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Abstract: 43 

Microbial sequences inferred as belonging to one sample may not have originated from 44 

that sample. Such contamination may arise from laboratory or reagent sources or from 45 

physical exchange between samples. This study seeks to rigorously assess the 46 

behavior of this often-neglected between-sample contamination. Using unique bacteria 47 

each assigned a particular well in a plate, we assess the frequency at which sequences 48 

from each source appears in other wells. We evaluate the effects of different DNA 49 

extraction methods performed in two labs using a consistent plate layout including 50 

blanks, low biomass, and high biomass samples. Well-to-well contamination occurred 51 

primarily during DNA extraction, and to a lesser extent in library preparation, while 52 

barcode leakage was negligible. Labs differed in the levels of contamination. DNA 53 

extraction methods differed in their occurrences and levels of well-to-well contamination, 54 

with robotic methods having more well-to-well contamination while manual methods 55 

having higher background contaminants. Well-to-well contamination was observed to 56 

occur primarily in neighboring samples, with rare events up to 10 wells apart. The effect 57 

of well-to-well was greatest in samples with lower biomass, and negatively impacted 58 

metrics of alpha and beta diversity. Our work emphasizes that sample contamination is 59 

a combination of crosstalk from nearby wells and background contaminants. To reduce 60 

well-to-well effects, samples should be randomized across plates, and samples of 61 

similar biomass processed together. Researchers should evaluate well-to-well 62 

contamination in study design and avoid removal of taxa or OTUs appearing in negative 63 

controls, as many will be microbes from other samples rather than reagent 64 

contaminants.  65 

 66 

 67 

 68 

Importance: 69 

Microbiome research has uncovered magnificent biological and chemical stories across 70 

nearly all areas of life science, at times creating controversy when findings reveal 71 

fantastic descriptions of microbes living and even thriving in once thought to be sterile 72 

environments. Scientists have refuted many of these claims because of contamination, 73 

which has led to robust requirements including use of controls for validating accurate 74 

portrayals of microbial communities. In this study, we describe a previously 75 

undocumented form of contamination, well-to-well contamination and show that 76 

contamination primarily occurs during DNA extraction rather than PCR, is highest in 77 

plate-based methods as compared to single tube extraction, and occurs in higher 78 

frequency in low biomass samples. This finding has profound importance on the field as 79 

many current techniques to ‘decontaminate’ a dataset simply relies on an assumption 80 

that microbial reads found in blanks are contaminants from ‘outside’ namely the 81 

reagents or consumables.  82 

 83 

Keywords: microbiome, contamination, 16S rRNA gene, metagenomics, built-84 

environment, genomics, low-biomass 85 

Introduction: 86 

 87 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577718doi: bioRxiv preprint 

https://doi.org/10.1101/577718


 

 

Massively high-throughput sequencing has enabled fundamental changes to the study 88 

of microbial ecology. Increased throughput and sequencing depth has empowered 89 

researchers to utilize multiplexing to increase sample sizes to thousands per study [1–90 

6]. However, new ways of knowing require new understanding of potential flaws and 91 

confounds. Many studies have addressed computational and statistical challenges 92 

associated with analyzing 16S rRNA gene sequence data, including the impacts of 93 

sequence similarity clustering [7], diversity estimation, and data compositionality [8], to 94 

name just a few. There has also been substantial effort to reduce confounding 95 

experimental effects via standardization of microbiome sample processing methods, 96 

including sample collection, preservation [9], DNA extraction [10–12], library preparation 97 

[6,13–17] and sequencing [5]. Together, these approaches have facilitated large-scale 98 

metaanalyses such as the Earth Microbiome Project ‘EMP’ (earthmicrobiome.org) [2]. 99 

Despite these efforts, a significant amount of experimental noise remains in any given 100 

microbiome study. 101 

 102 

Contamination, or the observation of sequence reads in a sample coming from 103 

microbes that weren’t originally part of that sample, remains one of the most pernicious 104 

types of experimental noise. Microbial rRNA gene copies can be found even in ‘sterile’ 105 

reagents, leading to that presence of background signal derived from DNA extraction 106 

kits [18], PCR mastermix [19], and other consumables [20]. It is now widely understood 107 

that such contaminants must be considered in microbiome analyses, especially when 108 

dealing with low-biomass samples where contaminant rRNA gene copies make up a 109 

larger fraction of the community [7,21–25]. Various engineering strategies have been 110 

proposed and are utilized to minimize contamination including physical separation of 111 

rooms used for DNA extractions and PCR, wearing additional PPE [26] to cover skin to 112 

prevent technician-induced contaminants, UV sterilization of plastic consumables or 113 

reagents, or ethidium oxide treatment of consumables [20].  114 

 115 

Beyond physically limiting contamination, the use of positive and negative controls is 116 

increasingly being used to assess and quantify contamination in a study, allowing for 117 

the potential of contaminant removal in silico [27]. Methods such as Katharoseq [11], 118 

utilize the ratio of read counts and composition of positive and negative controls, to 119 

determine criteria for sample inclusion. Others have emphasized the importance of 120 

including negative controls to understand background contamination [28]. Based on the 121 

idea that contaminants are primarily derived from external sources, some have 122 

proposed the strategy of simply identifying this ‘contaminome’ profile and then removing 123 

them from the dataset [29]. This, however fails to contend with the potential that 124 

contaminants may arise from other samples within a study itself. Such between-sample 125 

contamination has been observed as a product of ‘barcode-swapping’ between samples 126 

as a byproduct of Illumina ex-Amp sequencing reactions, and has also been suggested 127 

to arise from improper assignment of barcodes to neighboring clusters in image 128 

processing [30]. Anecdotally, we have also observed instances that appear to arise from 129 

physical cross-contamination of samples. Since most DNA extractions and PCR  130 

reactions are performed on multiple samples at once, often times in 96-well format, we 131 

reasoned it would be important to take into consideration that nearby samples could in 132 

fact contribute to contamination of negative controls.  133 
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 134 

To evaluate this hidden factor of contamination, we designed an experiment to 135 

empirically characterize the frequency and nature of well-to-well contamination using 136 

different DNA extraction and sample handling protocols. By placing 16 unique bacterial 137 

“source” isolates at high biomass in individual wells across plates of alternating low-138 

biomass “sink” bacteria and no-template blank wells, we were able to observe and 139 

quantify well-to-well transfer events under different scenarios, including automated 140 

plate-based extraction and manual tube-based extraction protocols. We further included 141 

libraries from an additional, unique, isolate that were extracted and amplified separately 142 

to account for potential instrument-based cross-contamination mechanisms such as 143 

barcode-swapping or miss-assignment. To further validate results, we processed an 144 

additional two 96-well plates at another microbiome facility.  145 

 146 

Results: 147 

 148 

We designed a 96-well plate layout containing 16 unique source bacteria (~10,000,000 149 

cells per well, corresponding to 108 cells ml-1), 24 sink wells (containing V. fischeri at 150 

~100,000 cells per well, 106 cells ml-1) and 48 blank wells (Figure 1a). At UCSD, a total 151 

of three replicate sample plates were DNA extracted: two using the Epmotion5075 with 152 

magnetic bead cleanups on Kingfisher robots (Plate 1, Plate 2) and one manually with 153 

column cleanups (Tube). All three plates were then processed each with two unique 154 

PCR plates in triplicate as outlined (Figure 1). In addition, 16 gDNA replicates of a 155 

Clostridium isolate were processed on its own 96-well plate and amplified in a separate 156 

PCR reaction, to allow for detection of instrument-based barcode miss-assignment. A 157 

mock community comprised of all source isolates and the sink isolate was created and 158 

then serially diluted and processed as well to validate sample amplification. Details on 159 

the actual plate map patterns can be found in Additional file 1 for all eight PCR plates. A 160 

total of 3,756,064 reads from 713 samples resulted in 6305 features. A summary table 161 

was generated to describe well-to-well and background contamination occurrences 162 

across the samples (Additional Table 1). One of the 16 source microbes was highly 163 

contaminated with background contaminants and did not produce the expected 164 

sequence results, but was included in the analysis as we did not want to bias our 165 

results.  166 

 167 

Well-to well contamination events were analyzed by counting fraction of reads from a 168 

given source well appearing in other source wells, low biomass sink wells, or blanks. In 169 

our setup, well-to-well contamination was visualized to occur in all six PCR replicate 170 

plates in both labs. Based on the visualized plate patterns, the pattern of well-to-well 171 

contamination was observed to be higher in plate extractions compared to tube 172 

extractions, and was more prominent in wells directly surrounding the source well, 173 

suggesting a physical mechanism for well-to-well contamination (Figure 2). We 174 

quantified the distance by measuring contamination counts as a function of the 175 

Pythagorean distance from the source well, and determined that the highest rates of 176 

contamination occurred in the immediate proximate wells for both plate and tube 177 

extractions, but with a stronger distance-decay relationship for the plate vs. the tube 178 
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extractions (Figure 3). The supplementation of Antifoam-A to wells during DNA 179 

extraction did not reduce well-to-well contamination (Additional file 2). 180 

 181 

Another possible contributing source of inter-sample contamination is barcode leakage, 182 

i.e. reads originating from a given sample being identified as originating from a different 183 

sample due to read errors in the barcode. Such “barcode-hopping” behavior has been 184 

observed in labs using 8 bp barcodes in the Microbiome Quality Control project [31]. In 185 

order to quantify the contribution of such events in our 12 bp barcode design, we 186 

designed another plate containing 16 replicate wells of a single Clostridium isolate. 187 

Since these samples were sequenced together with the PCR replicate plates, barcode 188 

leakage would be expected to results in Clostridium reads appearing in the PCR 189 

replicate plates samples. Barcode leakage was quantified by counting the number of 190 

reads originating from barcodes not present in the plate, and no such reads were 191 

observed, indicating that for the 12 bp Golay error correcting barcodes sequenced in 192 

these conditions, this is a very rare event (less than 1 in 3.75E6 reads), and is not a 193 

contributing factor to inter-sample contamination. 194 

 195 

To further quantify the total effect of well-to-well contamination, we compared the 196 

proportion of microbial community source for each sample across the three DNA 197 

extraction plates (plate 1, plate 2, and tube) and for each of the two PCR replicate 198 

plates (PCRA and PCRB) from each extraction (Figure 4). Contamination frequency and 199 

relative abundance was highest in plate 1 followed by plate 2 and lowest in the tube 200 

plate (Additional file 3). NTCs were composed of primarily background contaminants in 201 

the tube extractions for both PCR replicates (median fraction of well-to-well reads 0). 202 

However, in some plate extraction NTCs, the majority of reads originated from well-to-203 

well reads (median fraction of well-to-well reads of 0.78, 0.9, 0.44 and 0.77 for plate 1: 204 

PCRA, PCRB; plate 2: PCRA, PCRB respectively) (Additional file 4). Sink wells were 205 

also partially contaminated with source microbes, particularly in the Plate 1 replicate. 206 

The total occurrence (prevalence) of well-to-well contamination across the various 207 

sample types and extraction methods along with summarizing compositional effects of 208 

well-to-well contaminants on samples (mean, median and max) is detailed in Additional 209 

Table 2. For NTCs, 47.5% of blanks from tubes and 95.7% of blanks from plate 210 

extractions had well-to-well contamination. For low biomass samples, 15.0% of sink 211 

wells from tubes and 67.4% of sink wells from plate extractions had well-to-well 212 

contamination (Table 1). 213 

 214 

To determine if DNA extraction method (tube vs plate) had an impact on well-to-well 215 

contamination, we compared relative abundances of well-to-well contaminants for 216 

NTCs, sink, and source samples independently (Figure 5a). Well-to-well contamination 217 

was affected by extraction method, and was generally higher in plate-based extractions 218 

compared to manual single tube extractions (Kruskal-Wallis P<0.0001, Figure 5a). 219 

Further, the proportion of well-to-well contamination was greater in samples with lower 220 

starting biomass (NTCs, 0-100 cells and sinks, approximately 100,000 cells) than in 221 

source wells, which had higher starting biomass (approximately 10,000,000 cells) while 222 

controlling for extraction method (Figure 5b). Well-to-well contamination was greatest in 223 

samples with lower microbial biomass.  224 
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 225 

In order to validate these results in an independent lab, in addition to the samples 226 

processed at UCSD, we sent away bacterial samples to be processed at an outside 227 

facility using the manual single tube extraction and plate extraction (although due to 228 

available facilities both utilized a column cleanup step rather than magnetic beads). All 229 

results for replicate PCR plates and robot extraction replication were summarized for 230 

overall comparison purposes (Table 1). While controlling for site (UCSD only), the total 231 

fraction of reads from samples (mean, median, and max out of 100%) caused by well-232 

to-well contamination was highest in NTCs followed by sink and lastly source microbes 233 

for both the tube (NTC: 4.57%, 0%, 56.0%; sink: 0.05%, 0.0%, 2.78%; source: 0.13%, 234 

0.01%, 2.99%) and plate (NTC: 58.26%, 65.79%, 100.0%; sink: 6.9%, 0.078%, 15.61%; 235 

source: 0.94%, 0.04%, 50.67%) extraction methods (Table 1 and Figure 4). The NTCs 236 

of samples processed outside of UCSD had well-to-well contamination consistent with 237 

the other tube methods while the sink samples had higher well-to-well contamination 238 

and overall background contamination than both tube and plate processed samples at 239 

UCSD (Table 1).  240 

 241 

Since well-to-well contamination can introduce additional bacteria to samples, it has the 242 

potential to inflate alpha and decrease resolution in beta diversity metrics, especially for 243 

binary metrics (such as number of observed species, Jaccard dissimilarity, or 244 

unweighted UniFrac distance). While all of our source and sink control samples should 245 

have only had one unique sOTU, richness was typically much higher than this due to 246 

contamination including background kit contaminants along with well-to-well 247 

contaminants. We calculated the total richness per sample, which should have been 248 

one, and determined the percentage of that richness which was due to well-to-well 249 

contamination. Both well-to-well contaminants and background kit contaminants 250 

contribute to this inflated richness. Controlling for site (UCSD only), we determined that 251 

well-to-well contamination inflated richness estimates for both tube and plate extracted 252 

samples by contributing to on average (0.96%, 12.7%; tube, plate) of sink sample 253 

richness and (6.51%, 13.76%; tube, plate) of source sample richness.  254 

 255 

We next assessed the impact of well-to-well contamination on beta-diversity 256 

measurements of the communities. Specifically, for each unique DNA extraction plate, 257 

we performed pairwise well_ID comparisons of the PCR replicates for each of the three 258 

sample types including NTCs, sink, and source microbes. Because well-to-well 259 

contamination generally only made up a small proportion of the total reads of each 260 

sample, binary metrics (which tend to emphasize the impact of rare taxa) were more 261 

affected than abundance-weighted metrics. (Additional file 5). 262 

 263 

To further elaborate on this observation and quantify where well-to-well contamination 264 

was coming from (PCR process only or DNA extraction), we compared replicate plates 265 

which were processed using the robot. This included two separate DNA extraction 266 

plates and then two PCR plates for each extraction plate. For each PCR replicate plate, 267 

96 pairwise distances were computed and categorized by sample type for each of the 268 

two DNA extraction plates (light red shade Additional file 5b). In addition, the pairwise 269 

distances from each of the 96 wells of the two replicate DNA extraction plates 270 
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processed on the robots were also compared for the PCR replicate plate PCRA only. 271 

We found much less between-PCR than between-extraction variance, indicating that the 272 

combination of stochastic effects plus well-to-well contamination for DNA extraction is 273 

greater than for stochastic effects plus well-to-well for PCR (Additional file 5b).  274 

 275 

Discussion: 276 

 277 

Understanding experimental biases or noise in microbiome research is critical to 278 

drawing accurate inferences of the microbial world. Since microbes are everywhere [2], 279 

it is extremely important to limit and ideally eliminate false positives in sample 280 

signatures. Contamination is a combination of background contaminants (DNA 281 

extraction kits, PCR mastermixes, and enzymes), processing contaminants (equipment, 282 

air, technicians), and plate contaminants (well-to-well contamination). In this study, we 283 

showed that well-to-well contamination can play a major role in microbiome studies, 284 

especially when using plate-based DNA extraction methods and for samples with low 285 

starting biomass. This type of contamination is difficult to detect and relatively 286 

infrequently discussed, but should be considered when designing and evaluating 287 

research. The majority of research to date has focused on identifying microbial 288 

contaminants in reagents and consumables [12,18,21] and subsequently using 289 

bioinformatics techniques to simply subtract out these contaminant taxa [22,27,32]. 290 

Existing tools to remove contaminant taxa or OTUs (operational-taxonomic units) from a 291 

dataset largely focus on these background contaminants, and don’t yet consider the 292 

case of contamination from proximal wells [27]. We show in this study that a large 293 

fraction of reads in the blank (NTC) samples originate from neighboring wells. In this 294 

study, we observed that contamination between samples can account for a significant 295 

fraction of the overall observed diversity in a sample, especially for no-template control 296 

blanks that are physically adjacent to relatively high-biomass samples. Given this, the 297 

simple approach of removing any taxa found in blanks is likely to remove the most 298 

prominent “real” taxa in a dataset. More sophisticated methods using additional 299 

information (such as the ‘decontam’ package [27]) are absolutely necessary in the face 300 

of well-to-well contamination, even for addressing the problem of reagent contaminants.  301 

 302 

Identifying and removing well-to-well contamination in silico is challenging, as 303 

contamination events between wells are largely independent, and thus cannot be 304 

statistically identified and removed across a study in the same way that reagent 305 

contaminants are. However, several observations from this experiment should help 306 

researchers in planning experiments to minimize its effects. First, plate-based DNA 307 

extractions are much more susceptible to well-to-well contamination than the more 308 

painstaking tube-based extractions; for critical experiments, automated plate-based 309 

extractions should be carefully reconsidered. Second, even for tube-based extractions, 310 

well-to-well contamination was greatest in wells immediately adjacent to the source. 311 

Thus, sample location on plates should be explicitly considered in experimental design. 312 

When plating samples for extraction, it is important to block and/or randomize 313 

treatments across 96-well plates. Third, well-to-well contamination has the greatest 314 

impact in low-biomass samples, especially when they are processed adjacent to high-315 
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biomass samples that can act as sources. Because of this, it is important to have an 316 

awareness of the absolute concentration of microbial cells in samples, and to ensure 317 

that only samples of similar biomass are processed together. Lastly, when analyzing 318 

datasets, it is important to be aware that different methods will have different 319 

sensitivities to well-to-well contamination. For example, alpha-diversity estimates can be 320 

highly inflated by well-to-well contamination in samples with low starting diversity; and 321 

for beta-diversity estimates, binary metrics such as Jaccard or unweighted UniFrac are 322 

more likely to be affected than abundance-weighted metrics. Other experimental 323 

approaches to reduce the impacts of well-to-well contamination bear further 324 

investigation. These might include use of higher-fidelity liquid handling approaches [33], 325 

or broader adoption of unique-per-sample positive control spike-ins to allow the direct 326 

observation and statistical disambiguation of cross-contamination [34]. Methods which 327 

rely on identifying and subtracting putative contaminants from datasets need to be used 328 

with extreme caution, particularly if the identified sequence variants are present in 329 

primary samples.  330 

 331 

Understanding experimental noise is extremely important for improving and guiding 332 

microbiome research best practices [23,24]. Specifically, addressing ‘hot’ negative 333 

controls is one of the great challenges to genomics based research. Since well-to-well 334 

contamination is an important component of this, we emphasize that for any given 335 

experiment, it is critical to identify any kit-specific background contaminants in a lot to 336 

best accurately remove contaminant taxa. While we have good power to estimate 337 

frequency of well-to-well contamination in our assays, extrapolating the frequency of 338 

well-to-well contamination in assays from other labs and methods is still a challenge. 339 

This suggests that while we can generalize to well-to-well contamination being a 340 

widespread problem, we can’t generalize the quantities or specifics. Further, this argues 341 

for other labs spending the effort to do similar in-house tests to evaluate their own 342 

pipelines. To identify these background contaminants, we recommend using a variety of 343 

positive controls titrations both at the DNA extraction stage and PCR stage [11]. 344 

Companies which manufacture high-throughput DNA extraction will need to invest in 345 

research and development to reduce well-to-well contamination. Lastly, measuring and 346 

accounting for well-to-well contamination identification and reduction will be critical for 347 

diagnostic research going forward [35–40].  348 

 349 

Conclusions: 350 

 351 

Contamination is a serious impediment to reproducibility in any genomics study, 352 

particularly microbiome research. As emerging diagnostic tests for environmental health 353 

and human health become more mainstream, it will be crucial for these tests to address 354 

variability in microbiome signal due to well-to-well contamination. Our study identified 355 

and quantified a previously undetected source of contamination in microbiome studies. 356 

We show that intensity of well-to-well contamination varies per extraction method with 357 

plate-based methods and lower biomass samples having higher rates of contamination. 358 
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Our findings demonstrate the importance for the community to accept standards to best 359 

monitor and quantify these sources of noise in a given study.  360 

 361 

Methods: 362 

 363 

Sample collection and processing 364 

A total of 17 bacterial isolates including Brevibacterium sp, Corynebacterium stationis, 365 

Brachybacterium sp, Arthrobacter sp, Propionibacterium acnes, Bacillus sp, 366 

Staphylococcus equorium, Staphylococcus succinus, Streptococcus angiosis, 367 

Desulfovibrio sulfodismutans, Serratia sp, Halomonas sp, Psychrobacter sp, 368 

Pseudomonas fragi, Vibrio rumo, Eschericia coli, and Vibrio fischeri were collected and 369 

stored in PBS solution. The optical density, OD600, was measured for all isolates and 370 

the corresponding cell density estimated. Sixteen of these microbes (all except V. 371 

fischeri) were diluted to a final density of 1e8 cells per ml in a single 50 ml conical vial 372 

and were designated as ‘source’ organisms. The V. fischeri isolate was diluted to 1e6 373 

cells per ml, designated as the ‘sink’ microbe, and stored in a single 50 ml conical. Both 374 

source and sink microbes were stored in a -80 oC freezer until making aliquots for 375 

extractions. In addition, a mock community was created using these isolates by 376 

combining equal volume of all samples which also served as a reference for accounting 377 

for processing biases. An additional isolate of Clostridium sp. was measured and 378 

aliquoted into 16 different 2 ml tubes to be used for barcode testing. For DNA extraction 379 

at UCSD, 100 ul of ‘source’ and ‘sink’ samples were aliquoted into 2 96-well DNA 380 

extraction robot plates and 96 2-ml bead beating extraction tubes as indicated in the 381 

diagram (Additional file 1, Figure 1a). Following the Earth Microbiome Project protocol 382 

[2], the Qiagen PowerMag kit (Qiagen, Cat# 27500-4-EP) was used for robot extractions 383 

while the Qiagen DNeasy PowerSoil kit (Qiagen, Cat# 12888-100) was used for 384 

‘manual, single-tube’ extractions. To test the effect of antifoam on reducing well-to-well 385 

contamination, we added 2 ul of antifoam-A concentrate (Sigma-Aldrich, Cat#A5633-386 

25G) to half of each of the robot plates (Figure 1b-c). In addition to processing samples 387 

at UCSD, an additional 192 samples were plated (96) in a 96-well plate and 96 388 

individual 2-ml bead beating tubes and sent to Argonne National lab in the same 389 

platemap scheme. The manual tube samples were processed using the Qiagen DNeasy 390 

PowerSoil kit (Qiagen, Cat# 12888-100) while the manual plate samples were 391 

processed using the Qiagen DNeasy PowerSoil HTP 96 kit (Qiagen, Cat# 12955-4). 392 

 393 

Amplicon sequencing 394 

To distinguish between well-to-well contamination derived from DNA extraction versus 395 

PCR setup, each UCSD processed DNA extraction plate (2 robot plates and 1 manual 396 

plate) were subjected to two separate triplicate PCR reactions (Figure 1b-d). The mock 397 

community dilution plate and barcode testing plate were processed with a single 398 

triplicate PCR reaction each. The EMP 16S rRNA V4 primers 515f/806rB were used to 399 

amplify the samples. Equal concentrations of amplicons from each sample from all 8 400 

plates were pooled and sequenced using a MiSeq [5,13,14]. The 192 samples DNA 401 

extracted at Argonne were processed using the same EMP primers and method but on 402 

a separate MiSeq run. Amplicon data was uploaded to Qiita [41] and processed with 403 
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Qiime 1.9.1 [42]. Exact sequence tags from the first read were generated using the 404 

deblur pipeline under default parameters as described in the publication [43].   405 

 406 

Statistical analysis 407 

Sequences processed with deblur were positively filtered against the reference 408 

database as part of the default workflow in deblur. In addition, singleton sequences 409 

were omitted from the dataset. The dataset was not rarified in order to best quantify 410 

well-to-well contamination for all samples processed. The sequence tags were identified 411 

for all of the positive controls used in this study and included in supplement (Additional 412 

Table 2). Sequences which did not have 100% match to those original controls were 413 

considered ‘background contaminants’ whereas the Vibrio fischeri deemed as ‘sink 414 

microbes’ and the 16 unique isolates deemed collectively as ‘source microbes’. For 415 

each of the 16 source microbes, 1 sink microbe, and 1 barcode leakage microbe, a 416 

custom script was used to generate 96-well plate maps to visualize well-to-well 417 

contamination. The distances of microbial dispersal ‘jumping’ was then calculated for 418 

each individual isolate using a custom script. Summary statistics of read counts, 419 

richness, and contamination metrics are summarized (Additional Table 3). To determine 420 

if well-to-well contamination was higher in robot compared to manual extractions, the 421 

composition of well-to-well contaminants was compared within NTCs, sink, and source 422 

independently, using the Kruskal-Wallis test. Further, to determine if well-to-well 423 

contamination was associated or more frequent with lower biomass samples, well-to-424 

well composition was compared across the NTCs, sink, and source within each 425 

extraction method independently using Kruskal-Wallis test.  426 

 427 

To determine the impact of well-to-well contamination on beta-diversity microbiome 428 

analyses, we calculated distance metrics of both Bray-Curtis [44,45] and Jaccard [46] 429 

and compared within categories. The three different extraction plates each had two 430 

separate PCR plates processed. The pairwise distances of unique Well_ID was 431 

calculated using both metrics for each of the two PCR plates belonging to each of the 432 

three DNA extraction plates. Sample types were grouped into NTCs (non-template 433 

control or blank), sink, or source. Within each group, the distances were compared 434 

using the Mann-Whitney test. To calculate effects for the entire pipeline which includes 435 

both PCR and DNA extraction, we combined the pairwise distances of the Well_IDs for 436 

each of the three DNA extraction plates (robot 1, robot 2, and manual) and grouped by 437 

sample type (NTC, sink, or source). Again, we compared the total dissimilarities of Bray-438 

Curtis vs. Jaccard for each sample type using Mann-Whitney test. 439 

 440 

List of abbreviations 441 

EMP: Earth Microbiome Project 442 

NTC: non-template control (sterile water blanks) 443 

sOTU: sub-operational taxonomic unit 444 

sink: lower biomass microbial isolate used in experiment (approximately 100,000 cells) 445 

source: higher biomass microbial isolate (1 of 16) (approximately 10,000,000 cells) 446 

Well_ID: refers to the well position (in a 96-well plate: A1-A12  H1-H12) from which 447 

the sample was processed  448 

 449 
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 497 

Additional files 498 

Supplemental Table S1 (full characterization of w2w and metadata) 499 

 500 

Supplemental Table S2. Summary statistics on well-to-well contamination across DNA 501 

 502 

Supplemental Figure S1: Platemap descriptions of experimental design 503 

 504 

Supplemental Figure S 2: The use of antifoam (antifoam = 1) does not reduce well-to-505 

well contamination 506 

 507 

Supplemental Figure S 3: Sources of contamination (well-to-well and background 508 

contaminants) across manual and robot extraction plate and PCR replicate plates. 509 

Summary of compositionality of NTCs (n-48) vs. sink (n=32) vs. source microbes (n=16) 510 

processed in two facilities across five DNA extraction plates (a) UCSD tube extraction, 511 

(b) UCSD plate extraction 1, (c) UCSD plate extraction 2, (d) Argonne tube extraction, 512 

(e) Argonne plate extraction. UCSD DNA extractions were processed each twice thus 513 

had two PCR per plate (PCR A, PCR B). 514 

 515 

Supplemental Figure S 4: Summary composition of reads (median, inter-quartile range) 516 

of specific sample types: NTCs, sink, or source microbes. 517 

 518 

Supplemental Figure S 5. Determining the origin of well-to-well contamination and its 519 

impact on distance metrics from 96 unique WellIDs across three DNA extraction plates 520 

and six PCR plates. (a) Summary comparison of use of compositional (Bray-Curtis) or 521 

presence-absence (binary Jaccard) to describe microbial communities from NTCs (red), 522 

sink microbes (lower biomass), or source microbes (higher biomass). (b) Determining 523 

the effects of well-to-well contamination from PCR processing only (PCR replicates) 524 

compared to the entire process of DNA extraction and PCR (DNA extraction replicates). 525 

The statistical tests are performed on dark colors only while lightly shaded bars indicate 526 

the replicates for robot extraction plates.  527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2019. ; https://doi.org/10.1101/577718doi: bioRxiv preprint 

https://doi.org/10.1101/577718


 

 

Figure Legends: 542 

 543 

Fig 1: Plate design, experimental design. (a) ntc ‘white’, sink ‘purple’, and source ‘green’ 544 

samples are distributed in a checkboard pattern across the plate. Antifoam A is added 545 

to last half (b) and first half (c) of the 96-well plates processed with the robot. The 546 

manual samples did not get antifoam A. Each unique DNA extraction plate is processed 547 

in duplicate PCR plates. 548 

 549 

Fig 2: Example of plates with cross contamination; Each panel depicts a 96-well plate 550 

with source, sink and blank wells denoted by “X”, “O” empty squares respectively. 551 

Colors indicate the number of reads from a specific bacteria (Psychrobacter spp., 552 

present in well E5). Panels a,b c,d and e,f correspond to two PCR replicates of robotic 553 

extraction 1,2 and manual extraction respectively. 554 

 555 

Fig 3: Distance decay relationship 556 

 557 

Fig 4: Summary statistics of sample fraction composition of well-to-well contaminants 558 

compared across extraction types (blanks - pink, sink - blue, source - purple) and 559 

across extraction methods (tube vs. plate). Samples processed at UCSD in circles with 560 

no outline and samples processed at Argonne as circles with dark border. All samples 561 

with 0 well-to-well contamination occurrences are given a count of 0.00001 to enable 562 

visualization on graph (labeled 0 counts). Median and interquartile range are displayed 563 

in black lines over the data points. 564 

 565 

Fig 5: Well-to-well effect size. Proportion of sample containing well-to-well contaminants 566 

as organized by (a) sample type (ntc, sink, source) and (b) extraction method. Statistical 567 

analysis within bars performed using Kruskal-Wallis non-parametric testing. 568 

 569 
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 733 

Prev

Type Location Extract mean Total W2W mean median max mean median max

ntc	(n)

61 UCSD m_tube 0.4754 20 0.041 0.046 0 0.56 0.9382 1 1

32 Argonne m_tube 0.5313 165 0.016 0.009 0.0003 0.0823 0.9915 0.9997 1

28 Argonne m_plate 0.1071 8 0.042 0.031 0 0.7517 0.9686 1 1

116 UCSD r_plate 0.9569 15 0.278 0.583 0.6579 1 0.3307 0.2025 1

sink	(n)

93 UCSD m_tube 0.1505 20 0.01 5E-04 0 0.0278 0.0335 0.0168 0.9873

48 Argonne m_tube 0.5 189 0.017 0.023 0 0.5934 0.7808 0.8382 0.9878

46 Argonne m_plate 0.3261 16 0.066 0.14 0 0.9871 0.5846 0.6267 1

187 UCSD r_plate 0.6738 15 0.127 0.007 0.0008 0.1561 0.0091 0.0023 0.4051

source	(n)

31 UCSD m_tube 0.6129 18 0.065 0.001 0.0001 0.0299 0.083 0.0029 1

16 Argonne m_tube 0.875 21 0.138 2E-04 0.0002 0.0007 0.1154 0.0041 0.9998

16 Argonne m_plate 0.8125 17 0.168 0.024 0.0001 0.364 0.1313 0.0032 0.9999

64 UCSD r_plate 0.7031 12 0.138 0.009 0.0004 0.5067 0.0732 0.0016 1

Prev-	prevlance	(number	of	samples	with	any	well	to	well	contamination	/	total	number	of	samples)

Extract:	DNA	extraction	method	used

m-	manual	(non	robotic	based	extraction)

r-robot	based	DNA	cleanup

Table	1.	Summary	of	contamination	(well	to	well	and	background)	impact	on	NTCs,	low	biomass,	and	

high	biomass	sample	types

(Well	to	well) (background-kits)

Richness Composition Composition
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