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SUPPORTING INFORMATION APPENDIX A3 

 

Fitting species distribution and abundance 

models with eBird data 

 

In this section we describe some of the more 

complex aspects of fitting the species distribution 

and relative abundance models with eBird data; 

class imbalance, model validation, and defining the 

repeated visits for occupancy models. The R code 

used for data processing and model fitting is 

available in supporting information A4 (best practice 

bookdown document with descriptions of the 

models) and supporting information A5 (code used 

to produce the figures in this paper, including the 

deficient versions of models). This appendix is 

designed to accompany the main paper, so does not 

repeat information in the main manuscript and is not 

a stand-alone document.  

 

Class imbalance 

Class imbalance in citizen science data can be 

substantial, with a high proportion of checklists not 

reporting a species. This is particularly marked for 

species that are difficult to detect. Thus, looking for, 

and ameliorating the effects of class imbalance, 

should be standard practice when preparing to fit 

models to eBird data. The steps in this process are 

firstly to determine the ratio of detection checklists to 

non-detection checklists for your species of interest. 

The general rule of thumb used for eBird data is that 

a data set with fewer than 25% of its checklists 

containing a detection for the species of interest 

should be treated as an imbalanced data set.  

 

There are many methods for dealing with 

unbalanced data. When using a random forest (as 

we do in the ‘encounter probability’ model), it is 

possible to use balanced random forest, where the 

model draws its bootstrap samples from each class 

separately, drawing first from the minority class, then 

drawing an equal number from the majority class 

(Chen et al. 2004). Another method is weighted 

random forest, where the model assigns a harsher 

penalty to misclassification of the minority class than 

it does to the majority class. It is also possible to 

address class imbalance via a sampling routine 

before the modelling. It is possible to use 

oversampling (by creating duplicated examples of 

the minority class), or undersampling (by randomly 

removing observations from the majority class) to 

create a more balanced dataset. Both techniques 

are often used together. One specific oversampling 

technique, synthetic minority oversampling 

technique (SMOTE) creates synthetic examples 

from the minority class. This creates synthetic 

examples that occupy the parameter space between 

randomly chosen observations and their nearest 

neighbors so that the added observations are not 

direct copies (Chawla, Bowyer, Hall, & Kegelmeyer, 

2002).  

 

When using eBird data it is also important to 

consider the spatial bias when over- or 

undersampling to address class imbalance. 

Undersampling eBird checklists may exacerbate the 

spatial bias in the dataset. However, spatial 

sampling can be combined with undersampling, and 

this method was shown to be very useful for eBird 

data (Robinson, Ruiz-Gutierrez, & Fink, 2018). This 

method targets a particular species and splits the 

data into two subsets; 1) checklists with species 

detections; and 2) checklists with non-detections for 

a given species. The non-detection dataset 2 is then 

spatially filtered to address the spatial bias (see 

Supporting Information A2), and the filtered dataset 

is combined with the complete detection dataset 1. 

The result is a spatially undersampled data set 

where the degree of class imbalance is mitigated. 

This method works well for species with a very low 

proportion of detections, as the spatial bias 

maintained by not spatially filtering the detection 

observations is minimal. It is also possible to 

spatially filter both datasets before recombining the 
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filtered data sets. This method will likely work best 

for species where the class imbalance is less drastic 

as the example in Robinson et al. (2018). This 

approach of spatially subsampling both the 

detections and non-detections was the method used 

in this study.  

 

 

Model Validation 

In order to assess the impacts of different practices 

on the accuracy of encounter-rate and relative-

abundance models we used cross validation. We 

fitted our models the 80% training data, and then 

validated the models with the remaining 20% test 

data. We will describe the rationale for two aspects 

of our cross-validation procedure below. 

 

Firstly, for our assessments we wanted to evaluate 

models based on their ability to produce accurate 

predictions across the entire spatial extent of our 

study region. For this purpose, it is appropriate to 

create a spatially balanced set of test data that 

evenly represents all study region.  We 

approximated this type of even spatial 

representation by randomly selecting our test data 

after filtering the input data in order to correct for 

spatial bias. Other processes for creating the test 

data set would be appropriate if our objectives were 

different (Valavi, Elith, Lahoz-Monfort, & Guillera-

Arroita, 2018). Given the uneven spatial distribution 

of eBird data, we recommends that a purely random 

selection of data for the test set in cross validation 

would be unwise. 

 

Secondly, we do not have a single criterion (e.g., 

accurate prediction of non-zero values, accurate 

prediction of rank order of observed values) with 

which we want to judge the predictive performance 

of models. Instead, we want to assess the all-round 

predictive performance of models; i.e. we want to 

assess whether the extent to which any and all types 

of weaknesses exist. Given this objective, we have 

used multiple performance metrics, each of which 

emphasizes a different facet of model accuracy. We 

used a set of performance metrics available in the R 

packages PresenceAbsence (Freeman & Moisen, 

2008) and verification (NCAR Research Applications 

Laboratory, 2015). 

 

Occupancy models, due to their nature as two linked 

logistic regressions (describing detection and 

occupancy processes), are problematic for cross 

validation, and no generally accepted method 

currently exists. As such, we have not assessed the 

predictive performance of occupancy models in this 

paper.  

 

 

Estimating species occupancy 

The initial stages of preparing data for occupancy 

modelling were the same as those described for 

modelling of encounter rates in the main paper. The 

data from each checklist were converted into binary 

detection/non-detection data during the process of 

creating zero-filled data, using the R package auk. 

 

The next step in formatting data was to group our 

data into series of repeated count, with each series 

representing the data from a single ‘site’ that was 

repeatedly visited. We defined each site as being a 

combination of geographic point and observer 

(locality_id and observer_id; see Table A1). One 

other option would have been to allow multiple 

observers’ data from the same geographic point to 

be combined into a single time set; however, in most 

cases all data from a locality still would have been 

from the same observer, so we opted for the most 

conservative approach of defining sites of 

combinations of geographic point and observer. The 

inclusion of the checklist_calibration_index (Table 

A1) as a site-level predictor in our models enabled 

much of the observer-linked variation in detection 

rates to be statistically removed, so that effectively 

the remaining site-level variation represented 

variation in the environments among geographic 

points. A second alternative definition for ‘site’ would 

have been to create a spatial grid across study 

region, and treat all checklists within a grid cell as 

replicate counts. However, this space-for-time 

substitution is not universally appropriate (Kendall & 

White, 2009), and thus we chose not to have to deal 

with this added interpretational complexity. 

 

The definition of which checklists can be used to 

form series of repeated visits to a site requires an 

explicit definition of a period of closure during which 
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occurrence at a site does not change (i.e. the 

species is either always present or always absent). 

Prior knowledge indicates that the month of June 

represents a period of time after spring migration, 

and during the period of time during which Wood 

Thrushes are nesting. Thus, we defined the period 

of closure to be the entire month of June.  

 

A final aspect of defining the time period of closure 

is the decision of how to deal with the existence of 

multiple years’ observations within our data. We 

treated each calendar year as a separate temporal 

entity, because we could not assume that sites 

occupied in one calendar year would also be 

occupied in other years. Within each site and 

calendar year we only retained data if a site-year 

combination had data from at least two repeated 

visits. Where there were more than 10 visits, we 

randomly selected 10 of these. We also allowed 

separate years’ data from the same site to appear in 

the data set (a process sometimes referred to as 

“stacking”). The R package auk was used to convert 

the input data from their original format into a form in 

which each series of observations from a site and 

year are treated as a separate row of data, using the 

auk function format_unmarked_occu.  

 

Next we spatially subsampled the data that had been 

formatted for occupancy modelling as described in 

the previous paragraph, in order to create a final 

data set in which the density of data was distributed 

relatively evenly across the study region. We 

retained only a single randomly-chosen ‘site’ (i.e. a 

set of observations from a single location, observer 

and calendar year) within each 5 km hexagonal grid 

cell, with grid cells created as described in 

Estimating species encounter rate.  
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