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Summary

Neuronal activity in the brain is variable, yet both perception and
behavior are generally reliable. How does the brain achieve this? Here,
we show that the conjunctive coding of multiple stimulus features,
commonly known as nonlinear mixed selectivity, may be used by the
brain to support reliable information transmission using unreliable
neurons. Nonlinear mixed selectivity (NMS) has been observed widely
across the brain, from primary sensory to decision-making to motor
areas. Representations of stimulus features are nearly always mixed
together, rather than represented separately or with only additive (lin-
ear) mixing, as in pure selectivity. NMS has been previously shown to
support flexible linear decoding for complex behavioral tasks. Here,
we show that NMS has another important benefit: it requires as little
as half the metabolic energy required by pure selectivity to achieve
the same level of transmission reliability. This benefit holds for sen-
sory, motor, and more abstract, cognitive representations. Further, we
show experimental evidence that NMS exists in the brain even when
it does not enable behaviorally useful linear decoding. This suggests
that NMS may be a general coding scheme exploited by the brain for
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reliable and efficient neural computation.

Keywords: neural coding, reliability, efficiency, nonlinear mixed selectivity,
conjunctive coding

Introduction

To support behavior, the brain must use a communication strategy that
transmits information about the world faithfully, efficiently, and, perhaps
most of all, reliably. The first two of these goals have received extensive at-
tention in neuroscience, particularly in the literature on efficient coding and
redundancy reduction[1]. Efficient coding focuses on discovering the response
field (RF) for a single neuron that simultaneously maximizes the amount of
stimulus information transmitted by the neuron while minimizing the num-
ber of spikes that the neuron must fire[1]. A crucial step to this process is
representing stimuli without any of the redundancy inherent to the natural
world – that is, by isolating and representing the independent components
of natural stimuli[2]. Refinements of efficient coding[3] have also emphasized
the need for the representation of these components to be neatly packaged, or
formatted, so that they are accessible to decoding (as with nonlinear mixed
selectivity[4]) and facilitate generalization[5]. As a whole, the ideas of effi-
cient coding have been used to accurately predict the structure of RFs in
primary visual cortex[6, 7], and other sensory systems[8–10]. However, effi-
cient coding, redundancy reduction, and neat packaging all address only the
goals of faithful representation and metabolic efficiency. They do not guar-
antee that these transmissions will be reliable when corrupted by the noise
that is inherent to single neuron responses[11, 12]. In fact, non-redundant
representations are often highly vulnerable to noise[13].

Making efficient representations robust to the noise present throughout the
neural system – and satisfying the final goal, transmission reliability – has
received considerably less attention in neuroscience. In information theory,
noise robustness is the goal of channel coding, which re-codes efficient stim-
ulus representations to include redundancy that is specifically useful for im-
proving transmission reliability. Recent work has shown that grid cell RFs[14]
and the working memory system[15] may implement near-optimal channel
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codes. In sensory systems, channel coding has been explored more obliquely.
Extensive work has focused on deriving RF properties that maximize mutual
information between the stimulus and the response[16] or the Fisher infor-
mation from the response function[17–19] (and see [20, 21] for connections
between these approaches). However, neither of these measures has a direct
connection to decoder performance: mutual information is linked via the rate-
distortion bound[22], but high mutual information does not guarantee good
decoder performance in general[23] (and see Figure 2C); Fisher information is
linked via the Cramer-Rao bound, but saturation of this bound is only guar-
anteed in low-noise conditions[24] (and codes with less Fisher information
can outperform codes with more Fisher information when optimal decoding
cannot achieve the bound[25]). There is neural and behavioral[26] evidence
that the brain computes successfully on short (e.g., ∼80 ms) timescales and
spiking responses have been shown to be highly variable on that timescale[26],
thus it is unlikely that the brain typically operates in a low-noise regime.

Here, we analyze an ubiquitous coding strategy in the brain – conjunctive
coding for multiple stimulus features – in terms of both its reliability and
efficiency. Previous work on conjunctive coding (commonly called nonlin-
ear mixed selectivity[4, 27]) has shown that it produces a neatly packaged
and sparse representation that enables the use of simple linear decoders for
complex cognitive tasks[4], particularly in the macaque prefrontal cortex[27].
Further, random conjunctive coding has been shown to increase the number
of discrete stimuli that can be reliably represented in a neural population[28,
29]; however, a detailed analysis of how the error rate of these codes depends
on metabolic cost was not performed. In our work, we develop a novel gen-
eralization of nonlinear mixed selectivity (NMS), allowing different levels of
mixing between stimulus features while preserving full coverage of the stimu-
lus space (see Definition of the codes in Methods). Using these codes, we show
that the encoding of stimuli with at least some level of NMS almost always
produces more reliable and efficient communication than without NMS. Fur-
ther, we demonstrate novel tradeoffs between codes with and without NMS –
including an analysis of how RF size and error-type affect the optimal level of
NMS. Finally, we link our work to experimental data by showing that NMS
is implemented in the brain when it could support reliable readout without
playing a role in the linear decoding of stimulus features. Our work illus-
trates that NMS provides highly general benefits to coding reliability and
efficiency, and helps to explain the ubiquity of NMS within sensory[30–35],
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frontal[4, 27], and motor cortices[36–38].

Results

Increased mixing increases stimulus discriminability

In the brain, stimulus representations are corrupted by noise as they are
transmitted between different neural populations. This process can be for-
malized as transmission down a noisy channel (Figure 1A). The reliability
and efficiency of these transmissions depends on the format of the encoded
representations – here, we show how three different properties of this rep-
resentation are affected by NMS, and how those properties interact with
transmission reliability and efficiency. The three properties of neural rep-
resentations that we focus on are: minimum distance, neural population
size, and metabolic representation energy (Figure 1B and Code properties in
Methods). Minimum distance is the distance between representations of two
stimuli that are most difficult to discriminate. Importantly, half the mini-
mum distance represents the smallest magnitude of noise that could cause
a decoding error given optimal decoding. A larger minimum distance typi-
cally implies a lower overall probability of error (see Union bound estimate
in Methods), even for non-optimal decoding. Population size is the minimum
number of independent coding units, or neurons, required to implement the
code such that all possible stimuli have a unique response pattern. Repre-
sentation energy is the metabolic energy consumed by a stimulus response
in the code, defined as the square of the distance between the zero-activity
state and all the response patterns in the code – here, representation energy
can be viewed as the squared spike rate in response to a particular stimulus
summed across the population of neurons used by the code (though we also
consider the sum spike rate, see Figure S1). In the codes we consider here,
all of our stimuli evoke the same summed spike rate across the population,
and therefore have the same representation energy. Representation energy
represents the active, metabolic cost of the code (in terms of the cost of
emitting spikes), while population size represents the passive metabolic cost
of the code (in terms of neuronal maintenance costs across the population,
spiking or not). We begin by considering representation energy alone before
considering both together.
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The stimuli represented by our codes are described byK independent features
that each take one of n discrete values with equal probability (Figure 1C and
see Definition of the stimuli in Methods). As a simple example, one feature
could be shape, and two values for shape could be square or triangle; a second
feature could be color, and two values could be red or blue. In all, there are
nK possible stimuli. So, four stimuli in our example. Each of the stimuli are
equally likely. While we focus on discrete features, our core result is the same
with continuous features (see Error-reduction by NMS in the continuous case
in Supplemental Information).

To understand how NMS affects code reliability and efficiency, we compare
the performance of codes with different levels of conjunctive stimulus feature
mixing (i.e., different code orders; Figure 1D), following the definition of
NMS used previously in the literature[4, 27]. Neurons in a code of order O
respond to a particular combination of O feature values and do not respond
otherwise (Figure 1D and see Definition of the codes in Methods), and a
code has a neuron that responds to each possible combination of O different
stimulus feature values (see Code example in Methods for more details). In our
example, an order one (O = 1) code would have neurons that respond to each
shape regardless of color and each color regardless of shape while an order
two code (O = 2) would have neurons that respond to each combination
of shape and color – for instance, one neuron would respond only to red
squares, another only to blue squares, and so on. This example can map
onto the two features used in the illustration in Figure 1D, E. From this
construction, each stimulus will have a unique response pattern across the
population of neurons, but the population size will vary across code order.
In general, higher-order codes will have larger population sizes, but sparser
neural responses (i.e., a smaller percentage of neurons will respond to each
stimulus).

To test this intuition in general, we derive closed-form expressions for the
minimum distance (∆O), population size (DO), and representation energy
(PO) of our codes that depend on the number of features K, the number of
values each of those features can take on n, and the order of the code O (Fig-
ure 1F and Code properties in Methods). Using these expressions, we show
that the ratio between squared minimum distance ∆O and representation
energy PO is strictly increasing with order for all choices of K and n (see
Minimum distance-representation energy ratio in Methods and Figure 1G,
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left):

∆2
O

PO
= 2

O

K
(1)

This shows that, given the same amount of representation energy, codes with
more mixing produce stimulus encodings with strictly larger minimum sepa-
ration in the response space. This is suggested by their increased sparseness
(Figure 1G, right). While sparseness per se does not have a direct relation-
ship with code performance, increased sparseness indicates that the response
patterns used by an encoding scheme may (but do not necessarily) have less
overlap and therefore greater distance from each other in response space than
a denser representation. In our codes, the increase in sparseness produced
by an increase in code order does produce greater response separation (Fig-
ure 1E illustrates this effect). This increased separation provides a benefit
to decoding for many different noise distributions and decoders (including
linear and maximum likelihood decoders), and indicates that mixed codes
are likely to produce more reliable and efficient representations than pure
codes in a wide variety of conditions. However, to directly quantify trans-
mission reliability (i.e., the probability of a decoding error), we must include
the details of both the noise and the decoder (see Figure 1A and Full channel
details in Methods).
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Figure 1: Mixed codes produce more discriminable stimulus representations. A The
noisy channel model. A stimulus x is encoded by encoding function tO(x) of order O
then amplified by linear transform β before independent Gaussian-distributed noise with
variance σ2 is added in the channel. Next, a decoder produces an estimate x̂ of the
original stimulus. B We analyze the encoding function with respect to three important
code properties. The minimum distance ∆ = d12 is the smallest distance between any
pair of encoded stimuli (codewords), and half of that distance is the nearest border of
the Voronoi diagram (background shading). Thus, minimum distance can be used to
approximate the probability of decoding error. Representation energy P = r2 is the
square of the radius of the circle that all of the codewords lie on. All of the codewords lie
in a 2-dimensional plane, so the code has population size D = 2. C Stimuli are described
by K features Ci which each take on |Ci| = n values. All possible combinations of
feature values exist, so there are nK unique stimuli. D In pure selectivity (left), units in
the code, or neurons, respond to a particular value of one feature and are invariant to
changes in other features. In nonlinear mixed selectivity (right), neurons respond to
particular combinations of feature values, and the number of feature values in those
combinations is defined as the order O of the code (here, O = 2). E The same O = 1 and
O = 2 code as in D. (top) The colored points are the response patterns in 3D response
space for three of the four neurons in each code. The dashed grey line is the radius of the
unit circle centered on the origin for each plane – the two codes are given constant
representation energy, and all response patterns lie on the unit 4D hypersphere. For ease
of visualization, the vertical dimension in the plot represents both the third and fourth
neurons in the population to show three representations from the O = 1 code, this does
not change the minimum distance. (bottom) The response patterns for the O = 2 mixed
code have greater minimum distance than those for the O = 1 pure code. F We derive
closed-form expressions for each code metric, and plots of each metric are shown for
codes of order 1 to 6 with K = 6 and n = 10. G Mixed codes produce a higher minimum
distance per unit representation energy (left) and have a smaller proportion of active
units (i.e., greater sparseness; right) than pure codes.
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Mixed codes make fewer errors than pure codes

To directly estimate the probability of decoding error (PE) for each of our
codes, we expand our analysis from the encoding function (Figure 1) to the
channel as a whole. We choose the noise to be additive, independent, and
Gaussian (though we also consider multiplicative, Poisson noise, which gives
similar results, see Figure S2) and use a maximum likelihood decoder (MLD,
and see Full channel details in Methods). Given these noise and decoder
assumptions, we can use the union bound estimate (UBE) to approximate PE
(UBE) of PE (see Union bound estimate in Methods). The UBE decomposes
the probability that we make an error into the sum of the probabilities of
only the most likely errors (that is, errors to stimuli at minimum distance).
This estimate takes the form:

PE ≈ N∆(O)Q

(
∆O

2
√
PO

SNR

)
= N∆(O)Q

(
SNR√
2K/O

)
(2)

where Q(y) is the complementary cumulative distribution function of N (0, 1)
at y, SNR =

√
P/σ2 is the signal-to-noise ratio (see The amplifying linear

transform (β) in Methods), and N∆(O) is the number of neighbors at mini-
mum distance of the order O code, which is equal to

N∆(O) =

K(n− 1) O < K

nK − 1 O = K

(3)

see Code neighbors in Supplemental Information. Thus, for constant SNR,
our estimate of the probability of decoding error is strictly decreasing with
order for O < K, but not necessarily for O = K when nK is large.

To verify that the UBE provides a good estimate of PE, we numerically sim-
ulate codes of all possible orders over a wide range of SNRs for particular
choices of K and n using the same channel as in our analysis. Our simula-
tions show that higher-order codes outperform lower-order codes across all
SNRs at which the codes are not saturated at chance or at zero error (Fig-
ure 2A). We also show that the UBE closely follows performance for large
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SNRs (Figure 2A inset). Using the UBE, we compare the amount of repre-
sentation energy that codes of different orders require to reach 1% decoding
error (Figure 2B) and show that a pure code requires up to twice as much
representation energy as a mixed code with the optimal order. This also
illustrates that while the nearest-neighbor increase for the full-order code is
not a practical concern for low nK (as the number of neighbors is still small),
it quickly causes the O = K − 1 code to outperform the O = K code as
nK becomes large (Figure 2B). In all conditions we simulated (following the
UBE), either the O = K − 1 or O = K code provided the lowest decod-
ing error at a given SNR. Thus, in these conditions, mixed codes provide a
significant benefit to coding reliability independent of particular parameter
choices.

For smaller choices of K and n, we were able to empirically evaluate how
decoding error compares to the rate-distortion bound[22]. In this context,
the rate-distortion bound is an absolute lower bound on the probability of
making a decoding error given a particular information rate through the
channel (i.e., the mutual information I(X; X̂) and see The rate-distortion
bound and mutual information calculation in Methods). We first show that
higher-order codes generate a higher information rate than lower-order codes
at the same SNR (Figure 2C inset) – that is, they more efficiently transform
the input into stimulus information. Next, we show that the full-order code
(O = K = 3) fully saturates the rate-distortion bound (Figure 2C). Thus,
for a given amount of stimulus information, full-order codes produce as few
errors as would be possible for any code[22]. While the O = K − 1 = 2 code
comes close to this bound as well, the pure code does not.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577288doi: bioRxiv preprint 

https://doi.org/10.1101/577288
http://creativecommons.org/licenses/by-nc/4.0/


A B

D

C

impossible

possible

Figure 2: Mixed codes make fewer errors than pure codes. A Simulation of codes with
O = 1, 2, 3 for K = 3 and n = 5. (inset) For high SNR, code performance is
well-approximated by the union bound estimate (UBE). B (top) Using the UBE, we
show that for different K (with n = 5) the SNR required to reach 1 % decoding error
tends to decrease with increasing code order. (bottom) The representation energy
required by the pure code relative to that required by the best mixed code (given by
point color and label) to reach 1 % decoding error. C (left) A schematic of the
distortion-rate function for some source distribution X. Through rate-distortion theory,
we know that no codes below the distortion-rate bound will ever be discoverable for this
particular form of source distribution X. (right) With K = 3 and n = 5, the
performance of different order codes relative to the bound. (right, inset) The codes have
slightly different efficiencies for transforming SNR to I(X; X̂). D (left) Given a pool of
neurons with fixed size, the color corresponding to the code producing the highest
minimum distance is shown in the heat map. The shaded area delineates the order of
magnitude of the number of neurons believed to be contained in 1 mm3 of mouse cortex.
(right) The same as on the left, but instead of a pool of neurons of fixed size, each code
is given a fixed total amount of energy. The energy is allocated to both passive
maintenance of a neural population (with size equal to the population size of the code)
and representation energy (increasing SNR). The shaded area is the same as on the left.
The dashed lines are plots of our analytical solution for the transition point between the
O and O + 1-order code (see Total energy in Methods).
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Mixed codes provide benefits despite requiring more
neurons

Our analysis so far has focused on the metabolic cost of neuronal spiking.
A single spike is thought to be the largest individual metabolic cost in the
brain[39]. For a fixed population size N , from Eq. 1, we know that the code
with the highest order O such that DO ≤ N will provide the largest minimum
distance, given a fixed amount of spiking activity (Figure 2D). For a wide
range of stimulus set sizes, mixed codes have population sizes less than or
equal to an order-of-magnitude estimate of the neuron count in 1 mm3 of
mouse cortex[40] (Figure 2D, shaded region). Thus, the benefits of mixed
codes are practically achievable in the brain.

However, the passive maintenance of large neural populations also has a
metabolic cost, due to the turnover of ion channels and other cell-level pro-
cesses[39], which, for large populations of sparsely firing neurons, could be
as large if not larger than the metabolic cost associated with spiking. To
account for this cost, we adapt the formalization from [41] to relate represen-
tation energy (i.e., spiking) to the metabolic cost of population size (see Total
energy in Methods). We refer to the sum of these costs as the total energy
E of a code. Codes with small population sizes will be able to allocate more
of their total energy to representation energy, while codes with large popula-
tion sizes will have less remaining total energy to allocate to representation
energy. We do not constrain the maximum SNR that a single neuron in our
codes can achieve (even though achievable SNR is limited in the brain[42]),
which further improves the performance of pure codes relative to higher-order
codes under our formalization. Thus, it serves as a particularly stringent test
of the reliability and efficiency of mixed codes.

Mixed codes yield higher minimum distance under the total energy constraint
for a wide range of stimulus set sizes and total energy (Figure 2D), including
order-of-magnitude estimates of the total energy available to 1 mm3 of mouse
cortex (Figure 2D, shaded region). Further, our analysis reveals that for any
total energy E ≥ n2K2 (see Eq. M.6) a mixed code (O > 1) will provide
better performance than the pure code (O = 1). These results also make an
important prediction that can be tested experimentally: the order of neuronal
RFs should decrease as the fidelity required of the representation increases
(i.e., as n increases). There already exists indirect experimental support for
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this prediction. In the visual system, single neurons in primary visual cortex
have RFs thought to represent relatively small combinations (small O) of low-
level stimulus features such as spatial frequency and orientation[6, 30] (but
see [43]), while single neurons in the prefrontal cortex are thought to have
responses that depend on larger combinations (high O) of abstract, often
categorical (and therefore low n), stimulus features along with behavioral
context[4, 27]. However, this pattern has not been rigorously tested, as
these regions are rarely recorded in the same tasks and the tasks chosen for
each area often follow the form of the prediction – that is, requiring high
fidelity (n) for investigations of primary sensory areas and low fidelity (n)
for investigations of prefrontal areas.

Mixed codes provide reliable coding in sensory systems

So far, we have focused on the probability of decoding error, which is most
applicable to features that represent categorical differences without defined
distances from each other (e.g., mistaking a hat for a sock is not clearly less
accurate than mistaking a hat for a glove). However, in sensory systems, the
features often do have a relational structure and stimuli that are nearby to
each other in feature space are also perceptually or semantically similar (e.g.,
mistaking a 90◦ orientation for a 180◦ orientation is clearly less accurate than
mistaking 90◦ for 100◦). In the context of sensory information, minimizing
the frequency of errors becomes less important than ensuring that the average
distance of an estimate from the original stimulus is low. This is because
perceptually similar errors are likely more useful for guiding behavior than
a random error, even if the latter occurs less frequently. This difference in
priority is encapsulated in the contrast between PE (Figure 3A) and the mean
squared-error distortion (MSE; Figure 3B), which is equivalent to the average
squared-distance of the estimated stimulus from the original stimulus. In
our framework, full-order mixed codes have the highest minimum distance
(Eq. 1), but all stimuli are nearest neighbors to all other stimuli (Eq. 3) which
causes all errors to be random with respect to the original stimulus. Thus,
using MSE instead of PE, we show that lower-order mixed and pure codes
outperform full-order mixed codes at low total energy (Figure 3B). However,
increased total energy causes a faster decay in error rates for full-order codes
than lower-order codes (Eq. 2). Thus, even full-order codes outperform pure
codes under MSE at high total energy (Figure 3B).
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Further, we show that the brain can take advantage of the increased min-
imum distance yielded by full-order codes and reduce the randomness of
errors in the context of sensory systems by increasing the size of neuronal
RFs (Figure 3C), which also makes higher-order codes more practical by
reducing their population size (see Additional results on response fields in
Supplemental Information). Thus, this work provides a unified framework
for understanding the purpose and benefits of large RFs in arbitrary feature
spaces, which are often observed in cortex[44]. In particular, increasing RF
size decreases the MSE for all codes while increasing the PE (Figure 3D
and see Additional results on response fields in Supplemental Information).
Analysis of the error distribution demonstrates that increasing RF size de-
creases MSE by concentrating the distribution of squared-error closer to zero
(Figure 3E), thus correcting the undesirable feature of randomly distributed
errors in the full-order code case described above (see Additional results on
response fields in Supplemental Information). In addition, increasing RF
size decreases the required population size for mixed codes, and modestly
increases the number of cases in which mixed codes outperform pure codes
(Figure S3E, G). We also show increased noise robustness from mixed codes
in simulations of a code for continuous stimuli under MSE, using continuous
RFs (Figure S4A). Thus, mixed codes are an effective strategy for reliable
and efficient coding not just for decision-making systems, but also in sensory
systems – which is consistent with their widespread observation in sensory
brain regions[30–35].
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Figure 3: Mixed codes can be more reliable than pure codes for both PE and MSE, but
different RF sizes are appropriate for each. A An illustration of our RF formalization.
With K = 2 and n = 3, two example RFs of size σrf = 2 are shown. Simultaneous
activity from both neurons uniquely specifies the center stimulus point. B Simulated PE
of codes of all orders for K = 3 and n = 10 with σrf = 1, 2, 3 (legend as in C). Note that
total energy is plotted on the x-axis, rather than SNR as in Figure 2. Mixed codes
outperform the pure code over many (but not all) total energies. C The same as B but
for MSE rather than PE. Mixed codes perform worse than pure codes for low total
energy, but perform better as total energy increases. D PE increases (top) and MSE
decreases (bottom) as σrf increases for the codes in B and C taken at the total energy
denoted by the dashed grey line. E Cumulative distribution functions for the squared
errors made for the codes given in B and C at the grey dotted line. MSE is decreased by
increasing σrf despite the increase in PE because the errors that are made become
smaller in magnitude and this outweighs their becoming more numerous. This effect is
largest for the O = K = 3 code.
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Experimental evidence that mixed codes support reli-
able decoding

Previous theories about NMS have focused on the fact that it enables flexible
linear decoding, and there is experimental evidence that the dimensionality
expansion provided by NMS is linked to performance of complex cognitive
behaviors[4, 27]. Here, we have shown that mixed codes also provide more
general benefits for reliable and efficient information representation in the
brain, independent of a particular task and without assuming linear decoding.
Thus, our work predicts that mixed codes will be used widely in the brain,
instead of being used only for features relevant to particular complex tasks.

To understand whether the brain exploits mixed codes for their general re-
liability and efficiency rather than only for their ability to enable flexible
computation, we test whether the brain implements NMS when it would
not enable the implementation of any behaviorally relevant linear decoders.
To do so, we analyze data from a previously published experiment[45] that
probed how two behaviorally and semantically independent features are en-
coded simultaneously by neurons in the lateral intraparietal area (LIP). In the
experiment, monkeys performed a delayed match-to-category task in which
they were required to categorize a sample visual motion stimulus (Figure 4A),
and then remember the sample stimulus category to compare with the cat-
egory of a test stimulus presented after a delay period (Figure 4B, top). In
addition to the categorization and working memory demands of the task, the
animals were also (on some trials) required to make a saccadic eye movement
either toward or away from the neuron’s RF during the task’s delay period
(Figure 4B, bottom, and see Experimental details and task description in
Methods). Because LIP activity is known to encode information related to
categorical decisions and saccades, this experiment characterized the relation-
ship between the representation of these two features at the single neuron and
population level. Despite the saccade being irrelevant to the monkey’s cat-
egorical decision in this task, LIP activity demonstrated both pure (O = 1,
on average 43.5 % of the population tuned for each term, bootstrap test,
p < .05) and mixed category and saccade (O = 2, on average 17.0 % tuned
for each term, bootstrap test, p < .05) tuning (Figure 4D, E). This pattern
of mixed and pure tuning is consistent with a composite code including RFs
of multiple orders. Such codes have performance that falls between codes
of either the lowest or highest included order alone, but their heterogene-
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ity may provide other benefits. Crucially, mixed codes also provide benefits
when decoding only one of the two features at a time (Figure 4F). Thus, with
two behaviorally and semantically independent features, the brain still im-
plements a mixed code even though it does not enable the implementation of
any behaviorally useful linear decoders. The mixed code does, however, im-
prove the reliability and efficiency of the encoding, suggesting that the brain
may explicitly utilize mixed codes for that purpose. Further, contempora-
neous work has demonstrated that the bat is likely to exploit the reliability
benefits of NMS for the coding of two-dimensional continuous head-direction
information – as well as described reliability benefits of full-order mixed codes
for continuous stimuli[31] (and see Error-reduction by NMS in the continuous
case in Supplemental Information).
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Figure 4: Mixed codes support reliable decoding in the brain, not only flexible
computation. A The learned, arbitrary category boundary on motion direction used in
the saccade DMC task. B A schematic of the saccade DMC task. C The average
performance of the two animals on the saccade DMC task plotted for the different
saccade conditions. D A heatmap of the z-scored magnitude of the coefficients for each
term in the linear model. It is sorted by largest magnitude term, from left to right. The
linear models were fit using the LASSO method and terms were tested for significance
using a permutation test (p < .05), only neurons with at least one significant term were
included in this and the following plots. E (top) The average strength of significant
tuning for each term across the neural population, O = 1 tuning is on the left, and O = 2
tuning is on the right. (bottom) The proportion of neurons in the population that have
pure selectivity (left) for the two saccade targets and two categories of motion and
nonlinear mixed selectivity (right) for each of the four saccade target and category
combinations. Error bars are bootstrapped 95 % confidence intervals. F Single-feature
decoding performance for a code chosen to mirror the conditions of the task, with K = 2
and n = 2. Mixing features together is advantageous even when decoding those features
separately.
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Discussion

We have shown that NMS and mixed codes are an effective and general strat-
egy for reliable and efficient communication. Further, we have demonstrated
that, rather than pure (O = 1) or fully-mixed (O = K) codes always provid-
ing the most reliable encoding, the optimal code order tends to lie between
these two extremes (1 < O < K) depending on the number of stimulus fea-
tures, the required fidelity of those features, and the number of neurons or
total metabolic energy available to encode the information (Figure 2D). This
set of intermediately mixed codes has not previously been analyzed in this
context, despite likely being the dominant form of NMS that exists in the
brain. Intermediately mixed codes may also have an important additional
benefit. The representations produced by the full-order mixed code (O = K)
may be difficult to learn and to generalize from[46], due to the fact that each
response pattern is the same distance from all other response patterns. In-
termediately mixed codes (1 ≤ O < K) ameliorate this by placing response
patterns that are nearby in stimulus space nearby to each other in response
space as well. That is, intermediately mixed codes carry more information
about the stimulus space (rather than just the stimulus) in their responses
than full-order codes, and this information may be crucial for behavioral per-
formance and learning[47]. Lastly, we have shown experimental evidence that
the brain implements mixed codes even when they do not facilitate behav-
iorally relevant linear decoding, but do improve the reliability and efficiency
of encoding.

This work differs substantially from most previous work on optimal RFs in
four principal ways. First, the dependence of code reliability on RF order,
or dimensionality, has not been comprehensively described. We show that
codes using RFs of intermediate dimension (1 < O < K) are most reliable in
a wide variety of cases (Figure 2D), but these codes have not been previously
studied outside of binary stimulus features. Second, we directly compute the
probability and magnitude of errors for our codes rather than maximizing
quantities with indirect relationships to error, such as Fisher information
and mutual information. This reveals the performance of our codes even
in low SNR regimes, where the indirect relationships are not guaranteed
to provide correct descriptions of performance. Third, by accounting for the
metabolic cost of both the total spike rate as well as the minimum population
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size required to implement each of our codes while keeping coverage of the
stimulus space constant, we disentangled performance decreases due to a
lack of coverage of the stimulus space from those due to the properties of the
encoding itself. Fourth, we have investigated differences in code performance
across different orders for both discrete and continuous stimuli as well as
both binary (PE) and distance (MSE) error metrics. These different contexts
have revealed several nuances, including that, for discrete stimuli, increasing
RF size tends to increase PE, but decrease MSE – highlighting the ways
in which RF shape and size can influence which kinds of coding errors are
likely for different coding strategies, which has not received extensive study
in neuroscience. Thus, this work provides a novel perspective on multiple
understudied neural coding problems.

This work also ties directly to existing work in the experimental and theoret-
ical neuroscience literature. Most centrally, we link the previously described
flexible linear decoding benefits of NMS to considerations of reliability and
efficiency in neural codes. Experimental work focusing on the utility of NMS
for flexible linear decoding has already demonstrated the ubiquity of mixed
codes in prefrontal cortex[4], as well as a putative link from NMS to be-
havior[27]. Theoretical work has demonstrated that random connectivity
in recurrently connected neural network models produces a mixed code for
stimulus features[48]. In addition, while prefrontal cortex has been shown to
exhibit more NMS than expected purely due to those random connections,
biologically plausible, unsupervised Hebbian-like plasticity rules applied to
similar model networks increases the prevalence of NMS to levels consis-
tent with those observed experimentally[49]. Thus, not only do mixed codes
provide two substantial and separate benefits to the brain, they are also nat-
urally produced by known neural phenomena – that is, they do not require
fine tuning.

Our broader view of the benefits of NMS also helps to explain its observation
in numerous systems aside from macaque prefrontal cortex. Recent experi-
mental and theoretical work on the Drosophila larva demonstrates that NMS
develops quickly in olfactory-input receiving Kenyon cells of the mushroom
body. Further, the mixed code that is developed by the mushroom body
produces fewer errors than random codes with similar orders, but that do
not guarantee full coverage of the olfactory space[32]. Thus, mixed codes do
not arise only as a product of random connections, but are likely refined to
serve reliable communication early in development even in conditions with

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577288doi: bioRxiv preprint 

https://doi.org/10.1101/577288
http://creativecommons.org/licenses/by-nc/4.0/


relatively small numbers (i.e., ∼ 100) of neurons. Further, interrogation of
the bat head-direction system has revealed a dynamic code, in which single
neurons shift from having pure selectivity for long decoding intervals (e.g.,
during long-distance navigation) and mixed selectivity for short decoding in-
tervals (e.g., during rapid maneuvering and chase behaviors). In a population
of neurons with fixed size, this strategy is advantageous if adequate coverage
of the space cannot be achieved by a mixed code[31]. Thus, mixed and pure
codes must both be decodable by the brain, and it appears that the most re-
liable and efficient code is selected moment-to-moment as the time available
for decoding shifts. More generally, mixed codes have been observed across
diverse sensory and non-sensory systems[4, 27, 30–38, 50], indicating that
their usefulness is not only due to enabling flexible linear decoding, but also
due to their coding reliability and efficiency.

Our work also illustrates several tradeoffs that can be leveraged to under-
stand the organization of feature representation across different brain regions.
First, we have shown that the optimal code order decreases as the fidelity
of the stimulus features (i.e., the number of values each feature takes on, n)
increases. Thus, it will be important to directly compare the fidelity and
code order across different levels of the sensory-processing cortical hierar-
chy. Second, our framework can give insight into parallel sensory processing
pathways. In particular, large numbers of features (large K) quickly become
impractical to represent with high order (O) mixed codes, due to an expo-
nential increase in the required population size with order (Figure 1E, left).
However, the brain may still be able to leverage some of the benefits of of
mixed codes by representing the K features in two (or more) distinct subpop-
ulations that each represent dK/2e features. The visual[51] and auditory[52]
systems in macaques are both thought to be split into multiple streams rep-
resenting distinct features, consistent with this idea. In particular, if mixed
codes do arise naturally from unsupervised synaptic plasticity, then keeping
the number of features represented in any particular brain region beneath
some threshold may be an effective strategy for guaranteeing full coverage of
the stimulus space.

Overall, our work has shown that NMS is an effective and practical strategy
for reliable coding in the brain. Guaranteeing this reliability, in the face of
unreliable neurons, is likely to have fundamentally shaped the functional and
even anatomical architecture of neural systems. Developing an understanding
of the role of code order, or RF dimensionality, in reliable and efficient coding
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will give insight into this much broader problem.
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1 Methods

1.1 Definition of the stimuli

In defining our stimuli, we make two assumptions. First, we assume that
our stimuli are described by K independent features. This is equivalent
to assuming that our stimuli were pre-processed by an efficient coding pro-
cedure that isolated the independent components[1] of our stimulus set[2].
Second, we assume that the stimulus features are discrete and uniformly
distributed; this simplifies our mathematical analysis, but also makes our
analysis relevant to cognitive, categorical representations. In addition, sim-
ulations with continuous stimulus features have qualitatively replicated our
core results (see Error-reduction by NMS in the continuous case in Supple-
mental Information).

Thus, a stimulus is represented by a vector of K discrete values. Each value
corresponds to one of the K independent features of the stimuli. The nature
of the value object does not matter, we only require that it is possible to
decide whether two values corresponding to the same feature are equal. For
a stimulus x with K features,

xi ∈ Ci

for i ∈ [1, ..., K], where Ci is the set (of size ni) of all possible values for
feature i. Using the equality function, we implement an indicator function,

[i = j] =

0 i 6= j

1 i = j

for all values of all features. From our assumption that the stimuli are com-
posed of independent features that take on discrete values with a uniform
probability, it follows that all value combinations are valid, giving M =

∏
i ni

possible stimuli, and equally probably, so P (X = x) = 1
M

.
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1.2 Definition of the codes

Our definition for nonlinear mixed selectivity (NMS) follows that given in
[3]. We describe it with some generalizations here.

The codeword c corresponding to stimulus x ∈ X is produced by

c(x) = βtO(x)

where β is a matrix of size N×D and tO(x) is the encoding function of order
O. Our codes will primarily be differentiated by tO(x), while β will be used
to equalize their representation energy V and population size N .

The elements of the vector tO(x) are products of indicator functions, and
therefore can only be either one or zero. In particular, for order O, the
vector tO(x) contains one element for the product of each valid combinations
of feature-value indicator functions of size O. More formally, for A ∈ GO

K ,
where GO

K is the set of all combinations of O elements from [1, ..., K], and
(i, ..., j) ∈ (CA1 , ..., CAO

),

tO(x)k =
[
xA1 = Ai1

]
...
[
xAO

= AjO
]

with individual neurons (indexed by k) corresponding to all feature combi-
nations A and all value combinations for those features (i, ..., j).

Thus, 1 ≤ O ≤ K, where K is the total number of stimulus features, and all
codes with O ≥ 2 are mixed while codes with O = 1 are pure codes, following
[3]. We will use the term “neuron” to refer to coding units in our models
and simulations as well as to refer to biological neurons in the brain to make
their analogous roles clear. In our formulation, both mixed and pure codes
will always have complete coverage; that is, there will be a neuron coding for
every feature value or possible combination of feature values and each of the
M stimuli will have a corresponding unique codeword.

1.2.1 Code example

For K = 3 and n = 2, under our formalization there are codes of three
different orders that code for the nK stimuli.

O = 1: This code has nK neurons and below we give some example stimuli
(on the left, with the three features each taking on one of their two possible
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values, 1 or 2) and codewords (across the activity of the neurons, on the
right):

111 1 0 1 0 1 0

211 0 1 1 0 1 0

122 1 0 0 1 0 1

222 0 1 0 1 0 1

Note that for each of these stimuli, there are always three neurons responding
with 1. Further, the smallest distance between any two codewords is

√
2,

between 111 and 211 as well as 122 and 222. This is of course not the smallest
number of neurons that we could use to represent the set of 8 stimuli. The
smallest number of neurons that could represent these stimuli is log2 n

K =
log2 8 = 3 neurons, which could use a representation similar to the one we
have used to represent the stimuli on the lefthand side of the above table.

Thus, this encoding strategy has added redundancy to our representation of
the stimuli.

O = 2: This code has
(
K
O

)
nO =

(
3
2

)
22 = 12 neurons. It can be viewed as

three separate O = 2 codes for the three different size 2 subsets of the 3
features. We make that explicit in our example:

111 1 0 0 0 1 0 0 0 1 0 0 0

211 0 1 0 0 1 0 0 0 0 1 0 0

122 0 0 1 0 0 0 0 1 0 0 1 0

222 0 0 0 1 0 0 0 1 0 0 0 1

Note that any two of these three subpopulations alone would produce a
code with unique codewords for each of the stimuli. However, they would
preferentially represent one of the three features and cause errors to be more
likely for the other two features. The minimum distance between any of the
stimuli is now 2 and the number of neurons active is 3.

O = 3: This code has nK = 8 neurons, that each code for a unique com-
bination of the three features – and therefore for a unique stimulus. As
in:
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111 1 0 0 0 0 0 0 0

211 0 1 0 0 0 0 0 0

122 0 0 0 0 0 0 1 0

222 0 0 0 0 0 0 0 1

Note that there is now only one neuron active for each stimulus, and the
minimum distance is

√
2.

Next, we formalize these properties: population size, minimum distance, and
representation energy (or the number of active neurons) and derive expres-
sions for each of them for general K and n.

1.3 Code properties

1.3.1 Population size (DO) of the codes

The population size of a code is the length of tO(x) for that code. Since we
know that a code of order O will have an element for each possible combina-
tion of feature-values of size O, the length of the vector can be framed as a
counting problem:

DO =
∑
A∈GO

K

∏
i∈A

ni

where GO
K is the set of all subsets of [1, ..., K] with size O and ni = |Ci|. This

expression is somewhat cumbersome, so, for ease (and without affecting our
results), we assume that n = nj for all j ∈ [1, ..., K]. This gives,

DO =

(
K

O

)
nO

where
(
K
O

)
is the binomial coefficient, defined as(

n

r

)
=

n!

(n− r)!r!

if n ≥ r, otherwise
(
n
r

)
= 0.
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For O = 1 (the pure code), the population size is

D1 = Kn

and, for O = K (the fully mixed code), it is

DK = nO

Thus, the population size (i.e., the length of the vector) grows exponentially
with the order of the code.

1.3.2 Representation energy (PO) of the codes

We quantify the amount of energy that each coding scheme uses to transmit
codewords. In particular, we will model energy in two ways and will see that
these are equivalent for large ni and do not substantially change our results
for smaller ni.

Sum of variance across dimensions: Taking the variance of a particular
dimension as the energy used by that dimension for coding, we can simply
take the sum across all of the dimensions. With the definition of variance,

Var(X) = E
(
X2
)
− E(X)2

we can express representation energy (PO) as:

PO =

DO∑
i

Var(tO(x)i)X

=
∑
A∈GO

K

∏
i∈A

ni

[
1∏
i∈A ni

− 1∏
i∈A n

2
i

]

=
∑
A∈GO

K

[
1− 1∏

i∈A ni

]

≤
(
K

O

)
With large ni the second term in the sum becomes very small, and we can
see that the upper bound of the last line gives a good approximation of the
representation energy.
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So, for O = 1,

P1 ≈ K (M.1)

For, O = K,

PK ≈ 1 (M.2)

Points on a sphere: We also notice that for a code of a particular order, all
of the codewords lie on a high-dimensional sphere with radius wO. The radius
of this sphere provides a different notion of energy consumption, through
PO = w2

O. Formally, it differs from the notion of energy consumption given
above only in that the squared mean activity is not subtracted. That is,

PO = w2
O =

D∑
i

E
(
ti(x)2

)
X

rather than

PO =
D∑
i

Var
(
ti(x)2

)
X

Following the derivation above, the radius is:

w =

[(
K

O

)] 1
2

(M.3)

and the representation energy is

PO =

(
K

O

)
and, for O = 1,

P1 = K

and, for O = K,

PK = 1
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That is, this gives the same answer as our other measure for energy, but does
not depend on the assumption that the ni are large.

Use of either of these two measures does not substantively affect our results.
In our simulations, we will use the former because it slightly benefits pure
codes (because the mean activity of neurons in pure codes is generally higher
than that in mixed codes, so there is a larger reduction in their representation
energy by the subtraction of the squared mean) and we are exploring the
benefits of mixed codes.

1.3.3 Minimum distance (∆) of the codes

The smallest distance between any two codewords is directly related to the
probability that a decoder will make an error when attempting to discrim-
inate between those two codewords, and can be used to bound the perfor-
mance of decoders in general.
Statement 1. The distance between two stimulus codewords is given by

d(K,O, v) =

[
2

v∑
i

(
v

i

)(
K − v
O − i

)] 1
2

where v is the number of features the stimuli differ in, O is the order of the
code, and K is the number of features.

Derivation. Using the set GO
K with |GO

K | =
(
K
O

)
, we see that when we change

a feature i ∈ [1, ..., K], by the definition of the indicator function and of
our codes, we know that one term (a product of indicator functions) in each
feature combination that includes i will flip from 0 to 1 and another term
will flip from 1 to 0. Thus, given the subset BO

i = {b ∈ GO
K |i ∈ b}, we obtain

a distance of
√

2|BO
i | from changing the value of feature i. When we change

a second term, j, we obtain BO
j = {b ∈ GO

K |j ∈ b}. The distance between
the two stimuli is then related to the size of the union of these two sets:√

2|BO
i ∪BO

j |.

So, to find the distance between two codewords, we need to count the number
of features in which they differ and then find the distance, given the order of
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the code O and the number of stimulus features K.

d(K,O, v) =

[
2

∣∣∣∣∣
v⋃
i

BO
i

∣∣∣∣∣
] 1

2

=

[
2

v∑
i

(
v

i

)(
K − v
O − i

)] 1
2

where the second binomial coefficient counts the number of subsets contain-
ing exactly i of the v changed features and the first binomial coefficient
counts the number of different ways i features could be chosen from the v
changed features. Since our codes include all combinations, the identities of
the features changed does not matter – only the number of them.

Next, it will be useful to know that this distance function is increasing with v,
as, combined with statement 1, it will allow us to find the minimum distance.
Statement 2. The function d(K,O, v) is increasing with v.

Derivation. We want to show that d(K,O, v) ≤ d(K,O, v + 1).

0 ≤ d(K,O, v + 1)2 − d(K,O, v)2

=

∣∣∣∣∣
v+1⋃
i

BO
i

∣∣∣∣∣−
∣∣∣∣∣
v⋃
i

BO
i

∣∣∣∣∣
=

∣∣∣∣∣BO
v+1 \

v⋃
i

BO
i

∣∣∣∣∣
where the last line is the size of the set of values that are in BO

v+1 and not
in any of the other BO

i for i ∈ [1, ..., v]. The relationship holds because a set
cannot have a negative size. Thus, d(K,O, v+ 1) ≥ d(K,O, v) and therefore
the function d is increasing in v.

Now, we can find the minimum distance using both of the statements above.
Statement 3. The minimum distance of a code of order O for stimuli with
K features is given by

∆O =

[
2

(
K − 1

O − 1

)] 1
2
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Derivation. By statement 2, we know that the minimum value of d(K,O, v)
occurs when v = 1. We can then evaluate our expression for distance, found
in statement 1, at v = 1

d(K,O, 1) =

[
2

1∑
i

(
1

i

)(
K − 1

O − i

)] 1
2

=

[
2

(
1

1

)(
K − 1

O − 1

)] 1
2

∆O =

[
2

(
K − 1

O − 1

)] 1
2

Now we can evaluate this expression for any K and O that we desire. For
O = 1,

∆O =
√

2

and, for O = K,

∆O =
√

2

While the minimum distance for these two codes is the same, their repre-
sentation energy is different (see Eq. M.1 and Eq. M.2). Further, minimum
distance and power are both weakly unimodal around O = bK/2c (Figure 1e,
center and right).

1.4 Minimum distance-representation energy ratio

A straightforward way to describe code performance in a single number is to
take the ratio between minimum distance and representation energy. Codes
with larger ratios will typically have a lower probability of decoding error
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given the same noise level.

∆2

P
= 2

(
K−1
O−1

)(
K
O

)
= 2

(K −O)!O!(K − 1)!

(K −O)!(O − 1)!K!

= 2
O

K
(M.4)

which is strictly increasing with order (Figure 1f, left).

1.5 The amplifying linear transform (β)

To compare between codes, we use β, a matrix, to perform a linear transform
of the codewords tO(x) that can be chosen to increase or decrease represen-
tation energy PO to a fixed value V as well as increase (but not decrease)
population size DO to a fixed value N . Thus, we can compare codes of dif-
ferent orders that have the same representation energy (V ) and population
size (N).

In choosing β, we must satisfy four constraints:

1. N ≥ D

2. β†β = I, where I is the D×D identity matrix and β† is the pseudoin-
verse of β.

3. The vector length, H, of each column in β must be the same.

4. E(βijβik)j 6=k = 0; this will be true, for instance, for β where the rows
or columns are sampled from a Normal distribution with a covariance
matrix that is proportional to the identity matrix.

This flexibility in the choice of β can also be used to produce more granded
rather than strictly binary responses to stimuli across our neural populations.
However, as we will show, it is only the vector length of the columns of β,
H, that affects the performance of the code.
Statement 4. For β with length H, the amplified code βtO(x), where tO(x)
has representation energy PO, will have representation energy H2PO.
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Derivation. We prove this using the points on a sphere definition of energy.
So, the energy of the original code tO(x) is given by,

PO =

(
K

O

)
After applying β, we want to find the square of the average distance of the
codewords from the origin, or V , under the points on a sphere definition of
energy.

So, we want to find, where c(x) = βtO(x) and X is the set of stimuli,

V =
1

M

∑
x∈X

N∑
i

(ci(x))2

=
1

M

∑
x∈X

N∑
i

(∑
j∈Dx

βij

)2

where Dx is the set of non-zero indices of tO(x) for x

=
1

M

∑
x∈X

N∑
i

∑
j∈Dx

β2
ij

by the definition of β, constraint 4

=
1

M

∑
x∈X

∑
j∈Dx

H2

by the definition of β, constraint 3

=
1

M

∑
x∈X

(
K

O

)
H2

= H2

(
K

O

)
= H2PO

Thus, we can give different codes the same representation energy V by choos-
ing H =

√
V/PO for each O.
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1.5.1 The effect of β on minimum distance

Statement 5. The distance between two points ci = βtO(xi) and cj =

βtO(xj), represented as dβij, is given by

dβij = Hdij

where dij is the distance between the two points tO(xi) and tO(xj).

Derivation. We know that points xi and xj are both
√
P units away from

the origin while codewords ci and cj are H
√
P units from the origin (by

statement 4 and equation M.3). We want to find dβij.

The angle between the two points is

θ = sin−1
1
2
dij√
P

so, we can rearrange to find:

dβij = 2H
√
P sin θ

= 2H
√
P

1
2
dij√
P

= Hdij

It follows directly from statement 5 that the minimum distance after β is
applied, δ, is given by

δ = H∆

Further, it follows that the ratio given in Eq. M.4 is not altered by H, or
choice of particular β, since

δ2
O

VO
=
H2∆2

O

H2PO
=

∆2
O

PO

= 2
O

K
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1.6 Full channel details

We simulated codes of all possible orders for particular choices of K and n.
Three important choices were made for these simulations. First, the code-
words from each code were passed through a linear transform β. The linear
transform was used to equate the population size and representation energy
of different order codes, such that we could investigate code performance
when each order of code had the same number of participating units and the
same signal-to-noise ratio (SNR =

√
P/σ2 where σ2 is the noise variance),

as in Figure 2 and see The amplifying linear transform (β) in Supplemental
Information. Second, the noise in the channel was chosen to be additive and
to follow an independent Normal distribution across code dimensions. Third,
we use maximum likelihood decoding (MLD) to estimate the original stim-
ulus. This choice is consistent with Bayesian and probabilistic formulations
of neural encoding and decoding[4–6]. While inclusion of noise correlations
would be an interesting topic for future research, we show here that they are
not essential for any performance increases due to NMS.

1.6.1 Code availability

All of the code for the simulations was written in Python (3.6.4) using NumPy
(1.14.2), SciPy (1.0.1)[7], and Scikit-learn (0.18.1)[8]. The code is available
on request. For each SNR and each code order, approximately 5000 trials
were simulated.

1.7 Union bound estimate

While the minimum distance-representation energy ratio we derive in Eq. M.4
provides useful insight into the performance of codes of different orders, it
does not give a direct estimate of the probability of decoding error. In par-
ticular, it is difficult to interpret the magnitude of performance differences
without incorporating the magnitude of the noise itself, the decoder used,
and the arrangement of all of the codewords in coding space to estimate
PE directly. Here, we incorporate the details of the full channel to directly
estimate PE via a union bound estimate (UBE).
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That is, with the channel,

r(x) = c(x) + η

= βtO(x) + η

where η ∼ N(0, σ2) (see Figure 1a for a schematic) and a maximum likelihood
decoding function f such that x̂ = f(r(x)) where x̂ is the maximum likelihood
estimate of x given r(x), we want to estimate the probability that x̂ 6= x
across X. To begin,

PE =
∑
x∈X

p(x)P
(
∪x 6=a∈XX̂ = a|X = x

)
= P

(
∪x 6=a∈XX̂ = a|X = x

)
by statement 7

=
∑

x6=a∈X

P (X̂ = a|X = x)

by the disjoint nature of decoding events

≤
∑

x 6=a∈X

Q

(
d(x, a)

2σ

)
where Q(y) is the ccdf at y of N (0, 1) and d(x, y) is the Euclidean distance
between the codewords corresponding to x and y (i.e., the Euclidean distance
between βtO(x) and βtO(y)).

From here, there are several different ways to approximate (or upper bound)
PE. We will focus on a nearest neighbor approximation, where we assume
that the majority of the PE arises from errors made to the incorrect code-
words nearest to the correct codeword (i.e., the nearest neighbors). That
is, stimuli a with d(x, a) = δO. This works as an approximation due to the
exponential decrease of Q(y) with y (and see Figure 2 for empirical confir-
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mation).

PE ≤
∑

x 6=a∈X

Q

(
d(x, a)

2σ

)
≈

∑
a∈X|d(a,x)=δO

Q

(
δO
2σ

)
taking only the nearest neighbors

= N∆(O)Q

(
∆OSNR

2
√
PO

)
applying Eq. M.4

= N∆(O)Q

(
SNR√
2K/O

)
where N∆(O) is the number of nearest neighbors the code of order O has,
we derive it in Code neighbors in Supplemental Information. Thus, we can
see that PE depends most strongly on the minimum distance-representation
energy ratio and SNR, but also depends on the number of nearest neighbors a
particular code has at minimum distance. This number is the same (Eq. S.1)
for codes with 1 ≤ O < K, but vastly increases for codes with O = K.

1.8 Total energy

Similar to [9], we assume that all neurons, whether spiking or not, consume
some baseline, non-zero amount of energy – due to passive maintenance pro-
cesses, including the circulation of ion channels, and due to spontaneous
activity. We define this amount of energy to be equal to one unit. Next, we
assume that spiking neurons consume the baseline energy plus an amount
of energy proportional to the square of their firing activity; this activity
summed across the population is the representation energy (PO). So, the
total energy consumption of a code, E, can be written:

E = εV +DO (M.5)

where ε controls the proportional cost of spiking relative to passive mainte-
nance costs. This ε will vary between neuron types, but has been estimated
by experiment to be around 10 to 102[9].
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From Eq. M.5, we see that a code of order O allocated E total energy would
have,

V =
E −DO

ε

and

δ2 =
2O

Kε
(E −DO)

where only codes with V > 0 (that is, E > DO) can be implemented in
practice. This δ is used in the comparisons for Figure 2d. From this expres-
sion, we observe that the particular value of ε does not change the relative
performance of codes with different orders. So, our results in Figure 2d do
not depend on ε.

Further, we find that when δO = δO+1 as a function of E to discover when
the O + 1-order code will begin to outperform the O-order code:

δ2
O = δ2

O+1

2O

Kε
(E −DO) =

2(O + 1)

Kε
(E −DO+1)

O (E −DO) = (O + 1) (E −DO+1)

OE −ODO = (O + 1)E − (O + 1)DO+1

E = (O + 1)DO+1 −ODO

= (O + 1)

(
K

O + 1

)
nO+1 −O

(
K

O

)
nO

= (K −O)

(
K

O

)
nO+1 −O

(
K

O

)
nO

= (K −O)

(
K

O

)
nO+1 − O

n

(
K

O

)
nO+1

=
nK − (n+ 1)O

n

(
K

O

)
nO+1

= (nK − (n+ 1)O)

(
K

O

)
nO

EO→O+1 = (nK − (n+ 1)O)DO
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and using this for O = 1, we find that

Emixed = n2K2 − n2K − nK (M.6)

< n2K2

such that for E > Emixed a mixed code (i.e., a code of order O > 1) will
always provide better performance than a pure code.

1.9 Experimental details and task description

We used experimental data in Figure 4 that was previously published in a
separate study [10]. The full methods are given in the original paper, though
we briefly review several key points here. The data may be requested from
the authors of the previous study.

1.9.1 The behavioral task

See the schematic in Figure 4b. First, a moving dot stimulus in a direction
that was on one side of a learned category boundary was presented while the
animal fixated. Then, there was a delay period during which the animal was
compelled to saccade to one of two locations before, finally, a second motion
stimulus was presented and the animal reported whether the category of
the first (or sample) stimulus matched the category of the second (or test)
stimulus. The division of the 360◦ of motion direction into two contiguous
categories was arbitrary, and learned by the animals over extensive training.

1.9.2 The electrophysiological recordings and analysis

The experimenters recorded from 64 lateral intraparietal area (LIP) neurons
in two monkeys (monkey J: n = 35; monkey M: n = 29) during performance
of the DMC task. Recordings were performed using single 75 µm tungsten
microelectrodes (FHC). Units were sorted offline, and selected for quality
and stability. No information about the LIP subdivision from which each
neuron was collected is available.

Linear models for motion category (category 1 or 2) and saccade direction
(toward or away from the neuronal RF) with interaction terms (between
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category and saccade direction) were fit using an L1 prior in scikit-learn
(i.e., the Lasso fitting procedure) to all neurons with greater than 15 trials
for each of the four conditions. Coefficients were tested for significance via
a permutation test at the p < .05 level. Spikes were counted in the 20 ms to
170 ms window after the saccade was made and then spike counts for each
neuron were z-scored across the four conditions.

1.10 The rate-distortion bound and mutual informa-
tion calculation

To calculate the rate-distortion bound (RDB) for our source distribution, we
use a Python implementation of the iterative Blahut-Arimoto algorithm[11,
12]. Since the optimization problem is convex, the algorithm is guaranteed
to converge on the right solution, given enough iterations. To ensure an ade-
quate number of iterations, we terminate the algorithm only when successive
steps are less than 10−10 change in error probability magnitude.

To evaluate our codes alongside the RDB, we must calculate the mutual
information between the stimulus distribution X and the distribution of our
stimulus estimates X̂. So,

I(X; X̂) = H(X̂)−H(X̂|X)

where

H(Y ) = −
∑
y∈Y

P (y) log2 P (y)

H(Y |Z) = −
∑
z∈Z

P (z)
∑
y∈Y

P (y|z) log2 P (y|z)

=
∑
z∈Z

P (z)H(Y |Z = z)

To compute these quantities, we rely the observation that P (X) = P (X̂).
That is, both distributions are uniform, with P (x̂) = P (x) = 1

nK . This can be
seen from the fact that none of our codewords have more (or fewer) neighbors
at any given distance than any of our other codewords (see statement 7).
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Using this,

I(X; X̂) = H(X̂)−H(X̂|X)

= H(X)−H(X̂|X)

= K log2 n−
∑
x∈X

P (x)H(X̂|X = x)

Since P (x) = 1
nK and P (X̂|X = x) has the same entropy for all x, following

from the observation above, it is enough to estimate

I(X; X̂) = K log2 n−H(X̂|X = x)

for a particular x. We do this via numerical simulations (see Full channel
details in Methods for details).
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A Supplemental Information

A.1 Glossary of terms

M The number of stimuli transmitted by a code.

∆O The minimum distance of the code of order O.

δO The minimum distance of a code of order O after β is ap-
plied.

PO The representation energy used by a code of order O.

V The representation energy used by a code after β is applied.

DO The population size of a code of order O.

N The population size of the code after β is applied.

K The number of features that a stimulus has.

Ci The set of values that feature i can take on.

ni The size of set Ci; that is, ni = |Ci|
Gs
K The set of all possible subsets of [1, ..., K] with size s; {X ⊂

[1, ..., K] : |X| = s}
x A stimulus; a vector of length K, where xi ∈ Ci for all i.

tO(x) The encoding function of order O. It takes a stimulus (x)
and produces the representation of that stimulus in a code
of order O – also referred to as the codeword. The repre-
sentation is a vector of length DO of ones and zeros.

β The amplifying transform. It is applied to the codeword
(tO(x)) and produces the amplified encoding; β is a matrix
of size N×D and must satisfy the constraints given in The
amplifying linear transform (β) in Methods.

H The power in each column of β;
√∑N

i β
2
ij = H for all j.

η A noise term. Here, always Gaussian, with η ∼ N(0, σ2).

c(x) The amplified codeword corresponding to a given stimulus,
c(x) = βtO(x). It is a vector of length N .

r(x) The noisy amplified codeword corresponding to a given
stimulus, r(x) = c(x) + η. It is a vector of length N .

f(r) The maximum likelihood decoding function for a particular
code. It solves the equation argmaxx P (r|x)P (x)/P (r).

x̂ The estimate of x, derived from a noisy representation, x̂ =
f(r).
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A.2 Code neighbors

For the UBE, it becomes necessary to know the number of codewords at
minimum distance from any given codeword (N∆(O)).
Statement 6. The number of neighbors at minimum distance for a code of
order O N∆(O) is given by:

N∆(O) =

K(n− 1) O < K

nK − 1 O = K

(S.1)

Derivation. From the fact that the distance function is increasing with v
(statement 2), we know that d(K,O, 1) is the minimum of d(K,O, v), but it
may or may not be a unique minimum.
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Thus, we want to find O such that d(K,O, 1) < d(K,O, 2),

0 < d(K,O, 2)2 − d(K,O, 1)2

=

(
2

2

)(
K − 2

O − 2

)
+

(
2

1

)(
K − 2

O − 1

)
−
(

1

1

)(
K − 1

O − 1

)
=

(
K − 2

O − 2

)
+ 2

(
K − 2

O − 1

)
−
(
K − 1

O − 1

)
exploiting binomial identities to make all binomial terms equal

=

(
K − 2

O − 2

)
+ 2

K − 2 + 1−O + 1

O − 1

(
K − 2

O − 2

)
− K − 1

O − 1

(
K − 2

O − 2

)
=

(
K − 2

O − 2

)
+ 2

K −O
O − 1

(
K − 2

O − 2

)
− K − 1

O − 1

(
K − 2

O − 2

)
=

[
1 + 2

K −O
O − 1

− K − 1

O − 1

](
K − 2

O − 2

)
=
O − 1 + 2K − 2O −K + 1

O − 1

(
K − 2

O − 2

)
=
K −O
O − 1

(
K − 2

O − 2

)
this is undefined for O = 1, which is undesirable

=
K − 1

K − 1

K −O
O − 1

(
K − 2

O − 2

)
0 <

K −O
K − 1

(
K − 1

O − 1

)
This last expression is true when 1 ≤ O < K and false otherwise (i.e.,
when O = K). When it is true, it implies that changing one stimulus feature
produces codewords at a closer distance than changing two stimulus features.
Now, we must find how many stimuli differ by a single feature from a given
stimulus. Any single feature of the K features could be changed, and it could
be changed to any one of n− 1 different values (excluding its current value)
– so, N∆(O) = K(n− 1) for O < K.

If O = K, then GK
K = {{1, ..., K}} = BK

1 and since BK
i cannot grow beyond

the size of GO
K , all codewords must be at the same distance. Thus, N∆(O) =

nK − 1 for O = K.
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Statement 7. The number of neighbors at a fixed distance does not depend
on codeword identity.

Derivation. We assume that the number of neighbors at a fixed distance does
depend on codeword identity and show that this leads to a contradiction. We
know that codeword distance does not depend on original codeword identity
(statement 1), but does depend on the number of features that the stimuli
differ by. Thus, for a set of codewords to have more neighbors at a particular
distance than a different set of codewords, the corresponding set of stimuli
must be able to differ in more ways from the corresponding set of other
stimuli. Stimuli can differ by changing 1 to K of their K features to one of
the n− 1 different values for each feature Ci. For a set of stimuli to be able
to differ in more ways than a different set of stimuli, that set of stimuli must
have either more features or more possible values for each feature. Either
of these would contradict our definition of the stimuli (see Definition of the
stimuli in Methods).

A.3 L1 norm for representation energy

To this point, we have used the L2-norm to characterize the relationship
of spiking activity across the population to metabolic energy consumption
in the form of representation energy. This is following decades of literature
on neural coding[1] and communication theory[2]. However, there is some
evidence to suggest that the L1-norm may be more appropriate for use in
the brain[3]. Given the L1-norm, the distance to representation energy ratio
from Minimum distance-representation energy ratio in Methods becomes:

∆2

P 1/2
= 2

(
K−1
O−1

)(
K
O

)1/2

= 2
((K −O)!O!)1/2 (K − 1)!

(K −O)!(O − 1)! (K!)1/2

= 2
(O(K − 1)!)1/2

(K(O − 1)!(K −O)!)1/2

which is difficult to interpret intuitively, although one can observe that the
O = K code always has a higher ratio than the O = 1 code, indicating that
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the broad intuition we have gained from our previous analysis holds here
as well. However, codes that fall between these two extremes often provide
superior performance to the O = K code. We demonstrate this in Figure S1.

A.4 Poisson noise

To this point, the noise in our neural channel has been Gaussian distributed,
which allows us to vary the SNR down our channel independently of repre-
sentation energy or firing rate. However, neural firing rates are often viewed,
at least roughly, as following a Poisson process, which implies a particular
SNR at different firing rates due to a strict relationship between mean firing
rate and firing rate variance (though experimentally observed firing rate-SNR
relationships have not followed the one expected from a Poisson process[4]).
Thus, it is possible that due to the different firing rates of individual neu-
rons used in our codes (as only the sum firing rate is held constant across
codes), Poisson noise could change which code performs best. However, in
Figure S2, we show via simulations of our channel with Poisson instead of
Gaussian variability that mixed codes still outperform pure codes.

A.5 Additional results on response fields

Generalizing our current framework to allow flexibly sized response fields
(RFs) requires only a reformulation of the indicator function. Instead of
performing an equality operation, it should instead perform a set membership
operation, as

[i ∈ J ] =

0 i /∈ J

1 i ∈ J

where the set J is, in this case, a contiguous sequence of feature values of
length σrf. Following this, for our main results, σrf = 1. Now, we explore
how choosing σrf > 1 changes our results.
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A.5.1 Effects on minimum distance, representation energy, and
population size

Population size and representation energy change with RF size to ensure that
full coverage of the stimulus set is maintained. To achieve this, we arrange
the code dimensions in a series of σrf overlapping lattices, where each lattice
has non-overlapping RFs in a grid pattern. This strategy is not guaranteed
to be the most efficient tiling of the space, but it is simple to implement
and analyze – and it approximately meets the theoretical estimate of the
dimensionality of the most efficient tiling[5].

Dimensionality:

DO =

(
K

O

)
σrf

(
n

σrf

+ 1

)O
Power:

PO =

(
K

O

)
σrf

Minimum distance:

∆O =

[
2

(
K − 1

O − 1

)]2

Note that minimum distance is not affected.

A.5.2 The optimal σrf for a given total energy

For a fixed K, O, n, and E, we want to find the σrf that maximizes minimum
distance. For E = εV + DO, and using δ(K,O, σrf, V ) as an expression for
minimum distance after application of β to produce a code with power V ,
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we can write the problem as:

L = δ

(
K,O, σrf,

E −DO

ε

)2

=
2O

Kε

(
E −DO

σrf

)
=

2O

Kε

[
E

σrf

−
(
K

O

)(
n

σrf

+ 1

)O]

and now, to find the maximum, we will take the derivative ∂L
∂σrf

,

∂L

∂σrf

=
2O

Kε

∂L

∂σrf

[
E

σrf

−
(
K

O

)(
n

σrf

+ 1

)O]

=
2O

Kε

[
− E
σ2

rf

+

(
K

O

)
O

(
n

σrf

+ 1

)O−1
n

σ2
rf

]

and now setting the LHS to zero,

∂L

∂σrf

= 0 =
2O

Kε

[
− E
σ2

rf

+

(
K

O

)
O

(
n

σrf

+ 1

)O−1
n

σ2
rf

]

E =

(
K

O

)
O

(
n

σrf

+ 1

)O−1

n

E(
K
O

)
On

=

(
n

σrf

+ 1

)O−1

(
E(

K
O

)
On

) 1
O−1

=
n

σrf

+ 1

σrf,opt = n

[ E

On
(
K
O

)] 1
O−1

− 1

−1

(S.2)

See Figure S3F for a plot of this function. This formalization does ignore
benefits of σrf,opt > 1 for reducing the number of nearest neighbors of high
order codes.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577288doi: bioRxiv preprint 

https://doi.org/10.1101/577288
http://creativecommons.org/licenses/by-nc/4.0/


A.5.3 Effects on error distribution

Increasing RF size has the effect of pulling the distribution of squared-error
distortion more concentrated toward zero, while increasing the overall prob-
ability of an error (see Figure 3D). The increase in overall probability of an
error for fixed SNR can be understood by the expression for code power given
above, where an increase in RF size increases the power consumption of the
code without producing a change in minimum distance.

However, increasing RF size does produce a change in the number of code-
words at minimum distance and at succeeding distances. To see this, we can
focus on the O = K case: with σrf = 1, we know that all other codewords are
nearest neighbors to a given codeword (Eq. S.1) because only one dimension
is active for each codeword. If, instead, we have σrf = 2, we know that each
RF has a volume of σKrf feature values, but their intersection must be of size
1. Thus, either active RF can be changed to σKrf − 1 different RFs to still
form a valid codeword. Thus, the number of nearest neighbors is 2

(
2K − 1

)
.

With σrf = 2, all stimuli except the nearest neighbors will be at the same,
further distance.

A.6 Error-reduction by NMS in the continuous case

Here, we adopt continuous stimulus features and RFs to test how well the
benefits of mixed codes generalize to the continuous case (also see [6] for a
deeper investigation of the continuous case). In particular, with stimuli x ∈
X composed of K features, xi ∼ U (0, ni). Instead of the flat, discrete RFs
defined in Additional results on response fields in Supplemental Information,
we use Gaussian RFs,

r(x|σw, c) = exp

(
−
∑DO

i (xi − ci)2

2σ2
w

)
which are then scaled by the amplifying transform β as described in The
amplifying linear transform (β) in Methods. The rest of the channel is iden-
tical to the channel described previously, including the additive noise. RFs
are tiled in the same way, though now their width σw is independent of σrf,
which dictates their tiling – as in Additional results on response fields in
Supplemental Information.
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Our simulations show similar results to the discrete case (Figure S4), with
higher order codes yielding lower MSE across all of the SNRs we investigated.
Thus, the broad advantage of mixed codes apply in the continuous case as
well. However, increasing RF size produces higher MSE, which is the opposite
of our results in the discrete case. Future work is needed to discover why
this is, and in what other ways the continuous case differs from the discrete
case.
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A

B

C

Figure S1: Using an L1 norm instead of an L2 norm to account for representation
energy increases the performance of 1 < O < K codes, related to Figure 2 using the L1
instead of L2 norm for representation energy. A Simulation of codes with O = 1, 2, 3 for
K = 3 and n = 5. B (left) Using the UBE, we show that for different K (with n = 5) the
SNR required to reach 1 % decoding error tends to have its minimum around K/2.
(right) The representation energy required by the pure code relative to that required by
the best mixed code (given by point color and label) to reach 1 % decoding error. C (left)
Given a pool of neurons with fixed size, the color corresponding to the code producing
the highest minimum distance is shown in the heat map. The shaded area delineates the
order of magnitude of the number of neurons believed to be contained in 1 mm3 of mouse
cortex. (right) The same as on the left, but instead of a pool of neurons of fixed size,
each code is given a fixed total amount of energy. The energy is allocated to both passive
maintenance of a neural population (with size equal to the population size of the code)
and representation energy (increasing SNR). The shaded area is the same as on the left.
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Figure S2: Channels with Poisson noise have similar performance to those with
Gaussian noise, related to Figure 2. A The error rate (PE) as a function of
representation energy (V ) for codes with Poisson distributed noise, K = 3 and n = 5.
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Figure S3: Changing response field (RF) size changes code properties, related to
Figure 3. a The number of dimensions required to implement the code decreases by
several orders of magnitude. b The power of the code increases by several orders of
magnitude. c The tradeoff between minimum distance and code power remains constant
if all codes are given the same RF size. d The RF size maximizing minimum distance
under the total energy constraint differs between codes. e The code providing the
highest minimum distance with σrf = 1 (left) and σrf = σrf,opt (right) as computed in
Eq. S.2. They are only marginally different. f The optimal RF size for codes of different
orders given features with different numbers of possible values. g Histogram of the
differences in code order giving the highest distance from e.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577288doi: bioRxiv preprint 

https://doi.org/10.1101/577288
http://creativecommons.org/licenses/by-nc/4.0/


A B

C

Figure S4: The benefits of mixed codes broadly generalize to continuous stimuli and
RFs, related to Figure 3. A The MSE of codes of all orders with K = 3. The
higher-order codes provide better performance than the lower-order codes. B MSE
increases with RF size, which is contrary to the result in the discrete case (Figure 3d). C
The cumulative distribution function of squared error for the three codes and for three
different RF sizes.
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