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SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1. Sample QC & exclusion prior to SV discovery. We performed QC on all 

14,891 samples in the gnomAD-SV cohort prior to SV discovery, excluding a total of 513 samples 

(3.45% of the cohort) that failed to meet baseline sample or WGS quality thresholds for at least one of 

10 features considered. A description of this filtering process and the definitions of the 10 filtered 

features is provided in Methods. The distributions, filter thresholds, and sample exclusion statistics for 
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8/10 of these features are depicted here. Rows correspond to one filtered feature. Pairs of columns 

(those with distributions of the same color) correspond to all samples (left), PCR+ samples (center), 

and PCR- samples (right). Within each pair of columns, the left and right panels represent the 

distribution of the feature before and after sample exclusion, respectively. Orange lines indicate filter 

exclusion thresholds, and the orange portions of each distribution mark the fraction of samples that 

failed at least 1/10 filters applied. Labels above each vertical orange line indicate the exact value of 

filter threshold (orange text) and the number of samples failing this filter (black text). For the left pairs of 

columns, blue and red vertical lines correspond to the filter thresholds applied for PCR+ and PCR- 

samples, respectively. Features are ordered as follows: (a) median coverage per sample in 100bp bins; 

(b) dosage bias score, ∂ (see Supplementary Figure 3); (c) absolute difference between smallest and 

largest estimated copy number for across all 22 autosomes; (d) median absolute Z-score of number of 

1Mb bins with estimated copy number < 1.5 or > 2.5; (e) fraction of chimeric read pairs; (f) pairwise 

read alignment rate; (g) percent of library estimated to be contaminant DNA; (h) inferred sex 

chromosome ploidy. Two filtered features (mean read length & inferred-reported sex concordance) are 

not pictured here. 
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Supplementary Figure 2. Overview of gnomAD-SV discovery pipeline. We extended our previously 

described modular SV pipeline for multi-sample joint SV discovery & genotyping in the gnomAD-SV 

dataset.1 An overview of the pipeline is summarized here, but is outlined in detail in Methods. The 

gnomAD-SV discovery pipeline contains seven sequential modules (light beige boxes). The sequence 

of modules is listed in the top-left, and is also indicated by dark-to-light connections between light beige 

boxes. Each module contains multiple sub-modules (smaller, dark boxes) that operate on the per-

sample (N=1), per-batch (N~400; see Methods for a description of sample batching scheme), or 

cohort-wide (N=14,891) level, as listed in the legend. This pipeline has been made available as a series 

of publicly accessible methods on FireCloud/Terra to permit cloud-based analyses of SVs across WGS 

studies.2  
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Supplementary Figure 3. Whole-genome dosage bias quantification. We developed a model 

(“WGD”) to quantify nonuniformity of sequencing coverage (i.e. “dosage bias”) per sample, and used 

this model to perform sample-level QC prior to SV discovery (see Methods). (a) We observed antipodal 

patterns of genome-wide normalized coverage throughout the gnomAD-SV dataset, consistent with our 

previous observations from WGS analyses in independent datasets.1,3 These patterns corresponded 

predominantly to PCR-amplified (PCR+) and PCR-free (PCR-) library protocols. All WGS samples 

present with some degree of coverage biases, although the magnitude varies per sample. Two samples 

with strong dosage biases were arbitrarily selected and are shown here as examples. (b) To construct 

our model, we segmented the GRCh37 reference assembly into contiguous 100bp bins, and filtered 
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these bins to a small subset of bins depleted for technical short-read mapping artifacts and with strong 

priors on being diploid in the average healthy individual. (c) The distribution of bins per chromosome for 

candidate bins passing our filters from (b) and bins in our final WGD model were approximately 

consistent with each chromosome’s relative length. (d) We identified statistically informative bins by 

evaluating the difference in mean copy number for three training sets of 50 samples each for PCR+ and 

PCR- (total n=300 training samples). Per-sample copy numbers for all training samples are shown at 

right for three example bins. (e) Per-bin weights assigned during model training were strongly 

correlated with observed copy number (CN) differences between an independent pair of PCR+ and 

PCR- training sets (total n=100 samples). (f) Distribution of WGD scores (denoted ∂) for all 14,891 

samples in the gnomAD-SV cohort. (g-h) We generated raw cn.MOPS calls for chromosome 20 across 

all 14,891 samples split by PCR status then batched randomly (g) and ranked by ∂ then batched 

sequentially (h). Ranking samples by ∂ prior to batching for read depth-based CNV discovery (g) 

improved the uniformity of raw CNV calls per sample, and better controlled outlier samples. From these 

data, we also learned minimum and maximum ∂ thresholds for sample-level QC prior to SV discovery 

(g) that maximized the number of cn.MOPS outlier samples excluded while minimizing the number of 

well-behaved samples lost. 
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Supplementary Figure 4. Sample batching strategy for parallelized cloud-based discovery of 
SVs. We devised a strategy for subdividing samples into smaller batches for joint discovery of SVs to 

control for technical variability between samples (e.g., dosage biases, PCR status, depth of coverage) 

and to leverage increased parallel computation in the cloud. (a) Overview of the batching procedure, 

which is described in detail in Methods. (b) Annotation of number of samples per split point in the 

batching procedure as applied to the full gnomAD-SV cohort after preliminary sample QC (see 

Supplementary Figure 1). 
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Supplementary Figure 5. Hardy-Weinberg Equilibria of SVs across major continental 
populations. Despite being an imperfect measurement to assess genotyping accuracy, we computed 

Hardy-Weinberg Equilibrium (HWE) statistics for all biallelic autosomal SVs documented in this study 

for each of the four major populations considered: (a) African/African-American, (b) East Asian, (c) 

Latino, and (d) European. These data are presented here as De Finetti diagrams,4 where each point is 

a single biallelic autosomal SV projected onto HWE ternary axes corresponding to its ratio of 

homozygous reference (0/0), heterozygous (0/1), and homozygous alternate (1/1) genotypes across all 
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samples in the indicated population. The distance of a point to a vertex indicates the fraction of samples 

with that genotype. Points are colored based on their adjusted p-value compared to HWE expectations 

(1 = p2 + 2pq + q2). Green points are SVs within bounds defined for HWE based on the number of sites 

documented in each population, and purple points are SVs outside of these p-value bounds. The 

proportion of SVs corresponding to each p-value cutoff is provided at the right of each panel. Plots were 

generated using the “HardyWeinberg” package in R.5 See Extended Data Figure 2b for a combined 

HWE ternary plot across all samples.  
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Supplementary Figure 6. Site-level comparison of SVs to the 1000 Genomes Project. We 

compared the SVs documented in gnomAD-SV to the SVs from the 1000 Genomes Project phase III 

release.6 Across all samples and SV classes, we found that gnomAD-SV captured 57% of the SVs 

reported by the 1000 Genomes Project, whereas 87% of the SVs reported in gnomAD-SV were novel 

compared to the 1000 Genomes Project. We considered two ‘directions’ of comparison: (a-c) the 

fraction of SVs reported by the 1000 Genomes Project that were also observed in gnomAD, and (d-f) 
the fraction of SVs discovered in gnomAD-SV that were also reported by the 1000 Genomes Project. 

For each comparison, we further stratified across three dimensions: (a & d) SV class, (b & e) SV size 

binned by decile, and (c & f) AF, binned into quintiles after holding out singletons as their own bin 

(marked with an “S”). We evaluated these comparisons across all samples (“ALL”), as well as when 

matching on four major populations considered in both studies (AFR, AMR, EAS, and EUR). Sites 
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matching with strict criteria are marked with dark colors, whereas sites matching with looser criteria are 

marked with lighter colors (see Methods for details).  
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Supplementary Figure 7. Allele frequency comparisons to SVs from the 1000 Genomes Project. 
In addition to site-level comparisons (see Supplementary Figure 6), we also compared allele 

frequencies (AFs) between biallelic, autosomal SVs discovered in both gnomAD-SV and the 1000 

Genomes Project phase III release (AF > 1%).6 We found positive correlation between AFs of SVs 

discovered in both studies, after accounting for genetic ancestry. We compared all pairs across four 

major populations considered in both studies (AFR, AMR, EAS, and EUR), as well as all samples 

across all populations (“ALL”). Comparisons where populations were matched are marked with a thick 

border and colored points; all other comparisons represent cross-population comparisons. Correlations 

were assessed with a Pearson correlation test.  
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Supplementary Figure 8. Comparison of allele frequencies per SV class by genic context. We 

compared the AF distributions across SV classes conditioned by their relationship to autosomal protein-

coding genes, including (a) predicted loss-of-function (pLoF), whole-gene copy gain (CG), or intragenic 

exonic duplication (IED) SVs of at least one gene (see Supplementary Figure 10), (b) SVs that 

overlapped genes, but were not predicted to result in a disruptive functional consequence (e.g., intronic 

SV, gene-spanning inversions, or partial duplications not resulting in CG or IED), and (c) SV with no 

overlap with any genes. Across all analyses, we found that deletions appeared at lower frequencies 

than all other canonical SV classes, and that complex SV appeared at lower AFs than all canonical 

SVs. The one exception to these observations was predicted gene-truncating inversions, which were 

rarer than gene-altering complex SV and deletions, but were also relatively sparse in this dataset (N=73 

SVs). 
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Supplementary Figure 9. SV density per chromosome. We computed the density of SVs per 

autosome in 100kb sequential windows, represented here after being smoothed as a 1Mb rolling mean. 

On average, we found a mean of 15.9 SVs per 100kb window, although this varied by chromosome and 

position, with centromeres and telomeres being particularly enriched for SVs (also see Figure 3c-d). 

Unalignable regions of the GRCh37 reference genome are masked with light grey. 
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Supplementary Figure 10. Summary of SV annotations in coding sequences. We annotated all SV 

for multiple possible functional effects on the canonical transcripts of protein-coding genes (see 

Methods). The possible effects assigned per SV class are illustrated here, with example schematics of 

qualifying variants for each category. 
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Supplementary Figure 11. Comparisons of SV depletion vs SNV pLoF and missense constraint. 
As described in Figure 4d and Methods, we compared a relative measure of rare SV depletion within 

genes to (a) pLoF SNV constraint and (b) missense SNV constraint.7 We performed this analysis 

separately for each of four possible SV-gene annotations: pLoF, CG, IED, and whole-gene inversion 

(INV), as described in Supplementary Figure 10. Panels are formatted as described in Figure 4d, but 

are also described here for clarity. For each category, we ranked genes by constraint against pLoF 

SNVs or missense SNVs from gnomAD SNV & indel analyses,7 computed the fraction of expected SVs 

that we empirically observed in this study, and assessed the correlation of these values with a 

Spearman correlation test. Dots represent percentile bins of ~175 genes each, and solid lines represent 

21-bin rolling means. 
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Supplementary Figure 12. Homozygous pLoF SVs. We compiled a list of genes predicted to be 

completely inactivated in at least one individual due to a homozygous pLoF SV. (a) Counts of SVs 

resulting in pLoF, with three tiers of filters as listed. (b) Percent of total SVs meeting each criteria listed 

in (a). (c) Counts of unique genes with at least one SV meeting the criteria in (a). (d) Percent of all 

autosomal, protein-coding genes with at least one homozygous pLoF SV. 
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Supplementary Figure 13. Overview of post hoc filtering & final callsets. As described in the 

Methods, we performed a series of post hoc filters and post-processing steps to clean the final callsets 

used in the analyses for this study. These steps involved excluding outlier samples, detecting lingering 

batch effects, inferring relatedness, assigning population labels, and calculating allele frequencies.   

Raw output from SV pipeline
(N=14,245 samples;
 See Supplementary Figure 2)

Minimum GQ filtering
(PCR- samples only)

Minimum GQ filtering
(PCR+ samples only)

Exclude remaining outliers
(PCR- samples only)

Exclude remaining outliers
(PCR+ samples only)

Identify & label sites with
apparent batch effects

Finalize VCF 
FILTER statuses

Recalibrate VCF 
QUAL scores

PCA & assign sample
population labels

Run KING & infer 
sample relatedness

Prune parent-child
and sibling pairs

Calculate AFs
per population

Callset used for any
trio-based analyses

(N=14,216 samples)

Callset used for all other
analyses presented

in this manuscript
(N=12,549 samples)

Publicly released callset
via gnomAD Browser
(N=10,738 samples)

Prune remaining
unreleasable samples
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per population

Calculate AFs
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VCF
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SUPPLEMENTARY TABLES 

Supplementary Table 1: Sample QC thresholds & filtering 

 
 
  



Collins*, Brand*, et al. (2019) gnomAD-SV: Supplementary Information | 21 

Supplementary Table 2: Sample overlap with gnomAD SNV/indel analyses 
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Supplementary Table 3: SV callset summary 
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Supplementary Table 4: SV callset benchmarking 

 
FDR = false discovery rate; FNR = false negative rate; CMA = chromosomal microarray; HWE = Hardy-

Weinberg equilibrium 
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METHODS 
WGS data aggregation 
We processed a subset of the WGS data collected from population genetics and common disease 

genomics sequencing projects as part of the Genome Aggregation Database (gnomAD; 

https://gnomad.broadinstitute.org). Details of sample collection are provided in Karczewski et al., 2019. 

Due to the availability of GRCh37-aligned WGS BAM files at the time of SV callset generation, 8,540 

genomes in this study overlap with those included in the gnomAD SNV and indel callset generation, 

and are described in Karczewski et al., 2019. In addition, we included 6,351 additional genomes 

aggregated from other studies, either for the purposes of quality control and comparison of disease 

association filtering or for population-based analyses.1,8 These 6,351 additional genomes were 

collected from three sources: (1) a subset of genomes (n=4,266) from the Multi-Ethnic Study of 

Atherosclerosis (MESA) cohort in the Trans-Omics for Precision Medicine (TOPMed) initiative, which 

has already been analyzed for common and rare variation;8-11 (2) a subset of genomes we had 

previously analyzed and published from the Simons Simplex Collection (SSC; n=2,076 genomes), 

which were included for family-based quality control and benchmarking analyses, disease association 

and population screening, but were not consented for public release of site-frequency data;1,12 and (3) 

nine genomes from the Human Genome Structural Variation (HGSV) consortium.13 All variant and 

individual-level data from the SSC can be accessed by qualified researchers in SFARIbase 

(http://base.sfari.org; see Data availability). The nine HGSV samples were sequenced to very deep 

(~75X) coverage, but were downsampled to ~30X prior to being included in this study. Supplementary 
Table 2 provides counts of samples by source, and an explicit comparison to the WGS data also 

included in the gnomAD SNV and indel analyses.7 We jointly processed and analyzed these 14,891 

genomes, with the public release of genetic site-frequency data provided for 10,738 samples with 

appropriate consent, and the remaining samples released to appropriate repositories (see 

Supplementary Tables 1-2 and Supplementary Figure 13).  

  
Computational platform 
Most WGS processing, SV discovery, and downstream analyses for gnomAD-SV was conducted on the 

FireCloud platform (https://software.broadinstitute.org/firecloud/), which is a secure open platform for 

collaborative genome analysis developed as part of the NCI Cloud Pilot program.2 It leverages Google 

Cloud Platform to enable execution of analysis workflows and support interactive analysis through 

Jupyter Notebooks. Where relevant, all workflows and methods used in this study have been made 

publicly available via the FireCloud Methods Repository (https://portal.firecloud.org/#methods), which 

will allow other WGS studies to reuse this approach. An updated version of FireCloud, called Terra, is 
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scheduled to be released in Spring 2019; at that time all code and methods shared in FireCloud for the 

purposes of this work will be available through Terra via the same URLs. 

 
SV discovery 
We performed discovery of SVs using an extension of a recently described modular, multi-algorithm 

integrative pipeline,1 as integration of multiple independent algorithms has been shown to be an 

effective approach for SV discovery with balanced sensitivity and specificity.1,13 The gnomAD-SV 

discovery pipeline is segmented into eight sequential modules, an overview of which is depicted in 

Supplementary Figure 2. Each module is described in detail below. 

  

Module 00: Preprocessing 

The first module of the gnomAD-SV pipeline collects all data and metadata required for SV discovery 

during the subsequent seven modules. This process involves five steps: (1) ploidy estimation and sex 

inference, (2) sample QC, including sequencing dosage bias scoring, (3) sample batching, and (4) 

execution of SV discovery algorithms. Each of these steps is described below. 

 

Ploidy estimation & sex inference 

We estimated per-chromosome ploidy (i.e. whole-chromosome copy number) and inferred sex 

chromosome counts per sample using read depth in 1Mb sequential bins, excluding any bins where 

>5% of samples had zero observed coverage (e.g. heterochromatic regions). We next normalized 

coverage values for each sample by dividing the total coverage for each 1Mb bin by the median 

coverage value across all autosomal 1Mb bins. We assigned ploidy per chromosome per sample as 

two times the median normalized coverage per 1Mb bin (Extended Data Figure 1). During analyses of 

sex chromosome inference, samples not assigned as XX or XY were assigned as “other”. Finally, we 

assigned a Z-score and corresponding Benjamini-Hochberg (FDR) corrected q-value for each 1Mb bin 

per autosome per sample corresponding to the divergence of that sample’s estimated copy number 

compared to the rest of the samples in the dataset. We used these per-bin probabilities of anomalous 

copy number to screen for particularly large unbalanced rearrangements, such as somatic or mosaic 

aneuploidy and extremely large CNVs (Extended Data Figure 1b-e). 

 

Sample QC 

We assessed numerous WGS data properties for all 14,891 samples prior to SV discovery to exclude 

samples likely to introduce excessive noise into downstream analyses and subsequently reduce the 

overall quality of the SV dataset. Based on a combined analysis of all available QC metadata, we 

applied filters to 10 features measured per sample (Supplementary Figure 1). Definitions for these 

features are provided below: 
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● Median 100bp bin coverage: median sequencing coverage, measured in 100bp bins. 

● Dosage score (∂): measurement of uniformity of coverage (described below). 

● Autosomal ploidy spread: absolute difference between highest and lowest ploidy estimates for any 

two autosomes. 

● Z-score of outlier 1Mb bins: median absolute z-score of number of 1Mb bins per chromosome with 

normalized copy number estimates < 1.5 or > 2.5. Z-scores were calculated separately for PCR+ 

and PCR- samples. 

● Chimera rate: chimeric read pairs as a percentage of total read pairs. 

● Pairwise alignment rate: fraction of all read pairs where both reads per pair aligned successfully. 

● Library contamination: the maximum value of either adapter contamination fraction or estimated 

sample contamination fraction. 

● Read length: mean read length. 

● Ambiguous sex genotypes: samples with normalized copy number estimates for chromosomes X 

and Y on the intervals (1.1, 1.9) and (0.1,0.9), respectively. 

● Discordant inferred and reported sex: samples where inferred and reported sex designations 

disagree, given that the sample had binary (male/female) sex assignments for both inferred and 

reported sex. 

  

For quantitative features, we assigned filter thresholds separately for PCR-amplified (PCR+) and PCR-

free (PCR-) WGS library preparation protocols. Given that samples for this study were aggregated 

across disparate sequencing projects, centers, and dates, 34.7% lacked information for at least one of 

the 10 filtered features, though 99.8% had at least 9/10 filtered features. Filter thresholds and number 

of samples excluded per filter are provided in Supplementary Table 1. Any sample failing at least one 

filter was excluded from all SV discovery and downstream analyses. 

 

Sequencing dosage bias scoring 

We have previously observed that CNV calling from WGS can be confounded in samples with highly 

non-uniform coverage, which we here term “dosage bias”, and that these dosage biases are antipodal 

between PCR+ and PCR- protocols (Supplementary Figure 3a).1,3,14 To control for dosage bias during 

SV discovery, we developed a model named Whole-Genome Dosage (WGD) to quantify the extent of 

bias per sample. The WGD model produces a single metric (∂) that summarizes the directionality and 

magnitude of bias per sample, which we used to inform sample QC and batching. In brief, we compute 

∂ by measuring the weighted mean of normalized coverage values per sample across 3,202 autosomal 

100bp bins throughout the genome. These bins were selected on the basis of three features: (1) they 

have a high likelihood of being copy number-invariant between samples (Supplementary Figure 3b), 
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(2) they can significantly discriminate between PCR+ and PCR- samples across multiple independent 

sequencing batches and centers (Supplementary Figure 3c), and (3) they are roughly representative 

of all 22 autosomes (Supplementary Figure 3d). We confirmed the selection and weighting of these 

3,202 bins by comparing to an independent test set of gnomAD-SV samples (Supplementary Figure 
3e). As anticipated, this model was able to improve read depth-based CNV discovery by grouping 

samples with similar dosage bias profiles (Supplementary Figure 3g-h), and also identify 

unsalvageable outlier samples with extreme biases to be excluded during sample QC. 

  
Sample batching 

We designed a batching scheme to subdivide the full cohort into smaller sample sets for raw SV 

discovery, and the final resolved SVs per batch were subsequently merged and re-genotyped across all 

samples (Supplementary Figure 4). This procedure was designed to control for potential batch effects 

and confounders, to leverage the opportunity of increased cloud-based parallelization, to surmount 

early computational challenges of simultaneous SV discovery in tens of thousands of genomes, and to 

mitigate the risk of decreased SV breakpoint accuracy due to large-sample joint SV discovery (i.e., 

“overclustering” of non-identical breakpoints across samples). This batching scheme was executed as 

follows: all samples passing all initial sample QC filters were first split by PCR status (PCR+/PCR-). 

Within each PCR status, samples were next split on chrX ploidy rounded to the nearest whole integer. 

Samples with ≥2 copies of chrX were assigned to one batch (“female”), and samples with <2 copies of 

chrX were assigned to another batch (“male”). Each of the four PCR-sex groups were further split into 

quartiles based on median 100bp binCov values, yielding a total of 16 smaller groups where all 

samples per batch were matched on sex, coverage, and PCR status. Next, within each of these 16 

groups, we ranked all samples by ∂ and split them into smaller groups of ~100 samples each. In the 

interest of keeping a uniform number of total batches of males and females, we optimized the number 

of ~100 sample groups based on all male samples, then split female samples into an equal number of 

batches. As is detailed below, we performed read depth-based CNV discovery with cn.MOPS on these 

~100 sample batches.15 This step was necessary because the computational requirements for 

cn.MOPS at sub-kilobase resolution become intractable for sets of >150-200 samples on most 

available servers. Finally, we merged every two batches of ~100 male samples with their corresponding 

two batches of ~100 female samples while maintaining ordering corresponding to both coverage and ∂. 

This last step yielded batches of ~400 samples (~200 male & ~200 female), which were matched for 

PCR status, coverage, and dosage biases. We intentionally did not include sample ancestry, 

sequencing project, or sample-sample relatedness as covariates in our batching scheme. We reasoned 

that having entire batches comprised of single ancestry groups, sequencing projects, or related 

samples would introduce unwanted batch-to-batch variability and technical artifacts in our final SV 

callset, so we aimed for a random distribution of these variables across all batches. 
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Execution of individual discovery algorithms for SVs 

We refined our previous SV discovery approach1 to incorporate four algorithms: Manta,16 DELLY,17 

MELT,18 and cn.MOPS.15 Collectively, these algorithms consider three primary raw signals present in 

WGS data that can be used for SV discovery, namely split reads (SR), anomalous paired-end (PE) 

reads, and read depth (RD).19 Each algorithm was selected with a specific rationale based on previous 

analyses:1,13 Manta had the best all-around single-algorithm performance among all PE/SR algorithms 

we evaluated, DELLY maximizes sensitivity for small and balanced SV when run with default 

parameters, MELT specifically captures mobile element insertions (MEIs) with high sensitivity, and 

cn.MOPS is a flexible RD-based algorithm designed for cohort-based analyses with high sensitivity for 

rare CNVs. All four algorithms were run on all 14,891 samples in the gnomAD-SV cohort as described 

below: 

  

● Manta: we executed Manta v1.0.3 in single-sample mode with default parameters for 7,075 

samples on the FireCloud platform2 and 5,740 samples on a local cluster of 6,700 CPUs maintained 

by The Broad Institute. We also retrieved existing Manta calls we had previously generated for 

2,076 samples as described in a recent publication.1 

● DELLY: we executed DELLY v0.7.7 in single-sample mode for deletions, duplications, insertions, 

and inversions for 7,075 samples on FireCloud and DELLY v0.7.6 for 5,740 samples on the local 

Broad Institute cluster. Like Manta, we retrieved existing DELLY calls for 2,076 samples analyzed 

as part of an earlier study.1 

● MELT: we executed MELT v2.0.5 in single-sample mode for 7,075 samples on FireCloud and 5,740 

samples on the Broad Institute cluster. As for Manta and DELLY, we retrieved existing MELT calls 

for 2,076 samples analyzed previously.1 

● cn.MOPS: we executed a custom implementation1 of cn.MOPS v1.20.1 on FireCloud for all 14,891 

samples in ~100-sample batches as generated during sample batching (see above). For each 100-

sample batch, we composed coverage matrixes across all samples at 300bp and 1kb bin sizes per 

chromosome, excluded any samples with a median bin coverage of zero per contig, then ran 

cn.MOPS with R v3.3.3, split raw calls per sample, segregated calls into deletions (copy number < 

2) and duplications (copy number > 2), merged the 300bp and 1kb resolution calls per sample per 

CNV type using BEDTools merge, and subtracted any N-masked bases from all CNV calls using 

BEDTools subtract.20 As the construction of each 100-sample batch was informed based on inferred 

ploidy of chrX, we could jointly call all samples in a batch across all 24 primary contigs present in 

reference build GRCh37. 
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After raw SV calls from all four algorithms were aggregated for each sample, we next standardized 

each VCF or BED file to match specifications expected by the downstream pipeline modules using svtk 

standardize (https://github.com/talkowski-lab/svtk).1 We stripped all raw SV calls on chrX and chrY for 

samples with non-canonical inferred sexes from our ploidy estimation procedure. 

  

During module 00, we also collected PE, SR, RD, and BAF evidence per sample. We collected 

discordant PE evidence and SR evidence using svtk collect-pesr, RD evidence using binCov, and BAF 

evidence from GATK21 HaplotypeCaller-generated VCFs using a custom script (vcf2baf) included in the 

gnomAD-SV pipeline codebase on FireCloud. We were unable to obtain GATK VCFs for 0.2% 

(32/14,891) of samples, and thus lacked BAF data for these samples. Following evidence collection per 

sample, we constructed PE, SR, RD, and BAF matrices merged across all samples in each 400-sample 

batch. 

  

All subsequent modules (modules 01-07) were executed in FireCloud unless otherwise specified. 

 

Module 01: Clustering 

The second module of the gnomAD-SV pipeline involves clustering of all variant calls per algorithm 

across all samples in each batch of samples. For each 400-sample batch (described above), we used 

svtk vcfcluster to cluster all calls for all samples per PE/SR algorithm (Manta, DELLY, and MELT) while 

requiring a maximum of 300bp distance between breakpoints and at least 10% reciprocal overlap by 

size. We excluded any variants whose breakpoints mapped within our PE/SR clustering blacklist, as 

previously described.1 In parallel, we clustered cn.MOPS calls for all samples per batch using svtk 

bedcluster while requiring 80% reciprocal overlap by size and no constraints on breakpoint distance. 

For both PE/SR and RD calls, where two or more calls met the above clustering criteria, we collapsed 

all clustered calls into a single record using the median coordinates across all clustered variants. The 

output of module 01 was three VCFs and one BED file per 400-sample batch, corresponding to one file 

each for each of the four SV algorithms used. 

  

Module 02: Evidence Collection 

The third module of the gnomAD-SV pipeline involves querying four forms of raw evidence present in 

the original aligned WGS BAM files for all samples per batch for each SV call. While this process is 

described in extensive detail elsewhere,1 we also briefly summarize it here. For each SV call, we collect 

the following information: 

 

● PETest & SRTest (all SVs except RD-only CNVs): we assess the number of discordant read-pairs 

and split-reads per sample that supports the called SV, and require the orientation of reads per pair 
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to match the expected signatures for the corresponding SV class.19 The count of supporting 

discordant pairs or split-reads is tabulated per sample predicted to carry the SV, and also in a 

randomly selected background population of 160 samples predicted to not carry the SV. These 

counts are subsequently compared between predicted SV carriers and predicted non-carriers with a 

Poisson test to derive one P-value each for PE and SR evidence. 

● RDTest (CNVs only): like PETest and SRTest, we also assess the difference in RD between 

predicted CNV carriers and non-carriers. RDTest compares the median normalized coverage 

values between carriers and non-carriers with a two-sample t-test or a one-sample Z-test, 

depending on the number of predicted CNV carriers, and emits a P-value and a RD separation 

metric for each locus. 

● BAFTest (CNVs only): finally, we also compare the normalized B-allele frequency (BAF) for 

heterozygous SNVs within predicted CNVs between carriers and non-carriers. The distribution of 

BAFs is compared between groups of predicted carriers and non-carriers with a Kolmogorov-

Smirnov test for duplications or a Gaussian mixture model for deletions, which both produce a P-

value and test statistic for each CNV.  

 

The output of module 02 is four matrices per batch, corresponding to one each for Manta, DELLY, 

MELT and cn.MOPS. Each matrix contains the test statistics and evidence for every SV call made by 

that algorithm in that batch, and this evidence matrix is fed directly into the random forest filtering step 

in module 03.  

  

 Module 03: Variant Filtering 

The fourth module of the gnomAD-SV pipeline filters predicted SV calls per batch based on the strength 

of raw evidence supporting each call. This step is essential to exclude the overwhelming number of 

spurious false-positive SV calls emitted from each algorithm and retain a subset of SV enriched for 

true-positive SVs. We perform this filtering with a series of random forest classifiers, which have 

already been described in detail elsewhere.1 In brief, this process uses orthogonal types of WGS 

evidence produced in module 02 to assign each SV to one of three categories: predicted true SV, 

predicted false SV, or uncertain. The predicted true SV and false SV are used for training in the random 

forest, which are then applied across all variants providing a probability of a true SV. To correct for 

overfitting during random forest training we perform a series of ROC optimizations for all evidence 

metrics produced by module 02 , after which we compute a joint probability that each SV is a true 

variant across all available forms of evidence (PE, SR, RD, BAF). Next, we permanently exclude all 

SVs with an integrated probability < 0.5. These variants are classified as false-positive SVs by the initial 

algorithms, and are not considered for any subsequent analyses, although we note that true mosaic 

and sub-integer copy-state SVs will likely also be filtered out at this stage, as they will exhibit 
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suboptimal support despite being biologically valid events. Thus, we emphasize that the filtered SVs 

retained during module 03 are heavily biased towards segregating germline variants, and further 

methods development will be required to capture mosaic SVs at scale. Finally, we filtered samples from 

each batch that remained SV call count outliers even after random forest filtering of SV sites. To 

determine which samples were SV call count outliers, we counted the number of non-reference SV 

sites per SV type per algorithm for each sample per batch. Within each batch, we considered a sample 

to be an outlier if it was outside of six times the IQR for any SV type. Outlier samples were stripped 

from the cohort and excluded from all subsequent SV discovery and analyses (see Supplementary 
Table 1). 

  

Module 04: Genotyping 

The fifth module of the gnomAD-SV pipeline assigns a genotype and quality score for each sample for 

every SV based on support from three forms of evidence (RD, PE, SR). This process is described 

below:  

  

● RD genotyping (CNVs only): For each CNV, a median normalized RD value is calculated per 

sample by taking the median normalized RD value across all 100bp bins located within that CNV 

after excluding bins with mapping quality of zero, unless the removal of these unmappable bins 

would result in fewer than 10 eligible bins within the CNV. CNVs > 1Mb are restricted to the inner 

1Mb as a proxy, consistent with the behavior of RdTest (see Module 02). RD genotyping thresholds 

are first trained on a set of 64 previously characterized multiallelic sites,22 which exhibit tight normal 

distributions of normalized RD values centered at each integer copy state. After determining the 

expected distributions of normalized RD values for each copy state, we next assign a copy state for 

each sample at every CNV based on a Z-test against each copy state distribution. Samples are 

automatically assigned homozygous reference genotypes if they do not exceed the minimum RD 

separation threshold determined by the random forest stage of module 03. Finally, genotype quality 

(GQ) is assigned as a Phred score based on the P-value from the most likely copy state minus the 

Phred score for the second most likely copy state. GQ scores are capped at 999, similar to GATK.21  

● PE/SR genotyping (all SVs except RD-only CNVs): For each SV, counts of discordant pairs and 

split reads supporting the SV are tallied per sample. Genotype assignment is carried out in two 

phases, as follows. First, a binary determination is reached for each sample as to whether or not 

that sample’s genome carries the SV by comparing the PE or SR evidence in that sample to the 

cutoffs determined by the random forest step of module 03. Second, for samples predicted to carry 

each SV, a genotype is assigned based on PE or SR distributions matched to genotyped copy 

states for CNVs > 1kb determined during RD genotyping (see above). Similar to RD genotyping, 

both PE and SR counts for predicted SV carriers are normally distributed at each integer copy state, 
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and therefore a similar GQ can also be assigned per sample. For predicted non-carrier samples, 

GQs are assigned according to a Poisson test, given that PE and SR counts for non-carrier 

samples do not match those for predicted SV carriers. GQ scores are capped at 999, similar to 

GATK.21  

 

After PE, SR, and RD genotypes have been assigned to each samples for every SV, an integrated 

genotype is composed according to SV class and size. For each SV, one of the three evidence types 

(PE/SR/RD) is considered “primary”, and the others are considered “secondary”. The primary evidence 

is used to assign the overall genotype, and the secondary evidence provides a bonus to GQ scores if 

concordant with the primary evidence: if the other pieces of evidence support the primary, a bonus of 

(999-GQprimary) x (0.5 x GQsecondary / 999) is added to the primary GQ. For CNVs > 5 kb, RD is primary 

and the better non-reference genotype between PE or SR is secondary. For CNVs between 1-5kb, the 

better non-reference genotype between PE or SR is primary and RD is secondary. For all other 

variants, the better non-reference genotype between PE or SR is primary, and the other is secondary. 

Once all samples are genotyped per SV, each variant is assigned a QUAL score based on the median 

GQ across all non-reference samples for that SV. 

  

Module 05: Batch Integration 

The sixth module of the gnomAD-SV pipeline involves the codification of genotyped SV calls across all 

batches in the cohort, merging of PE/SR and RD calls, and subsequent resolution of these merged SV 

calls into complete genomic variants. Components of this process have been described previously,1 but 

this module also includes multiple new and modified processes. This occurs in four steps, 05i-05iv, 

listed below: 

 

● 05i: Cross-batch call clustering: the first step of module 05 clusters each genotyped VCF from 

module 04 across all batches. This is performed once for the three PE/SR algorithms and once for 

cn.MOPS. We first perform a column-wise join across all VCFs from each of the 36 batches, and 

subsequently run svtk vcfcluster on the new cohort-wide joined VCF to collapse overlapping 

variants.1 When clustering, we require a minimum of 50% of samples with non-reference genotypes 

to overlap between records. For PE/SR algorithms, we additionally require a maximum breakpoint 

distance of ±300bp and a minimum reciprocal overlap of 10% by size, whereas for cn.MOPS, we 

required a maximum breakpoint distance of ±500kb and a minimum reciprocal overlap of 50% by 

size. For instances of two or more variants being clustered, each sample retains the non-reference 

genotype (if any) with the highest genotype quality score among all variants in the cluster. The 

output of this step is two clustered VCFs for the entire cohort: one containing all PE/SR-based SV 

calls, and one containing all RD-based CNV calls. 
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● 05ii: PE/SR and RD call merging: the second step of module 05 merges the cohort-wide PE/SR-

based and RD-based SV calls output from module 05i. In this merging, we first construct a graph of 

all overlapping PE/SR and RD SV calls while requiring 50% reciprocal overlap by size, matching SV 

classes, and at least 50% overlap among samples with non-reference genotypes. Each cluster in 

this graph is collapsed into a single record, where the SV coordinates from the PE/SR record are 

retained but the union of non-reference sample genotypes are assigned as in module 05i. The 

output of this step is a single VCF containing all SV calls across the full cohort. 

● 05iii: Variant resolution: the third step of module 05 examines predicted alternate allele structures 

from individual breakpoints to construct SV consisting of multiple breakpoints. This process is 

performed twice in parallel: once while including all SVs, and once while restricting to inversion 

breakpoints alone to capture large inversion-mediated complex SV. Variant resolution is performed 

with svtk resolve, the framework for which has been described at length in two previous 

publications.1,3 For clarity, we also provide a brief description of this process here. In summary, svtk 

resolve first performs single-linkage clustering of all overlapping SV while requiring a maximum 

breakpoint distance of ±300bp and 50% overlap among samples with non-reference genotypes. It 

next compares the coordinates and SV classes of each cluster of SVs against a dictionary of known 

SV signatures, which resolves canonical translocational insertions, canonical inversions, canonical 

reciprocal translocations, and 13 complex SV subclasses (see Figure 2).1,3 Non-CNV SVs involved 

in a multi-SV cluster that are unable to be resolved are marked as unresolved, and are converted to 

BNDs to accordingly. This entire process is performed two times, sequentially: first when requiring 

the relatively strict (±300bp) breakpoint distance to capture easily resolved SVs, then a second time 

while only considering unresolved variants with a more relaxed breakpoint distance criteria of ≥2kb 

to capture complex SV with large (≥2kb) flanking CNVs. SVs that do not cluster with any other SV, 

or those that cannot possibly form a complex SV (e.g., two partially overlapping deletions), are left 

unchanged. The last step of this process is to resolve discrepancies between the outputs of svtk 

resolve when run on all variants and when restricted to only inversions: if an SV is incorporated into 

a resolved SV in one output but not the other, we retain the resolved SV and discard the unresolved 

alternative. The output of this step is one VCF one containing all variants, including resolved 

canonical SV, resolved complex SV, and unresolved BNDs. 

● 05iv: Complex variant regenotyping: the final step of module 05 is to confirm predicted complex SV 

structures via RD regenotyping of predicted CNV intervals. To accomplish this, we perform RD 

genotyping for all 36 batches for all predicted CNV intervals involved in candidate complex SVs with 

the same procedure as described in module 04, collect the copy state predictions across all 

samples from all 36 batches, and compare the ratio of samples with expected copy states (i.e., 

copy state < 2 for a predicted complex deletion interval and copy state > 2 for a predicted complex 

duplication interval) between predicted carriers and non-carriers. For all CNVs > 1kb, we then 
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compute the “confirmation rate” for predicted carrier and non-carrier samples as the fraction of 

samples with expected copy states divided by the total number of samples. We consider a CNV to 

be confirmed if the difference in confirmation rates between predicted carriers and non-carriers is at 

least 40% than for non-carriers (e.g., at least 40% of carriers and 0% of non-carriers, or 90% of 

carriers and 50% of non-carriers). We restrict this comparison to female samples on chromosome 

X, and male samples on chromosome Y. CNVs ≤ 1kb are assessed for confirmation, but a failure to 

confirm small CNVs in this size range does not count as a regenotyping failure. Once all CNVs 

involved in a candidate complex SV are labeled based on this regenotyping procedure, we consider 

the entire complex SV as confirmed unless any CNVs fail to regenotype (or are <1kb, as described 

above). Candidate complex SV with at least one involved CNV labeled as a regenotyping failure are 

rejected, and converted to unresolved BND variants. 

 

Following steps 05i-iv, the output from module 05 is a single cohort-wide genotyped VCF with resolved 

canonical SVs, resolved complex SVs, and unresolved SVs. This VCF is passed to the final VCF 

refinement step in module 06, described below. 

  

Module 06: VCF Refinement 

The seventh module of gnomAD-SV pipeline corrects inconsistencies in RD-based CNV genotyping 

that arise due to difficulties in predicting copy state for overlapping CNVs. Namely, the gnomAD-SV 

pipeline uses copy number as predicted by RD evidence as the primary source for assigning genotypes 

to CNVs > 5kb in size; however, in instances of overlapping CNVs, this approach can be confounded 

without deconvolving each haplotype by phase. To account for this, we apply a correction to CNVs > 5 

kb that are not multiallelic (i.e., more than three distinct copy states observed) as follows: per sample, 

we first isolate pairs of CNVs with at least 50% overlap by size, using BEDTools coverage.20 The 

strength of evidence supporting each CNV is then assessed based on CNV size, where larger CNVs 

are considered to have stronger support, and type(s) of evidence with p≥0.5 from the module 03 

random forest (e.g., RD, PE). For each pair, we then correct copy state and genotype for the CNV with 

weaker support. Concurrent with this overlapping CNV correction, we also explore nested compound 

heterozygous deletions and duplications, where one of the CNVs may have what appears to be a 

reference copy state due to the change in copy number being masked by the opposing CNV on the 

other allele. After correction of copy states, new genotypes are assigned for all samples, and a final 

multiallelic tag is assigned to CNVs > 5 kb with at least 1% of samples having copy states at least 2 

deviations away from expectation (e.g., a deletion call with a maximum copy number of four or more). 

CNVs tagged as multiallelic are relabeled as “MCNV”. In addition to the overlapping CNV correction, 

this module also handles sex chromosome genotype correction, which is evaluated in a sex-aware 
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manner. For those individuals with a predicted sex chromosome abnormality (e.g., XXY; also see 

Extended Data Figure 1) genotypes are automatically assigned as null on sex chromosome.  

  

Module 07: Gene annotation  
The eighth and final module of the SV discovery pipeline annotates all SV against known protein-coding 

genes. We used protein-coding gene annotations from the Gencode v19 comprehensive annotation 

file.23 Where multiple transcripts were available for a single gene, we restricted analyses to the 

transcript matching the Ensembl definition of canonical transcript (see 

https://useast.ensembl.org/Help/Glossary?id=346). UTRs were defined as the elements designated as 

UTRs in Gencode v19 that also corresponded to the Ensembl canonical transcript. Promoters were 

defined as the 1kb window directly preceding each gene body in Gencode v19 on the transcribed 

strand. We annotated each canonical SV for a range of possible predicted effects on coding 

sequences, as is graphically outlined in Supplementary Figure 10 and described below: 

  

● Loss of function (pLoF): we predicted an SV to cause genic pLoF on a SV class-specific basis, as 

follows: 

○ Deletions: any overlap with at least one exon. 

○ Duplications: both breakpoints wholly contained within exons of the same gene, as we reasoned 

this would result in an altered amino acid sequence in all cases, and likely also result in a 

frameshift in most cases. 

○ Insertions: insertion of any sequence directly into an exon. 

○ Inversions: any inversion where one breakpoint is contained within a gene (exon or intron) and 

the other breakpoint is outside of the same gene, or any inversion where both breakpoints are 

contained within the same gene and the inversion overlaps at least one exon from that gene. 

○ Translocations: any translocation breakpoint that overlaps an exon or intron. 

● Copy gain (CG): we predicted an SV to cause a whole-gene CG if and only if the SV involved a 

duplicated segment that completely spanned an entire gene (defined as the first nucleotide of the 

first exon extending to the last nucleotide of the last exon from the canonical transcript). 

● Intragenic exonic duplication (IED): we predicted an SV to cause IED if and only if the SV involved a 

duplicated segment where both breakpoints were contained within the same gene, at least one 

exon was intronic, and the duplication overlapped at least one exon. 

● Partial gene duplications: we predicted an SV to result in a partial gene duplication if the SV 

involved a duplicated segment where one breakpoint was contained within a gene (exon or intron) 

but the other breakpoint was found outside that same gene. The functional consequence of these 

rearrangements is unclear, and likely to infrequently result in altered gene function; thus, for most 

analyses, such variants were not considered to be gene-altering. 



Collins*, Brand*, et al. (2019) gnomAD-SV: Supplementary Information | 36 

● Whole-gene inversion: we predicted an SV to invert an entire gene if the SV involved an inverted 

segment that completely covered an entire gene, using the same definition as for CG annotations 

(see above). Given that we would not predict any direct alterations to coding sequence from whole-

gene inversions, we did not consider such variants as gene-disruptive in our analyses, although we 

cannot rule out the possibility that a subset of these variants might have context-specific positional 

effects on gene regulation in cis (e.g., by dislocating enhancers from their target promoter). 

● Multiallelic exon overlap: we noted all MCNVs that overlap at least one exon, but did not consider 

these SVs to categorically cause any one functional effect (per above). We did not count MCNVs 

towards any site-level analyses of genic effects, but instead evaluated the predicted effects of each 

MCNV on a per-sample basis according to each sample’s predicted copy state (i.e., genotype). 

Samples with a predicted copy state < 2 were treated as MCNV (pLoF), whereas samples with a 

predicted copy state > 2 were treated as MCNV (CG). We fully anticipate these MCNV designations 

are oversimplifying the true complexity of these MCNV haplotypes and their diploid arrangement; 

however, given the relative sparsity of MCNVs in the genome and absent tedious manual curation, 

improved MCNV phasing methods, and/or other positional information, we used the generalization 

outlined above as a rough proxy for the genic effects of MCNVs. 

● Promoter SVs: we labeled SVs as promoter-disruptive if at least one breakpoint was contained 

within a gene’s promoter, but the gene did not meet any of the above criteria to otherwise be 

considered gene-disruptive. 

● Intronic SVs: we labeled SVs as intronic if both breakpoints were contained within the same gene, 

but the SV did not meet any of the above criteria to otherwise be considered gene-disruptive 

(including promoter disruptions). 

● Intergenic SVs: all SVs not meeting any of the above criteria were considered intergenic. For these 

SVs, we also noted the gene with the nearest TSS by linear distance. 

 

Given their multiple interleaved distinct SV signatures, we treated complex SV separately from all 

canonical SV during gene annotation. For each complex SV, we first deconstructed the rearrangement 

into its component intervals (labeled as “CPX_INTERVALS” in the VCF INFO field), annotated each 

interval according to its SV class and coordinates, then composed a consensus annotation for the 

overall complex SV as the union of predicted effects from all of the component intervals. For instance, 

in the case of a deletion-flanked inversion where the deletion overlaps exons 4-7 of gene A, and the 

inversion begins in the gene A intron following exon 7 and extended to an intron of gene B, the overall 

complex SV would acquire pLoF labels for both genes A and B, since gene A meets pLoF criteria for 

both the deletion and the inversion, whereas gene B meets the pLoF criteria for the inversion. However, 

in this situation, gene A would not be counted as pLoF twice; each gene is annotated only once based 

on the union of all component SV intervals. Two pLoF effects in the same gene in the same individual 



Collins*, Brand*, et al. (2019) gnomAD-SV: Supplementary Information | 37 

or variant are only assigned in the case of a homozygous genotype, where both copies of the gene 

have the same predicted functional SV allele, or a compound heterozygous site, where two 

independent heterozygous SVs are both predicted to disrupt opposite copies of the same gene. 

 

The output from this annotation process in module 07, the final module in the gnomAD-SV discovery 

pipeline, is a genotyped VCF containing all SVs across all samples, with functional genic annotations 

assigned to each SV (as above). 

  

Sample and variant QC after SV discovery 
Following SV discovery, we performed a series of per-sample and per-variant QC steps and filters, in 

the order described below. These post hoc callset adjustments are also outlined in Supplementary 
Figure 13. 

  
Optimizing per-sample genotype quality filters 

We first aimed to control false positive non-reference genotype rates per sample by applying a series of 

conditional filters to the genotype quality (GQ) statistic for each genotype at each SV site. To 

accomplish this, we considered the rate of apparently de novo SV among the 1,173 parent-child trios 

present in our SV callset, as we reasoned the subset of apparently de novo SV would be strongly 

enriched for spurious false-positive genotypes in the child and could thus be informative for fitting 

genotype filtering thresholds. Given that our genotyping procedure relies on different combinations of 

evidence for different SV classes, we performed a GQ threshold optimization procedure separately for 

each PCR status (PCR+, n=203 trios; PCR-, n=970 trios) across six SV classes (DEL, DUP, INS, INV & 

CPX, BND, and all SV classes), four size ranges (<1kb, 1-5kb, ≥5kb, and all sizes), four allele 

frequency ranges (<1%, 1-10%, ≥10%, and all frequencies), four VCF filter statuses (high SR 

background rate, PESR genotyping overdispersion, everything else, and all filter statuses), and four 

per-sample genotype evidence categories (RD-only, SR-only, everything else, and all evidence 

categories), for a total of 1,152 distinct filter conditions tested for each PCR status after removing 

impossible combinations of filters (e.g. RD-only balanced SV). For each filter condition, we extracted 

genotypes and GQ metrics for every trio across all biallelic autosomal SVs matching the filter’s 

parameters and where the child was genotyped as heterozygous. For trios where >1,000 SV met these 

criteria, we randomly downsampled 1,000 SV for analysis. We next titrated across a range of minimum 

GQ thresholds from 0 to 999 in increments of 5. At each candidate GQ threshold, we replaced all 

genotypes with GQ below this threshold with no-call genotypes (i.e. “./.”), and computed two metrics: 

(1) the fraction of heterozygous SV retained in the proband that had appeared as inherited prior to 

minimum GQ filter application, and (2) the percentage of heterozygous SVs retained per child 

appearing de novo among sites where all three members of the trio still retained non-no-call genotypes. 
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We then computed the median for each of these statistics across all trios at each candidate minimum 

GQ threshold and performed a receiver operating characteristic (ROC) analysis to find the optimal GQ. 

We constrained this ROC analysis to find the lowest GQ cutoff such that we could maximize 

percentage of inherited heterozygous SV retained while also satisfying a maximum tolerated apparent 

de novo rate of ≤5% for PCR- trios and ≤10% for PCR+ trios. After determining the optimal minimum 

GQ threshold for each of the 1,152 filter condition listed above, we discounted the results from any 

condition with a median number of heterozygous SV per child less than 11. For these conditions with 

≤10 heterozygous SV per child, we adopted a minimum GQ threshold from a closely related condition 

that satisfied the minimum requirement of heterozygous SV per child. This “closely related” condition 

was determined based on ascending a hierarchical tree of most-to-least effective filter combinations for 

each SV type, where filters were ranked on effectiveness by maximizing the fraction of inherited 

heterozygous SV retained per child at the ROC-optimal minimum GQ threshold while also maintaining 

apparent de novo rate ≤10%. Once all minimum GQ thresholds were determined for each filter 

condition for PCR+ and PCR- samples separately, we replaced all homozygous reference or 

heterozygous biallelic genotypes to no-call genotypes per SV for any sample with GQ below the 

corresponding threshold based on that sample’s PCR status. We did not apply any GQ filtering to 

homozygous genotypes, multiallelic sites (MCNVs), or chromosomal translocations. SV without any 

remaining non-reference genotypes after minimum GQ filtering were dropped from the callset. 

  

Outlier sample exclusion 

After controlling per-sample genotyping false positive rates with a series of minimum GQ thresholds 

(see above), we next evaluated whether any samples were outliers in terms of total number of SV per 

genome. We counted the total number of non-reference autosomal biallelic SV observed per sample for 

each SV class with an average of more than 100 SV per genome (DEL, DUP, INS, BND) after 

excluding SV with the PESR genotype overdispersion VCF filter to protect against high rates of 

homozygous genotypes of these sites masking true outlier samples. We labeled samples as outliers if 

they had an SV count from any class that was either more than three times the inter-quartile range 

(IQR) beyond the third quartile or less than six times the IQR below the first quartile across all samples 

for that SV class. We performed this process separately for PCR+ and PCR- samples. Outlier samples 

were pruned from the callset, and SV without any remaining non-reference genotypes after outlier 

sample exclusion were also excluded. 

  

Assessment of batch effects 

We next assessed the concordance of SV calls between all pairs of the 36 batches used during SV 

discovery. We were particularly interested in identifying any SV that may have been preferentially 

discovered in one or a subset of batches due to factors other than sex or ancestry, and thus may be 
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unevenly represented across the full gnomAD-SV cohort and skew AF distributions. To accomplish this, 

we first computed batch-specific AF statistics for every variant for samples from each of four major 

populations (African, Asian, European, or Latino) based on unrefined preexisting sample labels 

corresponding to ancestry inferred from SNV analyses on the same samples or, where necessary, self-

reported race or ethnicity. For MCNVs, we computed AF as the total count of non-diploid individuals 

divided by the total number of individuals genotyped at that site. for each nonredundant pair of batches 

(n=630 pairs), we restricted to sites where at least one non-reference allele was observed in either 

batch and at least one population had at least 60 non-null (i.e., genotyped) alleles in both batches, or 

30 individuals with non-null genotypes for MCNVs. We controlled for differences due to ancestry by 

restricting to the same population on a per-variant basis, and further maximized the accuracy of these 

comparisons by restricting to the optimal population separately for each variant, where “optimal” was 

defined as the population with the largest minimum number of non-null alleles between both batches 

that also met the criteria above (≥60 non-null alleles in both batches & ≥1 non-reference allele in either 

batch). For each site, we tabulated the observed AF in the selected optimal population for both batches, 

and assessed the significance of any differences in AF between the two batches with a chi-squared 

test, and performed a Bonferroni correction on the resulting chi-squared p-values to control for the 

many thousands of sites being compared between any two batches. In parallel, performed an identical 

analysis for batch-specific variants, where we compared the AFs for all sites observed in a single batch 

against the AF of those sites summed across all other 35 batches. We considered a variant to have 

evidence of batch effects if it had a Bonferroni-corrected p-value < 0.05 in at least 12/630 possible 

pairwise comparisons or any of the 36 batch-specific variant comparisons. For each variant with batch 

effects, we subsequently determined whether the batch effect was being driven predominantly by 

PCR+ or PCR- samples by calculating the fraction of batch-batch pairs with significant batch effects 

that involved a PCR+ batch. Since 4/36 batches (~11%) were PCR+, we used 11% as a cutoff to 

discriminate between PCR+ and PCR- batch effects (described below). SVs with significant batch 

effects were handled as follows: 

  

● If at least 11% (≥~4/36) of failed comparisons involved a PCR+ batch, and the average AF was 

higher in PCR+ batches than in PCR- batches, that variant was marked with a 

“PCRPLUS_ENRICHED” tag in the VCF filter column. 

● If at least 11% (≥~4/36) of failed comparisons involved a PCR+ batch and the average AF was 

higher in PCR- batches than in PCR+ batches, all genotypes from PCR+ samples were rewritten as 

no-calls and a “PCRPLUS_DEPLETED” tag was added to the VCF INFO field, but no new VCF 

filter status was assigned. Sites with zero non-reference alleles remaining after excluding PCR+ 

samples were dropped from the callset. 
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● If less than 11% (<~4/36) of failed comparisons involved a PCR+ batch, the variant was marked 

with a “VARIABLE_ACROSS_BATCHES” tag in the VCF filter column. 

  

Assignment of final VCF filter labels 

Despite efforts to balance sensitivity and specificity throughout SV discovery and genotyping in this 

cohort, we nevertheless wanted to categorically partition the final SV callset into a high quality (i.e. 

analysis-ready) subset and a second subset corresponding to variants of lower quality. In particular, 

unresolved variants (sometimes called breakends/BNDs) can dramatically inflate variant counts both 

cohort-wide and per-sample, but do not have resolved alternate allele structures and thus are largely 

uninterpretable for downstream analyses. We also noticed an enrichment of apparent false-positive 

deletions ranging from 350bp-1kb that were characterized by many samples being genotyped with low 

GQ. Therefore, our motivation for partitioning the gnomAD-SV callset into a high-confidence subset 

was twofold: first, for ease of use and clarity when distributed to the broader community, and second, 

for the formal analyses conducted in this study. To this end, we labeled all variants with a final filter 

status as “PASS” in the VCF unless they met any of the following criteria: 

  

● The variant was unresolved; or 

● The variant was a deletion between 350bp and 1kb in size and had >7% of sample genotypes from 

PCR- samples masked during minimum GQ filtering as described above; or 

● The variant had a VCF filter status including any of the following terms: “PCRPLUS_ENRICHED,” 

“VARIABLE_ACROSS_BATCHES,” “UNRESOLVED,” or “MULTIALLELIC”. 

  

All downstream analyses presented in this study were restricted to variants with PASS or 

MULTIALLELIC filter statuses, unless otherwise specified. 

  

Variant quality score recalibration 

Following all post hoc genotype- and site-level adjustments described above, we recalibrated variant 

quality scores (i.e., “QUAL” values in the VCF) to reflect the median GQ among all samples with non-

reference genotypes for each variant. For this purpose, samples with homozygous non-reference 

genotypes were treated as if they had a GQ of 999—the maximum GQ value assigned—as the purpose 

of QUAL scores is to reflect the confidence that a non-reference sequence variant exists at the position 

specified and in this regard homozygous genotype should be weighted as heavily as the highest-

confidence heterozygous genotype call. For MCNVs, we treated individuals with copy states of one or 

three (i.e., one copy different from diploid) as being heterozygous, and treated individuals with copy 

states of zero or at least four (i.e., at least two copies different from diploid) as homozygous during 

QUAL score recalibration. 
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Population assignments 

We next formally assigned samples to one of five populations based on genetic similarity inferred from 

this SV callset alone. To accomplish this, we first restricted the callset to autosomal SV with a global AF 

≥1%, a VCF filter status of “PASS,” lacking VCF INFO tags of “PCRPLUS_DEPLETED” and 

“PESR_GT_OVERDISPERSION,” and non-null genotypes for ≥99% of samples. Missing genotypes 

were filled with the mean allele count per site. We performed a principal component (PC) analysis of 

allele counts per sample for these filtered variants. We assigned samples to one of five population 

labels (African [AFR]; East Asian [ASN]; South Asian [SAS]; European [EUR]; and Latino [LAT]) based 

on the top four PCs as labeled by a support vector machine (SVM) with a Gaussian kernel and 10-fold 

cross-validation using the e1071 package in R. We trained this SVM classifier on known population 

labels inferred from SNV data for a subset of samples (N=7,575) as part of the gnomAD SNV & indel 

analysis,7 and assigned each sample to a population if the SVM-estimated probability of membership 

for that sample was at least 0.85. Samples with South Asian labels were retained, but were merged into 

the “other” [OTH] category for purposes of analysis given their small sample size.  

  

Relatedness inference 

To infer genetic relatedness between samples in this dataset, we filtered all SV to autosomal SV with a 

global AF ≥0.015% (i.e., observed in ≥2/14,000 samples), a VCF filter status of “PASS,” lacking VCF 

INFO tags of “PCRPLUS_DEPLETED” and “PESR_GT_OVERDISPERSION,” and non-null genotypes 

for ≥99% of samples and converted the file to PLINK BED, FAM, and BIM formats with PLINK 

v2.00a2LM.24 We calculated kinship coefficients and identity-by-descent (IBD) fractions between all 

pairs of individuals with KING v2.1.5.25 We trained an SVM on the results from KING using ground truth 

family relationships available for a subset of samples (i.e., samples with at least one known parent-child 

or sibling relationship to another sample in the cohort). We applied this SVM classifier to the KING 

metrics generated on the full cohort to learn parent-child and sibling relationships for all sample pairs. 

One sample from each pair of samples involved in relationships corresponding to predicted parent-child 

or sibling relationships were pruned from the dataset; we optimized this selection process to exclude 

the fewest possible samples such that all inferred sample pair relationships had at least one member 

excluded. 

  

Final variant modifications 

For 191 SVs, we altered some variant metadata and/or reclassified the variant based on manual 

review. These changes are summarized below: 

● We assessed RD genotyping evidence for all large (≥1Mb) SVs, finding that 25/219 did not feature 

strong visual support for the expected copy number alterations. Of the 25 SVs that failed manual 
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RD inspection, we noted that they were comprised overwhelmingly of one specific subclass of 

complex SV (piDUP), and tended to cluster at certain genomic loci overlapping repetitive 

sequences, suggesting a specific error mode for these SVs that was not generalized across all SV 

classes. These 25 SVs were assigned the UNRESOLVED FILTER status in the final VCF. 

● We assessed all protein-coding effect annotations for 33 SVs resulting in pLoF for 10 or more 

genes, finding that 2/33 were likely annotation errors. These 2 SVs had their predicted gene effect 

annotations corrected in the final VCF. 

● We manually resolved 8 reciprocal translocations and 2 complex interchromosomal rearrangements 

that were initially incompletely resolved by the automated variant resolution step in module 05. 

● We assessed RD genotyping evidence for all CNV intervals ≥50kb involved in complex 

rearrangements, finding that 105/756 CNV intervals (corresponding to 105/675 unique complex 

SVs) did not exhibit strong visual support for the expected copy number alterations. Like the SVs  ≥ 

1Mb inspected above, we noted a prevailing error mode among SVs with unconvincing RD 

evidence, which was restricted predominantly to piDUP complex SVs clustered at complex 

multicopy genomic loci (all but 2/105 of the SVs lacking clear RD support were piDUPs). These 105 

SVs were assigned the UNRESOLVED FILTER status in the final VCF. Additionally, we observed 

49/675 complex SVs that appeared partially redundant due to repetitive loci with complex genomic 

architecture; these SVs were collapsed into single records in the final VCF. 

● We found two loci where large (≥1Mb), rare CNVs were being apparently fragmented into multiple 

smaller, consecutive intervals. CNVs at these sites were manually merged. 

 

Callset benchmarking 
To benchmark the technical properties and overall quality of the final gnomAD-SV map, we applied five 

distinct analyses, as described below. 

  

Assessment of Mendelian violation rate from parent-child trios 

As a proxy for SV genotyping errors, we counted the number of autosomal SV genotype combinations 

inconsistent with Mendelian segregation 966 parent-child trios with PCR- WGS in this study. As we 

expected all inherited SVs to follow Mendelian segregation, and also expected less than one true de 

novo SV per generation (see Figure 3a),1,6 we reasoned that nearly all Mendelian violations represent 

a combination of false-positive and false-negative genotypes in the child and/or parents. Per trio, we 

first identified all biallelic, autosomal SVs where the child and both parents had non-null genotypes and 

at least one member of the trio had a non-reference genotype, then computed the fraction of those SVs 

that qualified as a Mendelian violation. We considered the following three possible cases of Mendelian 

violations: 
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• Apparent de novo: SVs where the child is heterozygous and neither parent carries any non-

reference alleles. 

• Spontaneous heterozygote: SVs where the child is homozygous for the alternate allele, and at least 

one parent is homozygous for the reference allele (i.e., it should be impossible for the child to inherit 

two copies of the SV, without invoking extremely rare phenomenon like uniparental disomy). 

• Untransmitted homozygote: SVs where the child is homozygous for the reference allele, and at 

least one parent is homozygous for the alternate allele (i.e., it should be impossible for the child to 

not have inherited at least one copy of the alternate allele). 

 

For each trio, we computed the Mendelian violation rate to be the fraction of all qualifying SVs that met 

the above three criteria. We calculated the median across all 966 trios as the overall Mendelian 

violation rate for gnomAD-SV, and used these data to calculate other trio-based measurements of 

genotyping error rates as indicated in Supplementary Table 4.  

 

Comparison to chromosomal microarray data on matched samples 

We assessed the sensitivity of the gnomAD-SV discovery pipeline for large CNVs by comparing SVs 

from 1,893 samples in this study to existing CNV calls for those same samples from chromosomal 

microarray analysis in an earlier study.12 We first converted the coordinates of CNV from microarray to 

GRCh37 using UCSC liftOver,26 filtered to autosomal CNVs ≥ 40kb, and restricted to high-confidence 

calls by requiring pCNV < 10-9 per recommendation of the authors. Next, we computed the number of 

PCR- samples in this study expected to carry each microarray CNV, and the fraction of the expected 

samples that also had at least 50% of the CNV covered by either a canonical or complex CNV from the 

WGS analyses in this study. Coverage was computed using BEDTools.20 We considered each 

microarray CNV as captured in gnomAD-SV if the fraction of expected samples that had a matching 

WGS SV was at least 50%, and evaluated our sensitivity at two thresholds: one while considering all 

autosomal CNVs, and a second, more conservative threshold where we also excluded all microarray 

CNVs with ≥ 30% coverage by segmental duplications and/or simple repeats. We calculated overall 

sensitivity as the total number of microarray CNVs captured in this WGS analysis divided by the total 

number of eligible microarray CNV calls (Supplementary Table 4). 

  

Analysis of Hardy-Weinberg equilibrium across populations 

Although imperfect due to baseline assumptions that will not hold for all SVs, a basic analyses possible 

from a matrix of human genotypes is to evaluate the genotype distributions per locus under the null 

expectations set by the Hardy-Weinberg equilibrium (HWE; 1 = p2 + 2pq + q2). While there are many 

biological reasons why some variants might violate HWE, such as recessive selection, the rate at which 

sites violate HWE can be used as a rough proxy of genotyping accuracy. Thus, we tabulated genotype 
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distributions per population for each biallelic, autosomal SV, and computed a HWE P-value using the 

“HardyWeinberg” package in R.5 We considered an SV to be in violation of HWE if its P-value was less 

than 0.05 following Bonferroni correction for the number of sites tested per population. HWE 

concordance rates per population are provided in Extended Data Figure 2b, Supplementary Figure 
5, and Supplementary Table 4.  

  

Comparison to long-read WGS data on matched samples 

Four samples in this study had also previously undergone PacBio long-read WGS as part of a separate 

study,13 and we used these data to assess the PPV of the gnomAD-SV discovery pipeline with an 

orthogonal long-read WGS technology. SVs from this study for each of the four samples with long-read 

WGS were converted to hg38 coordinates via UCSC liftOver,26 a necessary step to match the hg38-

based alignment of the PacBio data. Following liftOver, we assessed support for each SV individually 

from the raw PacBio with VaPoR, a software package designed to autonomously validate SV calls by 

performing comparative local realignments of long-read WGS.27 We initially performed analyses of all 

variants in silico as a primary screen to restrict the number of variants requiring further scrutiny, then 

performed manual inspection of VaPoR profiles for the remaining SVs. Given the challenge of 

assessing RD-based SVs in PacBio data, and multi-breakpoint variants with VaPoR, we restricted our 

analysis to CNVs with SR and/or PE evidence (n=8,248 SVs). VaPoR automatically found support for 

5,873/8,248 (71.2%) of CNVs, which slightly increased (74.9%) when excluding SVs located within 

simple repeats and/or segmental duplications. All remaining variants underwent manual review of 

VaPoR visualizations, where we found no support for 1,642 SVs, clear evidence supporting the 

predicted SVs for 562 variants, and ambiguous results for 597 SVs (i.e., evidence of an SV at the 

predicted locus in the PacBio WGS data, but of a different SV class, such as an insertion where 

gnomAD-SV predicted a deletion). These results yielded a final PPV of 88.1% from this analysis, which 

should represent a combination of false-positive SVs in the short-read WGS and false-negative variants 

in the long-read WGS (Supplementary Table 4). 

 

Comparison to SVs from the 1000 Genomes Project 

We obtained the 1000 Genomes phase 3 SV VCF as described by its original publication,6 and 

converted it from VCF to BED format using svtk vcf2bed.1 We performed minimal additional curation of 

this dataset: we left all information as provided by the 1000 Genomes Project, except for summing the 

frequency of all alternate alleles at sites where multiple alleles were listed (e.g. MCNVs). We then 

compared the gnomAD-SV callset to the 1000 Genomes Project callset while requiring at least 50% 

reciprocal overlap by size and/or both breakpoints within ±300bp using BEDTools intersect. We further 

evaluated this comparison at two different levels of stringency: “strict” criteria, which required SV 

classes to match between candidate overlapping variants, and “loose” criteria, which did not apply this 
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same requirement. We reported overlaps in this study using the “loose” criteria, but provide results from 

both criteria in Supplementary Figure 6. Furthermore, for each SV from the 1000 Genomes Project, 

we noted the AF of the overlapping SV in gnomAD-SV, if any. Where multiple candidate SVs in 

gnomAD-SV matched one call from the 1000 Genomes Project, we retained the AF most similar to the 

1000 Genomes Project reported AF. We also performed these comparisons on a population-specific 

basis for the four populations matching between gnomAD-SV and the 1000 Genomes Project (AFR, 

AMR, EAS, EUR). 

  

Chromosome-level analyses of SV density 
To compute the density of SV per chromosome, we first segmented all 22 autosomes into sequential 

100kb windows, and excluded windows that overlapped centromeres. For each window, we tallied the 

number of SV per class that had any overlap with the window. For insertions, we only considered the 

insertion site in this analysis. This returned a matrix of SV counts per 100kb bin for all autosomes and 

SV classes. We computed the 11-window rolling mean per chromosome per SV class, yielding values 

per bin smoothed versus the surrounding 1Mb. Finally, we assigned each window to a percentile based 

on the position of that window on its respective chromosome arm relative to the chromosome’s 

centromere where a value of -1 corresponded to the p-arm telomere, a value of 0 corresponded to the 

centromere, and a value of 1 corresponded to the q-arm telomere. To compute “meta-chromosome” 

averages, we segmented the range of normalized window positions (i.e., -1 to 1) into 500 uniform bins, 

and averaged all windows across all chromosomes based on their chromosome-normalized window 

positions. We considered normalized positions within the outermost 5% of each chromosome arm to be 

“telomeric”, the middle 90% of each arm to be “interstitial”, and the innermost 5% to be “centromeric” for 

purposes of comparing chromosome contexts. 

  

Estimating SV mutation rates 
We estimated the SV mutation rate using the Watterson estimator with an effective population size (Ne) 

of 10,000, consistent with precedent set by prior SV studies.6,28,29 Specifically, for each of the five major 

populations catalogued here, we first computed the Watterson estimator (ϴ) for each SV class as 

follows: 

 
Where was the number of SV sites observed per population for a given SV class and was the total 

number of chromosomes analyzed in each population. We then solved for mutation rate (µ) as follows: 
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Finally, since the Watterson estimator is sensitive to differences in Ne, and the appropriate value of is 

known to be strongly influenced by population demographic history,30 we computed the mean mutation 

rate across all five populations using the same estimate of to arrive at our global mutation rate estimate. 

We also computed a 95% confidence interval about the mean according to a t distribution. 

 

Comparisons of SVs to metrics of genic constraint against point mutations 
We constructed a simple statistical model to predict the number of rare SVs observed per gene for four 

different classes of gene-interacting SVs (pLoF, CG, IED, and whole-gene inversions). This approach is 

also described in the gnomAD SNV/indel study,7 but is reproduced here for clarity. For each SV class, 

we first tallied the number of rare SVs per gene for all autosomal protein-coding genes. To prevent 

against genes under strong selection from biasing the fit of this model, we next restricted to genes in 

the upper half of observed:expected ratios (i.e., the least constrained 50% of genes) for rare pLoF 

SNVs as described in the gnomAD SNV/indel analyses.7 From these genes, we fit a negative binomial 

regression model to predict the number of rare SVs per gene while including the following covariates: 

gene length, number of exons, median exon size, total number of nonredundant nucleotides in protein-

coding exons, number of introns, median intron size, total number of nonredundant nucleotides in 

introns, and annotated overlap with segmental duplications. We applied this model to all protein-coding 

autosomal genes, which yielded expected counts of rare SVs per gene for each functional class. For 

comparisons to constraint against missense SNVs, we re-trained these models based on genes in the 

5th-9th deciles of observed:expected ratios for rare missense SNVs.  

 

We compared SVs in this study to constraint against damaging point mutations for both pLoF and 

missense SNVs. For each comparison, we first ordered all autosomal protein-coding genes based on 

the observed:expected measurement of SNV constraint, and subsequently grouped genes into 100 

bins based on SNV constraint percentile. Next, for each bin of genes, we summed the total number of 

rare SVs observed in gnomAD-SV for all genes in the bin, and divided this total by the expected 

number of rare SVs based on the Poisson regression model (described above). This calculation 

produced an observed:expected ratio of rare SVs for each percentile of SNV constraint scores. We 

assessed the correspondence between SV and SNV constraint for all 100 bins of genes using a 

Spearman’s rank correlation test. 

 

Comparison to recombination hotspots 
We downloaded a recombination frequency map at 10kb resolution averaged across males and 

females from deCODE Genetics.31 We excluded bins with unsequenced bases, then defined any 10kb 

bin in the top 10% of all remaining recombination frequency scores as a recombination hotspot, and 

merged adjacent hotspots with BEDTools merge.20 Finally, we lifted over all recombination hotspots 
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from hg18 reference assembly coordinates to GRCh37 with the UCSC liftOver tool while requiring at 

least 50% of the original locus to map to GRCh37.26 SVs were compared to this set of recombination 

hotspots, using BEDTools intersect to count the number of hotspots overlapped per SV.20 

 

Enrichment testing of CNV datasets from disease-association studies 
We assessed the utility of the gnomAD-SV callset as a genome mask for interpreting large CNVs 

ascertained by routine chromosomal microarray testing. We performed this analysis as follows: 

  

Curation of existing microarray CNV datasets 

We curated CNV data ascertained by chromosomal microarray in affected cases and unaffected 

controls from previous disease-association studies of developmental disorders (DDs),32 

schizophrenia,33 autism,12 and cancer.34 All datasets were restricted to autosomes, and all CNVs were 

required to be ≥100kb in size and overlap at least one protein-coding exon per Gencode v19.23 Each 

dataset had additional curation performed, described below: 

  

● DDs: CNV calls in cases and controls were downloaded from dbVar accessions nstd100 and 

nstd54 in GRCh37 coordinates. We restricted these data to rare CNVs by excluding any CNVs that 

had ≥50% reciprocal overlap with other CNVs in ≥0.1% of samples from this dataset while requiring 

CNV type (i.e., deletion or duplication) to match. We calculated case & control frequencies 

separately to account for systematic array platform differences as noted by the authors. After 

filtering, we retained CNV calls for a total of 29,085 cases and 19,584 controls. 

 

● Schizophrenia: Rare CNV calls (pre-filtered to <1% frequency) in cases and controls were obtained 

directly from the authors.33 CNVs were lifted over from hg18 to GRCh37 with the UCSC liftOver 

tool26 while requiring at least 50% of each CNV interval to map from hg18 to GRCh37. We restricted 

these data to rare CNVs by excluding any CNVs that had ≥50% reciprocal overlap with other CNVs 

in ≥0.1% of samples from this dataset (cases + controls) while requiring CNV type (i.e., deletion or 

duplication) to match. After filtering, we retained CNV calls for a total of 21,094 cases and 20,277 

controls. 

 

● Autism: Raw CNV calls for families from the Simons Simplex Collection (SSC) were obtained 

directly from the authors.12 We excluded any families for which WGS data was included as part of 

the gnomAD-SV analyses (n=519 families), and subsequently retained only affected probands and 

their unaffected siblings from the remaining families for this analysis. CNV calls were filtered on 

CNV probability (pCNV) ≤10-9 at the authors’ recommendation. Deletions were assigned as any 

CNV call with a predicted copy state <2 and duplications were assigned as any CNV call with a 
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predicted copy state >2. CNVs were then lifted over from hg18 to GRCh37 with the UCSC liftOver 

tool26 while requiring at least 50% of each CNV interval by size to map from hg18 to GRCh37. 

Finally, we restricted these data to rare CNVs by excluding any CNVs that had ≥50% reciprocal 

overlap with other CNVs in ≥0.1% of all samples (cases + controls) from this dataset while requiring 

CNV type (i.e., deletion or duplication) to match. After filtering, we retained CNV calls for a total of 

2,273 cases and 2,122 controls. 

 

● Cancer: Raw CNV calls from tumors and matched normal blood controls in GRCh37 coordinates 

were obtained directly from the authors.34 We excluded blood control samples from individuals with 

hematological cancers (e.g., leukemias) to avoid potential tumor contamination in the matched 

normal sample. Deletions were assigned as any CNV segment with a log2-fold copy-number ratio ≤ 

-1 (e.g. log2(0.5), or a relative loss of 50% or more in copy number). Duplications were assigned as 

any CNV segment with a log2-fold copy-number ratio ≥ 0.58 (e.g. log2(1.5), or a relative gain of 50% 

or more in copy number). We further restricted CNVs in normal blood control samples by excluding 

any CNVs that had ≥50% reciprocal overlap with other CNVs in ≥0.1% of all control samples from 

this dataset after requiring CNV type (i.e., deletion or duplication) to match. Since each tumor 

represents a distinct clonal population of cells, we did not filter tumor CNVs on frequency. After 

filtering, we retained CNV calls for a total of 10,844 tumor samples and 8,760 controls. 

  

Filtering microarray CNVs using gnomAD 

We next assessed the degree to which the gnomAD-SV map could be used as a reference mask to 

assist in distinguishing CNVs observed in affected cases vs healthy controls. We first restricted the 

gnomAD-SV dataset to samples with no indication of any neuropsychiatric diseases (e.g., 

schizophrenia), retaining a total of 10,047 samples. We then created a map of all canonical and 

complex CNVs observed in this subset of gnomAD-SV, and annotated each CNV with its global AC and 

maximum AF across any population (“popmax” AF). Next, for each of the three microarray CNV 

datasets curated above, we intersected the microarray CNV calls against this gnomAD-SV CNV 

reference mask with BEDTools intersect requiring at least 50% reciprocal overlap by size.20 Finally, we 

titrated across a series of increasingly stringent maximum permitted gnomAD-SV frequencies and, at 

each frequency, computed (1) the fraction of CNVs in cases and controls passing this gnomAD-SV 

frequency filter and (2) the relative enrichment of case CNVs vs control CNVs as compared to the 

unfiltered microarray dataset by dividing the fraction of passing case CNVs by the fraction of passing 

control CNVs. 

  

Analysis of genomic disorder loci 
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We compared the frequency of CNVs at putatively pathogenic genomic disorder (GD) loci in gnomAD-

SV to their corresponding frequencies reported from CMA in a recent analysis of 396,725 participants 

from the UK BioBank (UKBB).35 As before, we restricted these analyses to the subset of 10,047 

samples in gnomAD-SV with no indication of neuropsychiatric disease. We collected UKBB CNV 

frequency data from the original publication for the 54 GD loci considered in the UKBB analysis, which 

required at least five UKBB participants to be GD carriers. We further excluded a total of three GDs: 

deletions and duplications of 22q11.2 [distal], and deletions of NRXN1. We excluded the 22q11.2 distal 

GD and the 15q11.2 due to their proximity to (or direct overlap with) antibody part genes, which were 

blacklisted during the creation of gnomAD-SV, and excluded NRXN1 due to this locus being a known 

nonrecurrent GD region corresponding to a well-described single-gene deletion syndrome.33 Per 

consultation with the authors of the UKBB analysis, we also imposed a restriction on the TAR GD locus 

by requiring CNVs in gnomAD-SV to span at least two of the three segmental duplication tracts within 

the region. After curation, we retained 49 GDs for analysis. We intersected the coordinates of these 49 

GD loci against all biallelic canonical and complex CNVs in the gnomAD-SV dataset using BEDTools 

intersect requiring CNVs in gnomAD-SV to have 30% overlap of the GD locus, and computed the 

carrier frequency as the number of individuals with at least one non-reference SV allele. We determined 

30% overlap to be the optimal parameter for this analysis by manual inspection of all GD loci, and to 

account for differences in breakpoint coordinates between WGS and CMA. Where one gnomAD SV 

matched multiple possible GD loci, we counted each gnomAD SV only once in total towards the GD 

that best matched the gnomAD SV based on reciprocal overlap. We compared carrier frequencies 

between UKBB and gnomAD-SV using Fisher’s exact text, and significance was assessed after 

Bonferroni correction for multiple comparisons. We also counted the number of DD cases carrying 

CNVs matching these GD loci from the same DD microarray dataset described above (see Curation of 

existing microarray CNV datasets),32 using the same matching criteria as we did for gnomAD-SV. For 

these analyses, binomial confidence intervals were computed and odds ratios were computed with a 

Fisher’s Exact Test. 

 

gnomAD-SV callset downsampling analyses 
Several of our investigations in this dataset involved either projecting the properties of SV datasets 

hypothetically attainable from larger sample sizes, or estimating what fraction of the current SV callset 

would have been obtained had we sequenced fewer individuals. To accomplish this, we first performed 

a single, standardized set of iterative callset downsamplings, and used this series of downsampled 

callsets in all pertinent analyses. We randomly downsampled the gnomAD-SV VCF to contain 1, 2, 3, 4, 

5, 6, 7, 8, 9, 10, 25, 50, 75, 100, 250, 500, 750, 1,000, 2,500 5,000, 7,500 or 10,000 samples, 

respectively, and generated five independent downsampled VCFs at each sample size. This 

combination of 22 sample sizes performed five times each yielded a total of 110 downsampled VCFs, 
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each with a distinct subset of samples from the full gnomAD-SV callset. For each downsampled VCF, 

we retained variant information exactly as it appeared in the full callset, except for excluding all 

individuals not selected to be part of that downsampling and subsequently removing all sites that no 

longer had at least one non-reference allele in the downsampled VCF due to all non-reference allele 

carriers being excluded during downsampling. As with all per-sample analyses, we restricted this 

analysis to only include PCR- samples. 

 

Predicting the rate of clinically reportable incidental findings from SVs 
We estimated the rate of clinically reportable incidental findings in gnomAD-SV to derive a population-

based estimate for SV analyses from WGS. We first restricted the gnomAD-SV callset to very rare 

(AF<0.1%), biallelic, autosomal SVs resulting in pLoF of one of 57 autosomal genes marked as 

clinically reportable for incidental findings per recommendations by the American College of Medical 

Genetics (ACMG)36 and classified variants following the ACMG guidelines for the interpretation of 

sequence variants.37 All heterozygous SVs that disrupted a gene associated with an autosomal 

recessive disorder and/or only have evidence for a gain-of-function (GoF) pathogenic mechanism were 

classified as benign. We classified SVs that disrupted genes that predominantly have a GoF pathogenic 

mechanism, but there exists some evidence for a LoF pathogenic mechanism, as a variant of unknown 

significance (VUS). All SVs that disrupted a gene known to be associated with disease through a LoF 

mechanism were classified as pathogenic or likely pathogenic, depending on the strength of evidence 

available from the existing literature. SVs were determined to be clinically reportable for the purposes of 

this study if they met criteria to be pathogenic or likely pathogenic. 
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Compliance with ethical regulations 
We have complied with all relevant ethical regulations. This study was overseen by the Broad Institute’s 

Office of Research Subject Protection and the Partners Human Research Committee, and was given a 

determination of Not Human Subjects Research. Informed consent was obtained from all participants. 

 

Data availability 
All gnomAD-SV site-frequency data for appropriately consented samples (N=10,738) have released 

distributed in VCF and BED format via the gnomAD Browser 

(https://gnomad.broadinstitute.org/downloads/). Furthermore, these SVs have been integrated directly 

into the gnomAD Browser.38 The architecture of the gnomAD Browser is described in the main gnomAD 

study,7 as well as instructions for how to access and query the data hosted therein. Refer to Extended 
Data Figure 9 for a highlight of the SV-related features. All VCFs for the analyses of ASD families for 

disease association comparisons will be deposited in SFARIbase (https://base.sfari.org/) and are 

available to qualified researchers by applying online. 

 

Code availability 
The overall structure and availability of code used in this study is outlined on the home page of the 

main gnomAD-SV github repository (https://github.com/talkowski-lab/gnomad-sv-pipeline). The 

gnomAD-SV discovery pipeline is publicly available via a series of methods configured for the 

FireCloud/Terra platform (https://portal.firecloud.org/#methods) under the methods namespace 

“Talkowski-SV”. The svtk software package used extensively in the gnomAD-SV discovery pipeline is 

publicly available via gitHub (https://github.com/talkowski-lab/svtk). Most custom scripts used in the 

production and/or analysis of the gnomAD-SV dataset are publicly available via gitHub 

(https://github.com/talkowski-lab/gnomad-sv-pipeline). All code is made available under the MIT 

License, unless stated otherwise. 
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