Supplementary Methods

Study populations

The individuals were recruited into various collections, UK-based individuals from the type 1 diabetes genetics consortium (T1DGC)¹, the genetic resource investigating diabetes (GRID), the Warren cohort², the northern Irish GRID³, the 1958 birth control cohort and the UK blood service¹, individuals from central Europe, Asia-Pacific and the USA from the T1DGC and individuals from Finland from the IDDMGEN and T1DGEN cohorts⁴.

We grouped the individuals into three groups, individuals from the UK, individuals from Finland and individuals recruited into the T1DGC study. From each group, we removed individuals related to closer than second degree by pruning variants correlated to $r^2 > 0.2$ and removing the major histocompatility (MHC) region. We then calculated relatedness using the KING 2.0.9 software ⁵, leaving the total of 26,991 individuals for analysis. After removing variants in linkage disequilibrium (LD) and the MHC region (chromosome 6, positions 25000000-35000000 genome build 36), 29,101 variants were used for relationship inference in the UK group, 28,597 in the T1DGC group and 26,809 in the Finnish group.

Genotyping

All samples were genotyped using the Illumina ImmunoChip¹, a specialised platform which densely genotypes regions of interest for autoimmune diseases.

Imputation

To impute the classical HLA alleles of individuals on our dataset, HiBag 6 R Bioconductor package was used with the classifiers as calculated from the training dataset in the original publication used. Alleles called with a probability of less than 0.5 were treated as missing. Nine non-HLA variants that we wanted to examine failed genotype quality control (QC) from direct genotyping using the ImmunoChip; either for having a minor allele frequency <0.01, a Hardy-Weinberg equilibrium exact test p value $<5\times10^{-4}$ or $\ge5\%$ missing values. In these instances, we imputed the variants using the IMPUTE2⁷ software; with the 1000 Genomes Project data as the reference haplotypes. We used this same imputation strategy to impute around index variants for non-HLA regions found to be differentially associated between the <7 and ≥13 groups for fine mapping.

Heterogeneity tests

In order to examine heterogeneity in effect size between the <7 and \geq 13 groups, we fitted two multinomial logistic regression models including all individuals from the three AAD groups and controls in both models, assessing the probability of being in each AAD group relative to controls. In the first model, we fitted the multinomial logistic regression with no constraints, adjusting for the top ten largest genetic principal components and the examined variant, where a different effect size for the disease-associated genetic variant was estimated in the <7, 7-13 and \geq 13 groups. In the second model, as suggested in ⁸, we constrained the effect size of the genetic variant in the <7 and \geq 13 groups to be equal to each other. If the unconstrained model fitted the data significantly better than the constrained model, this would suggest there are differences in effect sizes for the genetic variant between the two groups. We tested for heterogeneity between the <7 and \geq 13 groups using a likelihood ratio test comparing these two models. This analysis was performed using the multinomRob R package ⁹.

For HLA analyses, we additionally adjusted for other HLA haplotypes/alleles to account for the high levels of LD in the region. When examining the HLA class II haplotype effects other than DR3-DQ2/DR4-DQ8, we examined only individuals

2

without the DR3-DQ2/DR4-DQ8 haplotype in order to remove any confounding effects of this diplotype. Supplementary Table 1 shows which individuals were included in each analysis, as well as the classical haplotypes/alleles adjusted for, with some rare haplotypes/classical alleles not adjusted for in models due to failure of the logistic regression algorithm to converge when these were included.

The top 10 genetic principal components were adjusted for in each analysis and were generated using ImmunoChip data filtered so that a set of independent variants $(r^2 < 0.2)$ were kept and the MHC region was excluded entirely (chromosome 6, positions 25000000-35000000 genome build 36), leaving a total of 25,745 variants for which to calculate principal components from. The PLINK software was used to carry out this procedure ¹⁰.

The false discovery rate (FDR) applied throughout is the Benjamini-Hochberg FDR procedure ¹¹.

Binomial test examining variants not associated to FDR <0.1

Given there are 3 AAD groups in our analysis, there are 6 possible ways the log-odds ratio estimates could be ordered. If there were to be no differences in genetic effect between AAD groups, we would expect approximately one sixth of the variants tested to be in each of the possible orders. We therefore performed a binomial test comparing the number of times the ordering was the largest effect estimate in the <7s, the intermediate effect estimate in the 7-13s and the smallest effect estimate in the \geq 13s to that expected by chance (1/6=0.167).

Fine-mapping

At regions selected for fine mapping due to their heterogeneity in effect sizes between the <7 and \geq 13 group, we implemented GUESSFM ¹². We imputed a 0.5 Mb region around each index variant, then to guard against identifying false positive associations due to imputation, we removed variants from the stochastic search that had a certainty call rate of <75%, a minor allele frequency of <0.005, an absolute Hardy-Weinberg equilibrium z score of >8 (in controls only) and a variant imputation information score of <0.8 or a difference in imputation information score between cases and controls of more than 0.01. We also excluded variants with a concordance rate between genotypes and imputed genotype call of <0.8 and variants where the ratio of the variance compared to the approximate expected variance for a variant with that minor allele frequency (MAF) (\approx 2×MAF×(1-MAF)) was greater than 0.05. We adjusted for the top five principal components, set the prior mean number of expected causal variants in the region to be three and saved the top 10,000 most visited models for downstream analysis.

Colocalisation analyses

Using the imputed genotype data as described above, we tested each imputed variant that passed imputation QC for an association with type 1 diabetes diagnosed at <7 years compared to controls using logistic regression. We then took association summary statistics for these variants from an eQTL analysis in whole blood of over 30,000 individuals ¹³. Summary statistics from both association studied (disease risk and eQTL) were converted to approximate Bayes Factors (ABFs). Posterior probabilities were then calculated for each of the following scenarios: i) association with disease only, ii) association with eQTL only, iii) association with disease and eQTL but distinct signals or iv) shared disease and eQTL signal in the region ¹⁴. We focus on scenario iv), colocalisation of disease and eQTL signal, which is calculated by multiplying the ABFs for disease and eQTL together for each variant (to get the likelihood of colocalisation) and multiplying this by the prior probability of association

4

of each variant for disease and eQTL, set at 0.001, meaning the prior probability for colocalisation was 0.000001. Dividing this product by the normalising factor, the overall probability of all combinations of each of the four hypotheses and also the probability of no association with disease or eQTL, gives the posterior probability of colocalisation. The coloc R package was used to carry out this analysis.

Haplotype/all ele name	Haplotype/allele definition	Individuals included	Conditioned on	Enough individuals to include?
DR3-DQ2	DRB1*03:01-DQB1*02:01	Non-DR3/4	A*02:01, A*24:02, B*39:06	Yes
DR4-DQ8	DRB1*04:01-DQB1*03:02 DRB1*04:02-DQB1*03:02 DRB1*04:02-DQB1*03:02 DRB1*04:05-DQB1*03:02 DRB1*04:05-DQB1*03:02 DRB1*04:01-DQB1*03:04 DRB1*04:02-DQB1*03:04 DRB1*04:05-DQB1*03:04 DRB1*04:05-DQB1*03:04 DRB1*04:05-DQB1*03:04 DRB1*04:05-DQB1*02:02 DRB1*04:02-DQB1*02:02 DRB1*04:04-DQB1*02:02 DRB1*04:05-DQB1*02:02 DRB1*04:05-DQB1*02:02 DRB1*04:05-DQB1*02:02	Non-DR3/4 only	A*02:01, A*24:02, B*39:06	Yes
DR3- DQ2/DR4- DQ8	Any combination of rows 1 and 2 above, one on either chromosome.	All individuals	A*02:01, A*24:02, B*39:06	Yes
DRB1*13:03- DQB1*03:01	DRB1*13:03-DQB1*03:01	Non-DR3/4 only		No
DRB1*11:04- DQB1*03:01	DRB1*11:04-DQB1*03:01	Non-DR3/4 only		No
DRB1*15:01- DQB1*06:02	DRB1*15:01-DQB1*06:02	Non-DR3/4 only		Yes
DRB1*07:01- DQB1*03:03	DRB1*07:01-DQB1*03:03	Non-DR3/4 only		Yes
DRB1*14:01- DQB1*05:03	DRB1*14:01-DQB1*05:03	Non-DR3/4 only		No
A*02:01	A*02:01	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, B*39:06	Yes
A*24:02	A*24:02	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, B*39:06	Yes
A*11:01	A*11:01	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, B*39:06	Yes
A*32:01	A*32:01	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, B*39:06	Yes
DPB1*03:01	DPB1*03:01	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, A*02:01, A24*02, B*39:06	Yes
DPB1*04:02	DPB1*04:02	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, A*02:01, A24*02, B*39:06	Yes
B*18:01	B*18:01	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, A*02:01, A24*02	Yes
B*39:06	B*39:06	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, A*02:01, A24*02	Yes
B*44:03	B*44:03	All individuals	DR3-DQ2, DR4-DQ8, DR3-DQ2/DR4-DQ8, A*02:01, A24*02	Yes

Supplementary Table 1: Classical HLA alleles/haplotypes examined in analysis.

Variant name	Chr	Position (genome build 37)	Publication(s) where association identified*	Locus name in Figures in this manuscript
rs2476601	1	114377568	Onengut-Gumuscu	PTPN22
rs78037977	1	172681031	Fortune	TNFSF4**
rs6691977	1	200814959	Onengut-Gumuscu	CAMSAP2
rs3024505	1	206939904	Onengut-Gumuscu	IL10
rs4849135	1	111615079	Onengut-Gumuscu	ACOXL
rs13415583	2	100764087	Onengut-Gumuscu	AFF3
rs2111485	2	163110536	Onengut-Gumuscu	IFIH1 (1)
rs35667974	2	163124637	Onengut-Gumuscu	IFIH1 (2)
rs72871627	2	163136942	Onengut-Gumuscu	IFIH1 (3)
rs3087243	2	204738919	Onengut-Gumuscu	CTLA4
rs113010081	3	46457412	Onengut-Gumuscu	CCR5
rs6819058	4	123114622	Onengut-Gumuscu/ Burren	IL2/IL21 (1)
rs67797421	4	123116177	Onengut-Gumuscu/ Burren	IL2/IL21 (2)
rs2611215	4	166574267	Onengut-Gumuscu	CPE
rs11954020	5	35883251	Onengut-Gumuscu	IL7R
rs72975913	6	128293932	Inshaw	PTPRK/THEMIS
rs72928038	6	90976768	Onengut-Gumuscu	BACH2
rs1538171	6	126752884	Onengut-Gumuscu	CENPW
rs62447205	7	50465830	Onengut-Gumuscu	IKZF1
rs10277986	7	51028987	Onengut-Gumuscu	COBL
rs6476839	9	4290823	Onengut-Gumuscu	GLIS3
rs61839660	10	6094697	Onengut-Gumuscu, Wallace	IL2RA (1)
rs11594656	10	6122009	Onengut-Gumuscu, Wallace	IL2RA (2)
rs6602437	10	6130077	Onengut-Gumuscu, Wallace	IL2RA (3)
rs41295121	10	6129643	Onengut-Gumuscu, Wallace	IL2RA (4)
rs12416116	10	90035654	Onengut-Gumuscu	PTEN
rs689	11	2182224	Onengut-Gumuscu	INS (1)
rs72853903	11	2198665	Onengut-Gumuscu	INS (2)
rs917911	12	9905851	Onengut-Gumuscu	CD69
rs705705	12	56435504	Onengut-Gumuscu	IKZF4
rs653178	12	112007756	Onengut-Gumuscu	SH2B3
rs9585056	13	100081766	Onengut-Gumuscu	GPR183
rs1456988	14	98488007	Onengut-Gumuscu	LINC01550
rs56994090	14	101306447	Onengut-Gumuscu	MEG3
rs72727394	15	38847022	Onengut-Gumuscu	RASGRP1
rs34593439	15	79234957	Onengut-Gumuscu	CTSH
rs151234	16	28505660	Onengut-Gumuscu	<i>IL27</i>
rs12927355	16	11194771	Onengut-Gumuscu	DEXI (1)
rs193778	16	11351211	Onengut-Gumuscu	DEXI (2)
rs8056814 rs12453507	16	75252327 38053207	Onengut-Gumuscu Onengut-Gumuscu	IKZF3
rs757411	17	38775150	Onengut-Gumuscu	CCR7

Supplementary Table 2: Non-HLA variants examined in analysis.

rs1052553	17	44073889	Onengut-Gumuscu	MAPT
rs1893217	18	12809340	Onengut-Gumuscu	PTPN2 (1)
rs12971201	18	12830538	Onengut-Gumuscu	PTPN2 (2)
rs1615504	18	67526644	Onengut-Gumuscu	CD226
rs34536443	19	10463118	Onengut-Gumuscu	ТҮК2 (1)
rs12720356	19	10469975	Onengut-Gumuscu	TYK2 (2)
rs402072	19	47219122	Onengut-Gumuscu	PRKD2
rs516246	19	49206172	Onengut-Gumuscu	FUT2
rs6043409	20	1616206	Onengut-Gumuscu	SIRPG
rs11203202	21	43825357	Onengut-Gumuscu	UBASH3A
rs6518350	21	45621817	Onengut-Gumuscu	ICOSLG
rs4820830	22	30531091	Onengut-Gumuscu	HORMAD2
rs229533	22	37587111	Onengut-Gumuscu	C1QTNF6

*Most recent publication listed. Onengut-Gumuscu¹, Fortune¹⁵, Burren¹⁶, Inshaw³, Wallace¹². **Candidate gene different from previous reports based on publically available gene expression (<u>https://dice-database.org/</u>) and promoter-capture Hi-C data (<u>https://www.chicp.org</u>). <u>Supplementary Table 3:</u> Non-HLA region variants with evidence of heterogeneity in effect size between the <7 and ≥13 groups: Promoter Capture Hi-C (PCHi-C) candidate genes.

Locus name/ karyotype band	Tag/index variant	Candidate causal genes	PCHi-C prioritised protein coding	PCHi-C prioritised non-protein coding
<i>IKZF3 /</i> 17q21	rs12453507	IKZF3 ORMDL3 GSDMB	GRMDL3 GSDMB ZPBP2	-
<i>CTSH /</i> 15q25.1	rs34593439	CTSH	CTSH BCL2A1	-
<i>GLIS3 /</i> 9p24.2	rs6476839	GLIS3	GLIS3**	GLIS3-AS1**
IL2RA (3) / 10p15.1	rs6602437	IL2RA	RBM17 IL2RA GD12 PRKCQ ANKRD16 FAM208B FBX018	RP11-536K7.3 PRKCQ-AS1
IL10/ 1q32.1	rs3024505	IL10 FAIM3	IL10 FCAMR IL20 FAIM3 PIGR CD55 IL24 IL19	-
PTPRK/THEMIS / 6q22.33	rs72975913	PTPRK THEMIS	PTPRK THEMIS	
<i>SIRPG</i> / 20p13	rs6043409	SIRPG SIRPG-ASI	-	

*Inshaw et. al¹⁷ ** Miguel-Escalada et al.¹⁸

Locus name/	Tag/index	Candidate	Tissues	BLUEPRINT ¹⁹ / DICE** database	Function
karyotype band	variant	causal genes	expressed*	immune cell types expressed***	
<i>IKZF3 /</i> 17q21	rs12453507	IKZF3 ORMDL3 GSDMB	<i>IKZF3</i> : Small intestine, spleen	<i>IKZF3</i> : thymocytes, B, T and NK cells	<i>IKZF3 (Ailos)</i> : A transcriptional regulator and a member of the Ikaros gene family 20 . IKZF3 regulates B cell activation thresholds and
			<i>ORMDL3</i> : Ubiquitous	<i>ORMDL3</i> : thymocytes, 1, B, and NK cells, eosinophils	high affinity plasma cells ²² . In T cells, IKZF3 acts as a transcriptional repressor
			<i>GSDMB</i> : Ubiquitous	<i>GSDMB</i> : thymocytes, T, B and NK cells, eosinophils	to promote Th17 differentiation ²³ and can modulate the activity of FoxP3 ²⁴ .
					<i>ORMDL3</i> : regulates sphingolipid biosynthesis and expression is increased by inflammatory stimuli ²⁵ . ORMDL3 is a negative regulator of store operated calcium entry ²⁶ and modulates lymphocyte activation and cytokine production ²⁷ .
					<i>GSDMB</i> : GSDMB can be cleaved by apoptotic caspases 28 and the active form of GSDMB induces pyroptotic cell death in epithelial cells 29 .
CTSH / 15q25.1	rs34593439	CTSH	Ubiquitous	Macrophages, DCs, T and B cells, monocytes	CTSH has amino- and endopeptidase activity ³⁰ and has been reported to process pro-surfactant protein B ³¹ and pro-granzyme B ³² into their active mature forms. Proteolytic cleavage of TLR3 by CTSH alters the stability, localization and/or the regulation of TLR3 activity ^{33, 34} . CTSH- deficient mice have reduced TLR3 expression and type 1 IFN release in response to poly(I:C) stimulation ³⁵ and T1D associated SNPs colocalise with a monocyte aOTL signal ³⁶

<u>Supplementary Table 4:</u> Details of non-HLA variants with evidence of heterogeneity in effect size between the <7 and ≥13 groups.

<i>GLIS3 /</i> 9p24.2	rs6476839	GLIS3	Pancreas, thyroid gland, kidney, ovary		GLIS3 is a transcriptional regulator ³⁷ , required for insulin expression ³⁸ , function and transcriptional program of mature beta cells ³⁹ . A key molecule regulating the response to unfolded protein stress and protection of beta cells from apoptosis ^{40, 39} .
IL2RA (3) / 10p15.1	rs6602437	IL2RA	Bone marrow, Lymph nodes, spleen	Thymocytes, T, B, NK	<i>IL2RA</i> encodes CD25 the alpha chain of the trimeric high affinity IL-2 receptor. IL-2 signaling controls T cell growth and differentiation, NK cell and activated B cell proliferation and is essential for the survival and function of regulatory T cells (Tregs) ^{41, 42}
IL10/ 1q32.1	rs3024505	IL10 FAIM3	<i>IL10:</i> Spleen <i>FAIM3:</i> Spleen, small intestine	<i>IL10</i> : Monocytes, activated T, Treg, macrophages and B cells. <i>FAIM3</i> : T and B cells	 <i>IL10</i>: Interleukin 10 is a key cytokine that modulates immune and non-immune cell function ⁴³. IL10 can be produced by specialized regulatory T ⁴⁴ and B cell populations ⁴⁵. Primary mechanisms include downregulation of MHC class II and cytokine responses of antigen- presenting cells ⁴⁶ and induction of anergy in T cells ⁴⁷. IL10 acts as a potent growth and differentiation factor for B cells ⁴⁸. <i>FAIM3</i>: Encodes FCmR a receptor for natural IgM ⁴⁹ and involved in B cell homeostasis ⁵⁰, control of IL10 production ⁵¹ and supports early B cell activation events and plasma cell development ⁵².
PTPRK/THEMIS / 6q22.33	rs72975913	PTPRK THEMIS	PTPRK: Ubiquitous THEMIS: Spleen, small intestine, thymus	PTPRK: Thymocytes, naïve T cells, B cells THEMIS: T cells	PTPRK: Protein tyrosine phosphatase receptor type kappa may be involved in thymic selection of single positive CD4 T cells ⁵³ . THEMIS: Thymocyte-expressed molecule involved in selection regulates phosphatase activity (Shp1) in developing thymocytes to enable positive selection ^{54, 55} . SUBBC: Signaling recenter protein common hinds to account of the selection of the selection for the selection

20p13	SIRPG-AS1	small intestine,		CD47 ⁵⁶ , a ubiquitously expressed integrin
		testis	SIRPG-AS1: T cell	associated protein. Interaction of SIRPG with CD47
				controls transendothelial migration of T cells ⁵⁷ .
				The T1D associated variant rs2281808 reduces
				expression of SIRPG in T cells and modulates the
				activation threshold and differentiation state of CD8
				T cells 58 .

*Human protein atlas: https://www.proteinatlas.org

** DICE database: https://dice-database.org/

*** T=T cells, B= B cells, NK = Natural Killer cells, DC= Dendritic cells.

INCLUDE:

(i) candidate genes nominated in Onengut-Gumuscu et al ¹ and Inshaw et al ¹⁷.
(ii) genes prioritised by promoter capture Hi-C (PCHi-C) in immune cells ^{17, 59}, or gene promoter interactions with credible SNPs in islet PCHi-C ¹⁸.

FILTER ON:

(i) expression in immune cells (<u>https://dice-database.org/</u>) or islets ⁶⁰

and/or

(ii) eQTL in whole blood ¹³ passing a Bonferroni corrected p value threshold ($p < 2.78 \times 10^{-13}$).

Variant	Position	Log-odds	Reference	Effect	Variant	Group
	(gr37)	ratio	allele	allele	posterior	posterior
					probability	probability
rs1008723	38066267	-0.1729	Т	G	3.55e-02	0.9557
rs1011082	38068514	-0.1664	Т	С	1.02e-02	0.9557
rs1031458	38072173	-0.1661	G	Т	9.82e-03	0.9557
rs1031460	38072247	-0.1691	Т	G	1.75e-02	0.9557
rs12453507	38053207	-0.1688	G	С	1.65e-02	0.9557
rs12603332	38082807	-0.1627	Т	С	5.51e-03	0.9557
rs12950209	38049102	-0.1774	С	Т	8.33e-02	0.9557
rs12950743	38049233	-0.179	С	Т	1.10e-01	0.9557
rs141758348	38069364	-0.1476	TCAAAA	Т	6.60e-04	0.9557
rs143385463	38071855	-0.1629	ATTT	А	5.78e-03	0.9557
rs150597688	38071086	-0.1653	С	CTT	7.76e-03	0.9557
rs2290400	38066240	-0.1767	С	Т	7.43e-02	0.9557
rs2305479	38062217	-0.1731	Т	С	3.74e-02	0.9557
rs2872516	38072727	-0.1422	С	Т	1.75e-04	0.9557
rs35196450	38062942	-0.1566	AC	А	1.77e-03	0.9557
rs36000226	38063929	-0.1665	С	Т	7.02e-03	0.9557
rs36084703	38063980	-0.1665	С	CA	7.10e-03	0.9557
rs4065275	38080865	-0.1662	А	G	1.06e-02	0.9557
rs62067034	38063738	-0.1668	Т	С	7.44e-03	0.9557
rs6503524	38069809	-0.1673	С	Т	1.24e-02	0.9557
rs68122720	38050092	-0.157	А	AAG	3.62e-03	0.9557
rs7216389	38069949	-0.1678	С	Т	1.35e-02	0.9557
rs7216558	38070071	-0.1709	С	Т	2.44e-02	0.9557
rs7219923	38074518	-0.1696	С	Т	1.94e-02	0.9557
rs7224129	38075426	-0.1694	G	А	1.88e-02	0.9557
rs7359623	38049589	-0.1644	Т	С	7.71e-03	0.9557
rs8065777	38072402	-0.1667	С	Т	1.10e-02	0.9557
rs8067378	38051348	-0.1818	G	А	1.93e-01	0.9557
rs8074437	38076137	-0.1677	Т	G	1.28e-02	0.9557
rs869402	38068043	-0.1677	Т	С	1.30e-02	0.9557
rs883770	38063381	-0.1723	Т	С	3.20e-02	0.9557
rs921649	38069274	-0.1669	С	Т	1.16e-02	0.9557
rs921650	38069076	-0.1686	G	А	1.53e-02	0.9557
rs9906951	38048244	-0.1794	С	Т	1.19e-01	0.9557

Supplementary Table 5: Most likely variants causally associated with T1D at the *IKZF3* locus from GUESSFM fine mapping analysis.

Supplementary Table 6: Most likely variants causally associated with T1D at the *CTSH* locus from GUESSFM fine mapping analysis.

Variant	Position (gr37)	Log-odds ratio	Reference allele	Effect allele	Variant posterior probability	Group posterior probability
rs12148472	79231478	-0.2763	Т	С	1.76e-02	1
rs12592898	79229199	-0.2736	G	А	9.89e-03	1
rs2289702	79237293	-0.3513	С	Т	4.47e-01	1
rs34593439	79234957	-0.3342	G	А	2.42e-01	1
rs34843303	79234470	-0.3283	Т	С	2.80e-01	1
rs60254670	79229959	-0.2648	TGGCCAGAATG	Т	4.10e-03	1

Supplementary Table 7: Most likely variants causally associated with T1D at the *GLIS3* locus from GUESSFM fine mapping analysis.

Variant	Position (gr37)	Log-odds ratio	Reference allele	Effect allele	Variant posterior probability	Group posterior probability
rs10116772	4290541	-0.129	А	С	1.43e-02	0.9751
rs10758593	4292083	-0.1338	А	G	2.96e-02	0.9751
rs10758594	4295583	-0.1421	А	G	1.26e-01	0.9751
rs10814915	4290544	-0.1358	Т	С	4.60e-02	0.9751
rs10814916	4293150	-0.1371	С	А	5.94e-02	0.9751
rs10814917	4296430	-0.1399	А	G	9.18e-02	0.9751
rs10974438	4291928	-0.1439	С	А	8.95e-02	0.9751
rs34706136	4294707	-0.1522	TG	Т	2.99e-01	0.9751
rs35338539	4298589	-0.1268	А	G	5.74e-03	0.9751
rs4339696	4295880	-0.1266	G	Т	1.17e-02	0.9751
rs6476839	4290823	-0.1352	Т	А	3.72e-02	0.9751
rs6476842	4291268	-0.1396	С	Т	8.45e-02	0.9751
rs7020673	4291747	-0.1389	G	С	8.03e-02	0.9751

Supplementary References

- 1. Onengut-Gumuscu, S. *et al.* Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. *Nat. Genet.* **47**, 381–6 (2015).
- Bain, S. C., Todd, J. A. & Barnett, A. H. The British Diabetic Association Warren Repository. *Autoimmunity* 7, 83–85 (1990).
- 3. Inshaw, J. R. J., Walker, N. M., Wallace, C., Bottolo, L. & Todd, J. A. The chromosome 6q22.33 region is associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5 years of age. *Diabetologia* **61**, 147–157 (2018).
- 4. Qiao, Q. *et al.* A genome-wide scan for type 1 diabetes susceptibility genes in nuclear families with multiple affected siblings in Finland. *BMC Genet.* **8**, (2007).
- 5. Manichaikul, A. *et al.* Robust relationship inference in genome-wide association studies. *Bioinformatics* **26**, 2867–2873 (2010).
- 6. Zheng, X. *et al.* HLA genotype imputation with attribute bagging. *Pharmacogenomics J.* 14, 192–200 (2014).
- 7. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLoS Genet.* **5**, (2009).
- 8. Morris, A. P. *et al.* A Powerful Approach to Sub-Phenotype Analysis in Population-Based Genetic Association Studies. *Genet. Epidemiol.* **34**, 335–343 (2010).
- 9. Mebane, W. & Sekhon, J. Robust Estimation and Outlier Detection for Overdispersed Multinomial Models of Count Data. (2004).
- 10. Chang, C. C. *et al.* Second-generation PLINK : rising to the challenge of larger and richer datasets. *Gigascience* **4**, (2015).
- 11. Banjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate : a Practical and Powerful Approach to Multiple Testing. *J. R. Stat. Soc. B* **57**, 289–300 (1995).
- 12. Wallace, C. *et al.* Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping. *PLOS Genet.* **11**, e1005272 (2015).
- 13. Võsa, U. *et al.* Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. *bioRxiv* 1–57 (2018).
- 14. Giambartolomei, C. *et al.* Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. *PLoS Genet.* **10**, (2014).
- 15. Fortune, M. D. *et al.* Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. *Nat. Genet.* **47**, 839–846 (2015).
- 16. Burren, O. S. *et al.* Chromosome contacts in activated T cells identify autoimmune disease candidate genes. *Genome Biol.* **18**, 165 (2017).
- Inshaw, J. R. J., Cutler, A. J., Burren, O. S., Stefana, M. I. & Todd, J. A. Approaches and advances in the genetic causes of autoimmune disease and their implications. *Nat. Immunol.* 19, 674–684 (2018).
- 18. Miguel-Escalada, I. *et al.* Human pancreatic islet 3D chromatin architecture provides insights into the genetics of type 2 diabetes. *bioRxiv* (2018).
- 19. Fernandez, J. M. et al. The BLUEPRINT Data Analysis Portal. Cell Syst. 3, 491-495 (2016).
- 20. John, L. B. & Ward, A. C. The Ikaros gene family : Transcriptional regulators of hematopoiesis and immunity. *J. Mol. Immunol.* **48**, 1272–1278 (2011).
- Wang, J. *et al.* Aiolos Regulates B Cell Activation and Maturation to Effector State. *Immunity* 9, 543–553 (1998).
- Cortés, M. & Georgopoulos, K. Aiolos Is Required for the Generation of High Affinity Bone Marrow Plasma Cells Responsible for Long-Term Immunity. *J. Exp. Med.* 199, 209–219 (2004).
- 23. Quintana, F. J. *et al.* Aiolos promotes TH17 differentiation by directly silencing Il2 expression. *Nat. Immunol.* **13**, 770–777 (2012).
- 24. Kwon, H., Chen, H., Mathis, D. & Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. *Nat. Immunol.* **18**, 1238–1248 (2017).
- 25. Davis, D., Kannan, M. & Wattenberg, B. Orm / ORMDL proteins: Gate guardians and master regulators. *Adv. Biol. Regul.* **70**, 3–18 (2018).
- 26. Carreras-Sureda, A. *et al.* ORMDL3 modulates store-operated calcium entry and lymphocyte activation. *Hum. Mol. Genet.* **22**, 519–530 (2013).
- 27. Schmiedel, B. J. et al. 17q21 asthma-risk variants switch CTCF binding and regulate IL-2

production by T cells. Nat. Commun. 7, (2016).

- 28. Feng, S., Fox, D. & Man, S. M. Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. *J. Mol. Biol.* **430**, 3068–3080 (2018).
- Panganiban, R. A. *et al.* A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. *J. Allergy Clin. Immunol.* 142, 1469–1478 (2018).
- 30. Turk, B., Turk, D. & Turk, V. Lysosomal cysteine proteases: more than scavengers. *Biochim. Biophys. Acta* 1477, 98–111 (2000).
- 31. Ueno, T. *et al.* Processing of Pulmonary Surfactant Protein B by Napsin and Cathepsin H*. *J. Biol. Chem.* **279**, 16178–16184 (2004).
- 32. Angelo, M. E. D. *et al.* Cathepsin H Is an Additional Convertase of Pro-granzyme B. *J. Biol. Chem.* **285**, 20514–20519 (2010).
- 33. Qi, R., Singh, D. & Kao, C. C. Proteolytic Processing Regulates Toll-like Receptor 3 Stability and Endosomal Localization. *J. Biol. Chem.* **287**, 32617–32629 (2012).
- 34. Garcia-cattaneo, A., Gobert, F., Müller, M., Toscano, F. & Flores, M. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling. *PNAS* **109**, 9053–9058 (2012).
- 35. Okada, R., Zhang, X., Harada, Y., Wu, Z. & Nakanishi, H. Cathepsin H deficiency in mice induces excess Th1 cell activation and early-onset of EAE though impairment of toll-like receptor 3 cascade. *Inflamm. Res.* **67**, 371–374 (2018).
- 36. Guo, H. *et al.* Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. *Hum. Mol. Genet.* **24**, 3305–3313 (2015).
- 37. Kim, Y., Nakanishi, G., Lewandoski, M. & Jetten, A. M. GLIS3, a novel member of the GLIS subfamily of Kruppel-like zinc finger proteins with repressor and activation functions. *Nucleic Acids Res.* **31**, 5513–5525 (2003).
- 38. Yang, Y., Chang, B. H. & Chan, L. Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults. *EMBO Mol. Med.* **5**, 92–104 (2013).
- 39. Nogueira, T. C. *et al.* GLIS3, a Susceptibility Gene for Type 1 and Type 2 Diabetes, Modulates Pancreatic Beta Cell Apoptosis via Regulation of a Splice Variant of the BH3-Only Protein Bim. *PLoS Genet.* **9**, e1003532 (2013).
- 40. Dooley, J. *et al.* Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. *Nat. Genet.* **48**, 519–527 (2016).
- 41. Mingari, M. *et al.* Human interleukin-2 promotes proliferation of activated B cells via surface receptors similar to those of activated T cells. *Nature* **312**, 641–643 (1984).
- 42. Spolski, R., Li, P. & Leonard, W. J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. *Nat. Rev. Immunol.* **18**, 648–659 (2018).
- 43. Moore, K. W., Malefyt, R. D. W., Robert, L. & Garra, A. O. INTERLEUKIN-10 AND THE INTERLEUKIN -10 RECEPTOR. *Annu. Rev. Immunol.* **19**, 683–765 (2001).
- 44. Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. & Gagliani, N. The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. *Immunity* **49**, 1004–1019 (2018).
- 45. Mauri, C. & Menon, M. Human regulatory B cells in health and disease: therapeutic potential. *J. Clin. Invest.* **127**, 772–779 (2017).
- 46. Ren, B. *et al.* Interleukin 10 (IL-10) and Viral IL-10 Strongly Reduce Antigen-specific Human T Cell Proliferation by Diminishing the Antigen-presenting Capacity of Monocytes via Downregulation of Class II Major Histocompatibility Complex Expression. *J. Exp. Med.* **174**, 915–924 (1991).
- 47. Groux, H., Bigler, M., de Vries, J. E. & Roncarolo, M. Interleukin-10 Induces a Long-Term Antigen-specific Anergic State in Human CD4+ T Cells. *J. Exp. Med.* **184**, 19–29 (1996).
- 48. Rousset, F. *et al.* Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. *PNAS* **89**, 1890–1893 (1992).
- 49. Wang, H., Coligan, J. E. & Morse, H. C. Emerging Functions of Natural IgM and Its Fc Receptor FCMR in Immune Homeostasis. *Front. Immunol.* **7**, 99 (2016).
- 50. Ouchida, R. *et al.* Critical role of the IgM Fc receptor in IgM homeostasis, B-cell survival, and humoral immune responses. *PNAS* **109**, E2699–E2706 (2012).
- 51. Yu, J. *et al.* Surface receptor Toso controls B cell mediated regulation of T cell immunity. *J. Clin. Invest.* **128**, 1820–1836 (2018).
- Nguyen, T. T. T., Graf, B. A., Randall, T. D. & Baumgarth, N. sIgM FcµR interactions regulate early B cell activation and plasma cell development after influenza virus infection. J. Immunol. 199, 1635–1646 (2017).

- Stanford, S. M., Rapini, N. & Bottini, N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. *Immunology* 137, 1–19 (2012).
- 54. Mehta, M. *et al.* Themis-associated phosphatase activity controls signaling in T cell development. *PNAS* **115**, E11331–E11340 (2018).
- 55. Choi, S., Cornall, R., Lesourne, R. & Love, P. E. THEMIS : Two Models, Different Thresholds. *Trends Immunol.* **38**, 622–632 (2017).
- Brooke, G., Holbrook, J. D., Brown, M. H. & Barclay, N. Human Lymphocytes Interact Directly with CD47 through a Novel Member of the Signal Regulatory Protein (SIRP) Family. *J. Immunol.* 173, 2562–2570 (2004).
- 57. Stefanidakis, M., Newton, G., Lee, W. Y., Parkos, C. A. & Luscinskas, F. W. Endothelial CD47 interaction with SIRP-gamma is required for human T-cell transendothelial migration under shear flow conditions in vitro. *Immunobiology* **112**, 1280–1289 (2019).
- 58. Sinha, S. *et al.* An autoimmune disease risk SNP, rs2281808, in SIRPG is associated with reduced expression of SIRP γ and heightened effector state in human CD8 T-cells. *Sci. Rep.* **8**, 15440 (2018).
- 59. Javierre, B. M. *et al.* Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters. *Cell* **167**, 1369–1384 (2016).
- 60. Eizirik, L. *et al.* The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines. *PLoS Genet.* **8**, e1002552 (2012).