1.0mm, maximum: 
65.0mm). Additionally, basic demographics, such as age and sex, are available for all subjects in the study. 
Table A. summarizes the MRI-GENIE data set used in our experiments. 

Validation set 
For each acquisition site, we selected 12 subjects approximately spanning the range of WMH volume 
based on qualitative assessment, forming a validation image set (N=144, Table A.1). For each subject in 
the validation set, the brain and WMH were segmented manually. ‘Manual’ outlines were performed 
based on a semi-automated method with high inter-rater reliability (Chen et al., 2006; Gurol et al., 2006), 
after undergoing a structured training protocol for WMH segmentation, which demands a high inter-rater 
agreement (Intra-class Correlation Coefficient (ICC) of 0.92). Here, a single rater (K.D.) who passed the 
training protocol and with over 2 years of experience has completed the WMH segmentation. We use 
these segmentations for quantitative evaluation of automatic analysis steps. Table A. also summarizes the 
validation set. Methods are developed without access to the validation set, which is only used once the 
development concluded in order to demonstrate/validate the efficacy of the developed methods in 
previously unseen data. 
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Pipeline Overview 
Each image undergoes brain extraction and intensity normalization, followed by the WMH segmentation. 
The WMH segmentation algorithm identifies white matter disease using atlas-based prior models for 
spatial distribution of WMH and local intensities in the image (Dalca et al., 2014). We perform the 
necessary spatial normalization to an age-appropriate FLAIR template via the affine registration 
implementation in the ANTs software package (Avants et al., 2011). Figure 1 presents an overview of the 
fully automatic analysis pipeline for WMH segmentation in clinical FLAIR images. Implementation was 
based on a large-scale processing infrastructure to enable processing of thousands of scans within parallel 
deployment systems (Sridharan et al., 2013).  

 

Figure 1: Overview of the analysis pipeline for extracting WMH in clinically acquired FLAIR images. 
Each input image first undergoes brain extraction, followed by intensity normalization. Images 
are spatially normalized, i.e. upsampled and affinely registered to an atlas, in order to allow for 
WMH segmentation with spatial priors.  

 

Brain extraction 
We develop a brain extraction method for clinical FLAIR scans (Neuron-BE) that employs a 2D U-Net 
convolutional neural network architecture1 (see schematic in Figure 2). We first roughly normalize the 
intensities of each image, so that the 97th percentile of the image intensities is scaled to 1 and pad the 
image so that the in-plane resolution is a multiple of 16. The architecture contains five downsampling 
levels and five upsampling levels. Down-/up-sampling is achieved using 2x2 maxpool/upsample 
operations. Each level contains two convolution layers with 128 features per layer. To optimize the 
network parameters, we use the Adadelta stochastic optimizer (Zeiler, 2012) with mini-batches of size 16. 
For each batch, we augment the data to mimic the observed conditions in clinical data. The augmentation 
includes random intensity scaling (contrast factor between 0.7 - 1.3), random ghosting effects (at most 3 
“copies” of the brain), as well as additive Gaussian and Perlin noise (standard deviations of 0.4 and 0.5, 
respectively). We learn the network parameters using a supervised training set of 69 subject scans for 
which we manually outlined the brain. These manual outlines include grey matter, white matter, and the 

                                                             
1 Neuron-BE is implemented by building on the open-source neuron library found at 
http://github.com/adalca/neuron (Dalca et al., 2018) 
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four ventricles, and were generated by tracing the outer boundary between grey matter and CSF. Given 
learned parameters, we apply our convolutional neural network to a subject’s FLAIR image. Additionally, 
we close holes in the resulting segmentation mask, and identify the largest connected component as the 
brain mask (Van der Walt et al., 2014). 

 

Figure 2: The Neuron-BE architecture, based on the UNet, contains five downsampling levels and 
five upsampling levels, achieved using 2x2 maxpool/upsample operations (blue arrows). Each 
level contains two convolution layers with 128 features per layer. To optimize the network 
(convolution) parameters, we use the Adadelta stochastic optimizer with mini-batches of size 
16.  

To assess the efficacy of the brain extraction on clinical scans, we compare results of Neuron-BE and two 
publicly available methods (ROBEX (Iglesias et al., 2011) and FSL BET (Smith, 2002)), within our validation 
set. For each resulting segmentation, we compute volume overlap (via Dice coefficient (Dice, 1945)) and 
correlation of total volumes estimates (via Person’s correlation coefficient and after outlier removal based 
on the modified z-score on the volume differences) between manually and automatically generated brain 
masks.  

Intensity normalization 
Tissue intensity values vary substantially across FLAIR scans. Intensity normalization is therefore useful for 
harmonization across scanners and imaging sites. However, WMH can lead to failure of traditional 
histogram normalization (Sridharan et al., 2013). Therefore, after brain extraction we use a mean-shift 
algorithm (Cheng, 1995) to determine the mode of intensity distribution that corresponds to the average 
white matter intensity in each scan (Sridharan et al., 2013). Brain extraction is an essential first step for 
intensity normalization, to ensure that “background” intensities, originating e.g. from the skull, eyes or 
neck, are not taken into account in the estimation of the mode. Image intensity values are rescaled, so 
that the mode maps to an intensity of 0.75.  

We assess intensity normalization using the validation set by using the intensity value estimated via the 
mean-shift algorithm and the corresponding full width half maximum (FWHM) of the peak in the intensity 
histogram of the total brain volume to mark potential white matter voxels. These outlines can be used to 
confirm visually that the majority of voxels in these masks correspond to white matter, enabling 
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qualitative visual assessment of the intensity normalization in each subject of the validation set. 
Additionally, we visually assess the cumulative white matter masks of the 144 subjects in template space 
after affine registration. 

Automatic WMH segmentation 
We build on the an existing automatic WMH segmentation algorithm (Dalca et al., 2014) to delineate and 
distinguish different cerebrovascular pathologies on brain MRI. The algorithm is derived from a generative 
probabilistic model that describes T2 FLAIR image intensities of WMH and stroke lesions. The model 
captures disease priors using a 2D convolutional auto-encoder that mimics experts’ knowledge of the 
spatial distribution of WMH (see schematic in Figure 3). The auto-encoder contains four sets of 
convolution layers, max-pooling and down-sampling layers, a dense layer to capture spatial covariance 
and create a fixed-length encoding, and four sets of convolution and up-sampling layers. It uses the ReLu 
activation function on all convolution layers. We optimize the parameters of the neural network using an 
independent set of manual WMH outlines (Zhang et al., 2015; 699/91/90 outlines used for 
training/validating/testing) via stochastic updates with the Adadelta optimizer (Zeiler, 2012).  

 

Figure 3: Architecture for automated WMH segmentation. The model first captures disease 
priors using a convolutional auto-encoder (top) that mimics experts’ knowledge of the spatial 
distribution of WMH. The auto-encoder contains four sets of convolution layers, max-pooling 
layers, a dense layer (black arrow) to capture spatial covariance and create a fixed-length 
encoding, and four sets of convolution and up-sampling layers. We use ReLu activation function 
on all convolution layers. The prediction network (bottom) uses this (fixed) prior by taking an 
input scan and projecting down to an encoding using a similar architecture as above with 
independent parameters, before using the prior decoder weights to yield a segmentation from 
this encoding.  
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In order to employ spatial priors, we interpolate each input scan using bi-cubic upsampling (Jones et al., 
2014) and register the upsampled image to age-appropriate FLAIR template (1mm3, dimensions: 182, 218, 
182 in x, y, and z; Schirmer et al., 2018) using affine alignment (Avants et al., 2011). We assess registration 
efficacy by calculating the Dice coefficient between each subject’s brain mask and the brain mask of the 
template. 

Additionally, we evaluate the efficacy of the automated WMHv quantification on the validation data set 
using Pearson’s correlation coefficient and the ICC as measures of agreement with manual segmentations. 
Furthermore, we assess the residuals (variations of the automatically estimated WMHv from the manual) 
for trends based on the age and sex phenotypes.  

 

Quality control (QC) in the MRI-GENIE image set 
As a first step of QC, we determine outliers based on both the in-plane and through-plane resolution for 
all scans using the modified z-score with a threshold of 3.5 ( Iglewicz and Hoaglin, 1993). Additionally, we 
flag scans with low slice numbers (≤3). The detected potential outliers are flagged for visual evaluation, 
where the user can determine if they represent valid data or if they should be excluded from subsequent 
analyses. 

After brain extraction, we detect and eliminate potential outliers by examining the modified z-scores 
computed on total brain volume based on the extracted brain masks. Here, total brain volume is defined 
as grey matter, white matter, and the four ventricles. In addition to the site-based modified z-score 
(threshold 3.5), we model brain volume changes with age as 

y = 𝑚 ∗ age + 𝑏,   (1) 

where y is the brain volume, and m and b	the	regression	parameters. Parameters are estimated using 
the Python package numpy (Ascher et al., 1999). We use this model and the standard deviation of its 
residuals, to determine age-based outliers. Outliers are defined as brain volumes more than two standard 
deviations away from the model estimate. Similar to the initial QC step with respect to the image 
resolution, we flag subjects for manual QC, which helps detect potential erroneous WMH segmentations 
due to incomplete brain extraction. Finally, after processing the remaining images, three raters randomly 
select two WMH outlines per site and qualitatively assess the quality of the resulting segmentations. 

WMHv analysis in MRI-GENIE image set 
We investigate the extracted WMHv for each individual site and compare them to the pooled data set, 
comprising all subjects of all sites, by computing the distributions of WMHv. In addition, we estimate the 
coefficient of change in WMHv with age for the pooled data set and investigate the effect of sample size. 
To do so, we model the association of the natural log-transformed WMHv as a linear function of age (see 
equation (1)). Additionally, we calculate uncertainty (standard deviation) of the determined coefficients 
of change for each site using a 10-fold split of the data for each site and a subsequent leave-one-fold-out 
approach. 
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Results 
Validation set 
We first characterize the distribution of volumes of WMH obtained from manual delineation in the 
validation set. Figure 4 (left) shows the histogram of WMHv across subjects (0.24-119.98 cc).  

 

Figure 4: WMHv in the validation set based on manual segmentations of WMH (144 subjects, 12 
per site). Left: Distribution of WMHv. Right: Comparison of left and right hemispheric WMHv 
(Wilcoxon: p<0.05). 

 

Brain extraction 
Figure 5 shows the volume overlap between the automatically extracted brain mask and the manual brain 
segmentation for ROBEX (Iglesias et al., 2011), BET (Smith, 2002) and Neuron-BE on the validation set 
scans.  

 

Figure 5: Volume overlap distributions between the automatically extracted brain mask and a 
manual brain segmentation in the validation set for ROBEX, FSL BET and Neuron-BE. 
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Comparisons between methods are based on paired t-tests. Median Dice coefficient were 0.92, 
0.92 and 0.95 for ROBEX, FSL BET and Neuron-BE, respectively.  

 

Median volume overlap (inter-quartile range (IQR)), as measured by the Dice coefficient, was 0.92 (0.94-
0.89), 0.92 (0.94-0.89) and 0.95 (0.95-0.94) for ROBEX, BET and Neuron-BE, respectively. We remove 
outliers using the modified z-score on the volume difference between total volume estimates obtained 
from automatic segmentations and those extracted from manual segmentations (3, 8 and 14 subjects for 
Neuron-BE, ROBEX and FSL BET). Correlations were subsequently estimated to be 0.94, 0.80 and 0.75 for 
Neuron-BE, ROBEX and FSL BET (p<0.01 for all correlations), respectively.  

Neuron-BE also helps us identify outliers with substantial imaging artefacts. We find two gross outliers in 
the brain extraction using Neuron-BE due to motion and ghosting effects. Severe motion corruption or 
ghosting effects can prevent accurate WMH segmentation. We therefore flag these scans as potentially 
problematic for WMH segmentation. Computing z-scores for outlier detection identifies both of these 
scans as outliers in the case of NEURON-BE, but not for ROBEX or FSL BET. Upon visual inspection, the 
remainder of the scans did not show any motion corruption or ghosting artefacts.  

Overall, our results demonstrate that Neuron-BE offers a more appropriate approach to brain extraction 
than popular publicly available methods. For the remainder of the analysis we use Neuron-BE and 
incorporate a quality control step based on brain volume. This enables us to obtain accurate brain 
extraction results on clinical data while being able to remove images where resulting WMH segmentations 
are ill-defined due to image quality. 

Intensity normalization 
Figure 6 (a) shows an example of the estimated white matter intensity using the mean shift algorithm, 
and full-width-half-maximum (FWHM) of the distribution peak. The resulting “white matter mask” is 
shown in Figure 4 (b). Finally, Figure 4 (c) shows the cumulative white matter mask in atlas space.  

 

Figure 6: a: Example intensity distribution for one subject with the estimated mean white matter 
intensity (solid yellow line) and full width half maximum (FWHM; dashed lines). b: Axial slice of 
the corresponding FLAIR image. Voxels whose image intensity is equal to the estimated mean 
white matter intensity are shown in yellow; voxels whose image intensity falls into FWHM range 
are shown in purple. c: Cumulative white matter mask in atlas space for all 144 subjects. 
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Visual inspection of the white matter masks on all 144 subjects of the validation set and the cumulative 
white matter mask suggest that the average white matter intensity estimates are accurate and can be 
used to normalize image intensity across sites. We normalize each subject’s FLAIR image intensities, by 
scaling the intensity distribution so that the mean white matter intensity equals 0.75. 

Automatic WMH segmentation 
We spatial normalize the clinical scans by first upsampling each scan, and affinely registering the result 
image to the FLAIR atlas. The Dice coefficient of the brain masks of each affinely registered subject scan 
compared to the brain mask of the template were 0.93±0.01 (mean ± standard deviation). We apply the 
automatic WMH segmentation algorithm to each affinely registered scan. Figure 7 shows the comparsion 
of WMHv (ICC=0.84, Pearson r = 0.86 with p<0.001) between manual and automatic outlines (left), as well 
as the residuals (right), for the validation set.  

 

Figure 7: Evaluation of automated and manual WMHv (natural log-transformed). Left: Scatter-
plot between automatically and manually determined WMHv (Pearson r = 0.86). The solid line 
indicates where the automated volume equals the manual volume. Right: Histogram of residuals. 

 

When assessing the residuals of the volume comparison between manual and automated volumes with 
respect to biases due to differences in age and sex, we did not find any trends in the data. These results 
suggest that the algorithm can accurately segment WMH in clinical data, facilitating WMH analysis in the 
entire MRI-GENIE data set. 

Quality control in the MRI-GENIE image set 
In total 107 scans (4% of the data) are identified as potential outliers based on assessment of the modified 
z-score (in- and through-plane resolutions) and those with low slice numbers. Visual inspection identifies 
10 incorrectly flagged scans. The remaining 97 scans had a low number of slices (≤3), were different 
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sequences (such as MR angiography, DWI or T1), or included large motion artifacts. These 97 scans (3% of 
the data) were excluded, leaving 2684 scans for the remaining analysis. 

The QC of the automatic analysis pipeline identified potentially erroneous segmentation based on brain 
extraction. We identified 32 (1%) scans as potential outliers, based on the modified z-score assessment 
for each site. Further investigation revealed that 3 scans (9% of outliers) were considered outliers due to 
large motion artefacts, which resulted in removal of large areas of the brain during brain extraction. The 
majority (n=26; 81% of outliers) were images with a different slice direction (25 coronal scans and 1 
sagittal scan). Other problems included wrong acquisition contrast or small brain extraction errors, where 
parts of the skull and/or eyes were included in the brain mask.  

Model (1) of the association of brain volume with age yielded an estimated slope of -2.4 cc/year and an 
offset of 1,630.8 cc using linear regression. The standard deviation of the residual was 167.5 cc. Figure 8 
reports the extracted brain volumes for all subjects, the association of brain volume with age, including 
two standard deviation for outlier detection. The assessment of how many subjects fall outside the two 
standard deviations resulted in 163 (6%) flagged subjects. 

 

Figure 8: Association of brain volume with age, estimated using automated brain extraction via 
Neuron-BE for each subject. The solid black line is the estimated linear trend in brain volume with 
age. Dashed lines represent 2 standard deviation differences from the linear trend, used for outlier 
(red) detection. 

All previously identified outliers in the per-site analysis were also included in this set. Manual assessment 
of the flagged images showed that 8 (5%) of these scans present with large motion artefacts and 62 (38%) 
of scans showed small errors, such as incomplete brain extraction. Of all flagged subjects, 10 (6%) were 
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unnecessarily labelled as outliers. The remaining 83 (51%) of scans have wrong acquisition direction (axial 
requested, sagittal (3; 2%) and coronal (72; 44%) provided, resulting in insufficient stripping of the neck) 
and other issues (8; 5%). Figure 9 reports site-specific distributions of the estimated brain volume for each 
imaging site in the study and indicates the flagged images using the site-based and age-based outlier 
detection. 

 

Figure 9: Site-specific distribution of the estimated total brain volume. Red and purple indicate 
outliers detected using a site-specific and age-based outlier detection, respectively. All site-
specific outliers were also identified by the age-based method. 

 

Overall, 250 subjects (9% of the data) were deemed to be outliers and removed from the analysis. The 
remaining 2,533 subjects (91% of the data) were used to extract WMHv for analysis. As the last QC step, 
three experts selected two subjects per site at random to sample and manually assess the quality 
automated WMH outlines. Visual assessment by the raters suggests good agreement of what they would 
expect to be outlined in these scans.  

WMHv analysis in MRI-GENIE image set 
Figure 10 shows the distribution of WMH for each site, in comparison to the global WMH distribution. All 
sites follow similar trends compared to the pooled WMHv distribution. 
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Figure 10: WMHv distributions per individual MRI-GENIE sites (blue histogram), as well as 
distribution of the combined 12 sites (red line). 

 

Figure 11 shows the age-dependent association of the WMHv in the MRI-GENIE cohort, as well as each 
individual site. Linear regression results in an estimated slope of 0.051 ln(cc)/year, corresponding to an 
increase of 0.950 cc/year. We find higher deviation from the pooled estimate for sites with less subjects. 
Table 1 summarizes the results stratified by site.   

 
Figure 11: Association of WMHv with age. Left: Regression of log-transformed pooled WMHv from 
all sites. Right: Association of WMHv against the number of subjects per site. Error bars for each 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/552844doi: bioRxiv preprint 

https://doi.org/10.1101/552844
http://creativecommons.org/licenses/by/4.0/


site are computed using a 10-fold split of the data for each site and using a leave-one-fold-out 
approach to estimate the standard deviations of the coefficient of change. The solid blue bar 
represents the estimate and standard deviation using all subjects. 

 

Table 1: Summary of quantitative results in this study with the cohort as a whole and stratified 
by site. N is the number of subjects remaining after QC in relation to initial number of subjects 
(Ntotal). The corresponding characteristics (mean ± standard deviation) include age, brain 
volume, WMHv and association of WMHv with age, characterized by parameter m in equation 
(1).  

Site N/Ntotal Age (years) Brain volume 
(cc) ln(WMHv (cc)) Association 

ln(WMHv (cc)) ~ age (years) 

All 2533 63.38±14.58 1471.65±150.86 1.66±1.35 0.051±0.001 

01 335/351 64.85±15.00 1465.38±139.58 1.84±1.27 0.047±0.002 

02 150/202 65.21±13.49 1444.81±144.42 2.06±1.25 0.051±0.002 

03 448/452 65.06±14.36 1471.24±151.98 1.70±1.30 0.051±0.001 

04 241/253 61.78±13.82 1451.94±144.94 1.85±1.12 0.038±0.001 

05 59/61 42.59±5.80 1451.94±144.94 0.45±1.09 0.065±0.007 

06 110/120 70.15±11.10 1512.19±139.58 2.30±1.13 0.042±0.003 

07 60/64 64.60±15.71 1463.68±153.96 1.56±1.91 0.081±0.002 

08 208/289 63.89±12.91 1439.15±140.96 1.69±1.33 0.049±0.002 

09 159/188 52.28±11.68 1514.68±142.48 0.81±1.54 0.071±0.002 

10 202/210 60.43±13.63 1420.39±131.28 1.55±1.24 0.052±0.002 

11 127/148 62.71±13.01 1523.09±157.05 1.62±1.31 0.047±0.003 

12 434/445 67.12±14.45 1483.62±152.30 1.62±1.33 0.048±0.001 

 

Discussion 
Automatic WMH segmentation and WMHv quantification in clinical populations is crucial for elucidating 
mechanisms, biomarkers and genetic effects in complex diseases such as stroke. In this work, we 
developed, validated, and implemented a fully automatic pipeline for segmenting WMH in clinical FLAIR 
images of AIS patients admitted to the hospital. We applied the pipeline to a large-scale international 
multi-site clinical dataset and investigated associations of WMHv with age. 
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We assessed the efficacy of the presented pipeline in a validation set of 144 images. WMHv computed 
from automatic segmentations shows good agreement with that estimated from manual segmentations 
(ICC=0.84; Pearson r=0.86). We find a larger disagreement in scans with higher WMH burden. Visual 
assessment revealed that the automatic WMH segmentation appears to undersegment in these cases. A 
likely reason is an underrepresentation of subjects with high WMH burden in the training set of the 
algorithm. In the 2,533 subjects that passed QC, fewer than 9% of WMHv were estimated to be above 
20cc. Future work may include augmenting training of the automatic WMH segmentation by including 
more of the high-burden WMH cases.  

A key contribution of this paper is the preprocessing steps of the analysis pipeline and QC of clinical 
images. We presented a deep-learning based brain extraction algorithm, which outperforms two of the 
commonly used and publicly available methods. Outliers due to extreme motion/ghosting artefacts can 
be identified in the results of our method, enabling this as a QC step of preprocessing and the overall scan 
quality in large clinical cohorts. We presented two methods of using the estimated brain volumes for QC, 
where the estimation of age-dependent total brain volume in our cohort demonstrated to be a more 
rigorous QC criterion compared to site-based modified z-score estimates. We flagged scans as potential 
erroneous results in the preprocessing, and performed manual assessment. Future improvements in brain 
extraction could include allowing for both sagittal and coronal scans as inputs, as well as accounting for 
motion artefacts. However, as WMH burden is clinically best appreciated on axial slices, this might not be 
beneficial for assessment of WMHv. 

We used an intensity normalization step, which is particularly important when working with data acquired 
across various sites and time, and necessary for intra-site analyses. We showed its efficacy on our 
validation set where average intensities of white matter were successfully normalized to the same value 
across subjects and sites.  

Applying our pipeline to a large clinical multi-site cohort, we extracted WMHv automatically from 2,533 
subjects. Random sampling and assessment of WMH outlines showed good results when assessed by 
expert raters. Additionally, the WMHv showed expected, approximately exponential distributions for each 
site. By assessing changes of WMHv with age in this cross-sectional setting, we observe a general WMHv 
increase with age. Investigating the estimates on a per-site basis, we see higher deviations from the 
pooled result in sites with lower number of subjects. In future studies, these sites may benefit from being 
combined to form bigger cohorts, in order to obtain more appropriate representation of the disease 
burden. 

There are several assumptions of this pipeline that merit further consideration. First, it assumes consistent 
(axial) imaging across the image set. While WMH is best appreciated on these images, occasionally scans 
are acquired in the sagittal or coronal directions. Future developments to allow other acquisition 
directions could help recover these images, although studies employing sagittal or coronal imaging 
directions have to carefully account for the subsequent uncertainties in WMHv. Second, we employ affine 
rather than deformable spatial normalization. While our results show good agreement with manual 
outlines, deformable registration may further improve the efficacy of spatial atlas-based priors. Non-linear 
registration of clinical images, however, is a difficult problem due to the low image quality (Sridharan et 
al., 2013), potentially leading to gross registration errors, as well as increased computational cost. Third, 
the main goal of this study was to automate volumetric analysis of WMHv in hospital cohorts of stroke 
patients. While we focused on the evaluation of accuracy with respect to volumes using the Pearson 
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correlation coefficient, other study may want to utilize the segmentations directly. There are multiple 
metrics for evaluating the agreement between automated and manual segmentation (Taha and Hanbury, 
2015; Wack et al., 2012), including the outline error rate (OER) or the detection error rate (DER); however 
no consensus has been reached as to which best describes the performance of algorithm. Importantly, 
the upper bound as to how good an algorithm performs is given by the inter-rater reliability between 
expert raters. In this study our rater passed the training with an ICC of 0.92, however, due to high effort 
intensity of manual outlines, we only had segmentations of one expert rater for comparison and could 
therefore not estimate this upper bound (outline error rate (OER(median (IQR)): 1.00 (0.78-1.22)); 
DER(median (IQR)): 0.18 (0.05-0.62)).  

The strengths of the presented methodology include: (a) the utilization of a large, multi-site, hospital-
based cohort of AIS patients with clinical imaging data, as it is acquired in the emergency room; (b) a novel, 
brain extraction tool for clinical grade FLAIR images based on Unet architecture; (d) the incorporation of 
simple, automated QC steps for large scale image processing; (d) the adaptation and evaluation of a  WMH 
segmentation algorithm, also based on Unet architecture, specifically designed for hospital-based imaging 
of AIS patients; and (e) the estimation and evaluation of the association between WMHv and age in over 
2500 AIS patients, including an evaluation based on sample size per imaging site. 

In conclusion, the presented WMH segmentation pipeline was demonstrated on highly heterogeneous 
large-scale multi-site data. We applied it to the MRI-GENIE study to demonstrate that its applicability to 
real-world clinical data, specifically in the acute stroke phase in the hospital. Our method shows promise 
for future studies that utilize the vast and often under-utilized clinical data to aid phenotypic studies. The 
resulting phenotypes are not affected by inter-rater variability, which may help reduce variability in 
follow-up studies, helping to determine additional risk factors for stroke patients.  Large studies of WMHv 
can, for example, elucidate genetic influences, as well as WMH pattern relating to various diseases and 
phenotypic variables. This work will enable new avenues of research and help advance current knowledge 
of risks and outcomes in AIS patients. 
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APPENDIX 
 

Table A.1: MRI-GENIE patient cohort. Statistically significant group differences between sites were 
assessed using ANOVA (age) and c2 tests (sex and prior stroke). All tests between the individual 
sites were found to be significant (p<0.001). For the validation set only prior stroke was found to 
be statistically significant (p<0.01), when compared to the remainder of all subjects. 

Site  N Mean (sd) age Sex (% male) % prior stroke 
All 2783 63.28 (14.70) 61.0  10.6 
01  351 65.32 (15.07) 61.3  0 
02 202 64.59 (14.44) 48.5  28.7 
03 452 64.89 (14.48) 64.4  14.5 
04 253 61.98 (13.83) 62.1 12.6 
05 61 42.08 (6.59) 78.7  0 
06 120 70.05 (10.93) 62.5  17.6 
07 64 64.23 (16.12) 53.1  25 
08 289 63.58 (13.41) 72.0  19.7 
09 188 52.38 (11.58) 60.1  9.6 
10 210 60.54 (13.85) 52.4  9.5 
11 148 62.71 (13.09) 60.8 0 
12 445 67.02 (14.63) 58.2 1.8 

Validation set 144 62.01 (16.85) 59.7 18.2 
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