

Supplementary Figure 1. Inactivation of PAM neurons do not affect alcohol induced activity suggesting that a decrease in preference is encoded independently from the amount of activity animals exhibit while intoxicated (Figure 1E). (a) Schematic of flyGrAM. Groups of ten male flies were placed into four behavioral chambers. Flies were exposed to five minutes of air, following by ten minutes of ethanol, and lastly 5 minutes of air. Group activity of flies was recorded at 33 frames per second.

Supplementary Figure 2. (a) Subsets of dopamine neurons were inactivated during acquisition and retrieval using 18 specific PAM Split-GAL4 lines. Four lines, 315C, 109B, 188B, and 32B, which predominately express in the medial aspect of the MB resulted in significant decreases in preference for alcohol associated cues. (b) Subsets of Kenyon cells were inactivated during acquisition and retrieval using 10 specific Kenyon cell Split-GAL4 lines. All 10 lines resulted in significant decreases in preference for alcohol associated cues.

Supplementary Figure 3. Subsets of PAM neurons are required for retrieval, but not acquisition or consolidation. (a) Inactivating subsets of PAM neurons during acquisition using the HL9-GAL4 driver, which is not a split-GAL4 line, did not disrupt alcohol associated preference (Claridge-Chang, Roorda et al. 2009). (b) Inactivating subsets of PAM neurons during consolidation, defined as the overnight period between acquisition and retrieval did not disrupt alcohol associated preference. (c) However, inactivating the same subsets of PAM neurons during retrieval significantly disrupted alcohol associated preference. ** $\mathrm{p}<0.01$

Supplementary Figure 4. Dopamine staining within the brain following 10 minutes of air or 10 minutes of ethanol. Left panel illustrates air condition. Flies were habituated for 10 minutes in the behavior box followed by an additional 10 minutes of air. Right panel illustrates ethanol condition. Flies were habituated for 10 minutes in the behavior box followed by 10 minutes of ethanol. In both conditions, the top panel illustrates staining with the MB. Maximum intensity z stacks were collected from the start of the gamma lobe to the end of the $\alpha / \beta, \alpha^{`} \beta$ ` lobes. Each stack consists of approximately $20 \mu \mathrm{~m}$ slices. Bottom panel illustrates staining within the central complex, predominately the FSB. Maximum intensity z stacks were collected from the start of the EB to the end of the FSB. Each stack consists of approximately 201 um slices. Bar graphs illustrate mean +/- standard error of the mean. Raw data are overlaid on bar graphs. Each dot is 1 fly. One-way ANOVA was used to compare mean and variance.

Supplementary Figure 5. Quantitative RT-PCR on whole heads of flies expressing respective RNAi with pan-neuronal elav-Gal4. Bar graphs illustrate mean +/- standard error of the mean. Raw data are overlaid on bar graphs. One-way ANOVA was used to compare mean and variance with Tukey Posthoc compared to experimental.

Supplementary Figure 6. Temperature controls for genotypes that showed decreases in alcohol associated preference. Flies were trained and tested at permissive temperatures $\left(20^{\circ} \mathrm{C}\right)$ and exhibited normal alcohol associated preference for pair odor cues under these conditions.

UAS-mcd GFP			
40B	42B	HL9	R5802
$\mathrm{n}=6$	$\mathrm{n}=6$	$\mathrm{n}=6$	$\mathrm{n}=4$
44.83 ± 5.26	41.00 ± 1.37	$60.10 \pm 07.54^{*}$	101 ± 3.43

Supplementary Table 1. PAM dopamine cell counts per hemisphere. *HL9 numbers from Claridge-Chang et al. 2009 (Claridge-Chang, Roorda et al. 2009)

	Odor1					Odor 2
GAL4 lines	+/GAL4	+/UAS	GAL4/UAS	+/GAL4	+/UAS	GAL4/UAS
R58E02	0.73 ± 0.05	0.83 ± 0.06	0.92 ± 0.04	0.36 ± 0.05	0.51 ± 0.11	0.66 ± 0.07
HL9	0.53 ± 0.11	0.49 ± 0.08	0.62 ± 0.08	0.49 ± 0.10	0.44 ± 0.13	0.33 ± 0.07
MB109B	0.71 ± 0.06	0.68 ± 0.05	0.80 ± 0.04	0.37 ± 0.05	0.67 ± 0.03	0.68 ± 0.06
MB058B	0.69 ± 0.04	0.78 ± 0.04	0.90 ± 0.02	0.56 ± 0.04	0.57 ± 0.04	0.67 ± 0.03
MB399B	0.67 ± 0.06	0.62 ± 0.05	0.92 ± 0.02	0.49 ± 0.05	0.59 ± 0.03	0.67 ± 0.04
MB018B	0.65 ± 0.06	0.74 ± 0.06	0.57 ± 0.04	0.47 ± 0.07	0.41 ± 0.09	0.48 ± 0.04

Supplementary Table 2. Odor Controls at 30C. Odor 1: Isoamyl Acetate or Ethyl Acetate. Odor 2: Isoamyl Alcohol. Naïve flies were presented with either odor 1 vs air or odor 2 vs air in the Y maze.

Figure	Experiment	n	Statistical Test	Result	Posthoc	Result
1c	Acquisition	$\begin{aligned} & \text { +/R58E02 (n=23) } \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=23) \\ & \text { shit }^{\mathrm{s}} / \mathrm{R} 58 \mathrm{E} 02(\mathrm{n}=23) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,66)=5.355, \\ & p=0.007 \end{aligned}$	Tukey	$\begin{aligned} & \text { +/ shits vs +/R58E02 p=0.87 } \\ & \text { +/ shits vs shit/R58E02 p=0.009 } \\ & \text { +/R58E02 vs shit/R58E02 } \\ & \text { p=0.04 } \end{aligned}$
1c	Consolidation	$\begin{aligned} & \text { +/R58E02 (n=13) } \\ & \text { +/shits }(n=15) \\ & \text { shit }^{\text {s/R}} / \text { R58E02 }(n=13) \end{aligned}$	One-way ANOVA	$F(2,38)=5.964$	Tukey	$\begin{aligned} & \text { +/ shits vs +/R58E02 p=0.004 } \\ & \text { +/ shits vs shits/R58E02 p=0.18 } \\ & \text { +/R58E02 vs shits/R58E02 } \\ & \text { p=0.26 } \end{aligned}$
1c	Retrieval	$\begin{aligned} & \text { +/R58E02 (n=25) } \\ & \text { +/shits }(n=24) \\ & \text { shit }^{\text {s/R}} \text { /R8E02 (n=25) } \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,71)=5.707, \\ & p=0.005 \end{aligned}$	Tukey	$\begin{aligned} & \text { +/ shits vs +/R58E02 p=0.65 } \\ & \text { +/ shits vs shits/R58E02 p=0.05 } \\ & \text { +/R58E02 vs shis/R58E02 } \\ & p=0.005 \end{aligned}$
1f	Calcium Imaging	$\begin{aligned} & \text { GCaMP6m/R58E02 } \\ & (\mathrm{n}=6) \end{aligned}$	Repeated Measures ANOVA	$\begin{aligned} & F(3,15)=5.380, \\ & p=0.002 \end{aligned}$	Bonferroni	Odor Epoch 1 vs Odor + Ethanol Epoch 1 p=0.032 Odor Epoch 2 vs Odor + Ethanol Epoch 2 p=0.224 Odor Epoch 3 vs Odor + Ethanol Epoch 3 p=0.121 Odor Epoch 4 vs Odor + Ethanol $p=0.004$
2a	Acquisition	$\begin{aligned} & +/ 40 B(n=23) \\ & +/ \text { shit }^{s}(n=23) \\ & \text { shits }^{\text {ts}} / 40 B(n=21) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,64)=1.262, \\ & p=0.39 \end{aligned}$	N/A	N/A
2b	Acquisition	$\begin{aligned} & +/ 42 B(n=24) \\ & +/ \text { shit }^{s}(n=24) \\ & \text { shits }^{\text {s }} / 42 B(n=23) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,68)=0.995, \\ & p=0.38 \end{aligned}$	N/A	N/A
2c	Acquisition	$\begin{aligned} & \hline+/ 188 B(n=10) \\ & +/ \text { shit }^{s}(n=11) \\ & \text { shit }^{s} / 188 B(n=12) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,30)=0.084, \\ & p=0.92 \end{aligned}$	N/A	N/A
2d	Acquisition	$\begin{aligned} & +/ 32 B(n=22) \\ & +/ \text { shit }^{s}(n=21) \\ & \text { shits }^{\text {t } / 32 B ~}(n=20) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,60)=1.52, \\ & p=0.23 \end{aligned}$	N/A	N/A
2 e	Acquisition	$\begin{aligned} & \text { +/301B (n=27) } \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=27) \\ & \text { shit }^{\mathrm{s}} / 301 \mathrm{~B}(\mathrm{n}=27) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,78)=0.389, \\ & p=0.68 \end{aligned}$	N/A	N/A
2f	Acquisition	$\begin{aligned} & \text { +/109B (n=24) } \\ & +/ \text { shit }^{\mathrm{s}}(n=24) \\ & \text { shit }^{\text {s }} / 109 B(n=24) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,69)=0.091, \\ & p=0.91 \end{aligned}$	N/A	N/A
2 g	Acquisition	$\begin{aligned} & +/ 87 C(n=23) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=23) \\ & \text { shits }^{\text {s/ } / 87 C ~(n=23)} \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,51)=0.663, \\ & p=0.52 \end{aligned}$	N/A	N/A
2h	Acquisition	$\begin{aligned} & +/ 315 \mathrm{C}(n=20) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=23) \\ & \text { shit }^{\mathrm{s}} / 315 \mathrm{C}(\mathrm{n}=24) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,64)=0.24, \\ & p=0.79 \end{aligned}$	N/A	N/A
3a	Retrieval	$\begin{aligned} & +/ 40 \mathrm{~B}(\mathrm{n}=7) \\ & +/ \mathrm{shit}^{\mathrm{s}}(\mathrm{n}=6) \\ & \text { shit }^{\mathrm{s}} / 40 \mathrm{~B}(\mathrm{n}=7) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,17)=2.43, \\ & p=0.12 \end{aligned}$	N/A	N/A
3b	Retrieval	$\begin{aligned} & +/ 42 B(n=16) \\ & +/ \text { shit }^{s}(n=16) \\ & \text { shit }^{\text {ts} / 42 B ~}(n=14) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,68)=0.995, \\ & p=0.38 \end{aligned}$	N/A	N/A

3c	Retrieval	$\begin{aligned} & \hline+/ 188 B(n=24) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=27) \\ & \text { shit }^{\text {s }} / 188 B(n=25) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,73)=0.044, \\ & p=0.96 \end{aligned}$	N/A	N/A
3d	Retrieval	$\begin{aligned} & +/ 32 B(n=6) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=6) \\ & \text { shit }^{\mathrm{s}} / 32 B(\mathrm{n}=6) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,15)=1.226, \\ & p=0.32 \end{aligned}$	N/A	N/A
3 e	Retrieval	$\begin{aligned} & \hline+/ 301 \mathrm{~B}(n=23) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=24) \\ & \text { shit }^{\text {s/s}} / 301 \mathrm{~B}(\mathrm{n}=24) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,78)=0.389, \\ & p=0.68 \end{aligned}$	N/A	N/A
3 f	Retrieval	$\begin{aligned} & \text { +/109B (n=20) } \\ & +/ \text { shits }^{\mathrm{s}}(\mathrm{n}=24) \\ & \text { shits/109B (n=24) } \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,65)=14.18, \\ & p=7.78 \times 10^{\wedge}-6 \end{aligned}$	Tukey	$\begin{aligned} & \text { +/ shits vs }+/ 109 \mathrm{~B} \mathrm{p}=0.07 \\ & \text { +/ shits }{ }^{\text {ts }} \text { vs shit } / 109 \mathrm{~B} p=0.007 \\ & \text { +/109B vs shits } / 109 \mathrm{~B} \\ & \mathrm{p}=0.000005 \end{aligned}$
3 g	Retrieval	$\begin{aligned} & +/ 87 C(n=20) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=21) \\ & \text { shits }^{\text {s/ } / 87 C ~(n=22)} \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,60)=0.266, \\ & p=0.77 \end{aligned}$	N/A	N/A
3h	Retrieval	$\begin{aligned} & +/ 315 \mathrm{C}(\mathrm{n}=20) \\ & +/ \mathrm{shit}^{\mathrm{s}}(\mathrm{n}=19) \\ & \text { shit }^{\mathrm{s} / 315 \mathrm{C}}(\mathrm{n}=20) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,56)=0.109 \\ & p=0.90 \end{aligned}$	N/A	N/A
4a	Acquisition	$\begin{aligned} & \hline+/ 2 B(n=16) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=17) \\ & \text { shits/2B }(\mathrm{n}=17) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,47)=0.31, \\ & p=0.73 \end{aligned}$	N/A	N/A
4b	Acquisition	$\begin{aligned} & \text { +/210B (n=26) } \\ & \text { +/shit }(n=26) \\ & \text { shit }^{\text {s }} / 210 B(n=27) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,76)=1.59, \\ & p=0.21 \end{aligned}$	N/A	N/A
4c	Acquisition	$\begin{aligned} & +/ 11 B(n=17) \\ & +/ \text { shit }^{s}(n=15) \\ & \text { shits}^{\text {ts}} / 11 B(n=15) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,44)=0.09, \\ & p=0.92 \end{aligned}$	N/A	N/A
4d	Acquisition	$\begin{aligned} & \text { +/399B }(n=25) \\ & +/ \text { shit }(n=26) \\ & \text { shit }^{\text {s}} / 399 B(n=25) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,73)=0.90, \\ & p=0.42 \end{aligned}$	N/A	N/A
4 e	Retrieval	$\begin{aligned} & \hline+/ 2 B(n=19) \\ & +/ \text { shits }^{\mathrm{s}}(\mathrm{n}=19) \\ & \text { shits }^{2} / 2 \mathrm{n}(\mathrm{n}=19) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,54)=2.05, \\ & p=0.14 \end{aligned}$	N/A	N/A
4f	Retrieval	$\begin{aligned} & +/ 210 \mathrm{~B}(\mathrm{n}=29) \\ & +/ \mathrm{shit}^{\mathrm{s}}(\mathrm{n}=29) \\ & \text { shit }^{\mathrm{s}} / 210 \mathrm{~B}(\mathrm{n}=26) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,81)=0.52, \\ & p=0.60 \end{aligned}$	N/A	N/A
4 g	Retrieval	$\begin{aligned} & \hline+11 \mathrm{~B}(\mathrm{n}=19) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=19) \\ & \text { shits }^{\mathrm{ts}} / 11 \mathrm{~B}(\mathrm{n}=18) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,53)=0.40, \\ & p=0.67 \end{aligned}$	N/A	N/A
4h	Retrieval	$\begin{aligned} & \text { +/399B (n=22) } \\ & \text { +/shits }(n=19) \\ & \text { shit }^{\text {s/}} / 399 B(n=21) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,59)=5.62, \\ & p=0.006 \end{aligned}$	Tukey	+/ shits ${ }^{\text {ts }}+/ 399 \mathrm{~B} p=0.93$ $+/$ shits $^{\text {ts }}$ vs shits/399B $p=0.010$ +/399B vs shits/399B $p=0.02$
4j	dD1R1	$\begin{aligned} & +/ 399 B(n=20) \\ & \text { +/dD1R1(} n=18) \\ & \text { dD1R1/399B }(n=21) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,55)=1.767, \\ & p=0.18 \end{aligned}$	N/A	N/A

4k	dD1R1;dD1R2	$\begin{aligned} & \text { +/399B (n=14) } \\ & \text { +/dD1R1;dD1R2 } \\ & (n=15) \\ & \text { dD1R1;dD1R2/399B } \\ & (n=15) \end{aligned}$	One-way ANOVA	$\begin{aligned} & \mathrm{F}(2,41)=0.223, \\ & \mathrm{p}=0.801 \end{aligned}$	N/A	N/A
41	dD2R	$\begin{aligned} & \text { +/399B }(n=23) \\ & \text { +/dD2R }(n=23) \\ & \text { dD2R/399B }(n=23) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,65)=0.032, \\ & p=0.968 \end{aligned}$	N/A	N/A
5b	dD1R1i;dD1R2i	$\begin{aligned} & \text { +/74C }(n=26) \\ & \text { +/dD1R1;dD1R2 } \\ & \text { (n=28) } \\ & \text { dD1R1;dD1R2/74C } \\ & (n=28) \end{aligned}$	One- way ANOVA	$\begin{aligned} & F(2,79)=0.123, \\ & p=0.884 \end{aligned}$	N/A	N/A
5b	dD2R	$\begin{aligned} & \text { +/74C }(\mathrm{n}=26) \\ & \text { +/dD2Ri }(\mathrm{n}=23) \\ & \text { dD2Ri/74C }(\mathrm{n}=25) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,71)=3.51, \\ & p=0.04 \end{aligned}$	Tukey	+/ D2Rivs +/74C p=0.47 +/ D2Ri vs D2Ri/74C $p=0.03$ +/74C vs D2Ri/74C $p=0.29$
5C	Acquisition	$\begin{aligned} & +/ 74 \mathrm{C}(\mathrm{n}=11) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=12) \\ & \text { shit }^{\mathrm{t}} / 74 \mathrm{C}(\mathrm{n}=12) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,32)=0.30, \\ & p=0.75 \end{aligned}$	Tukey	N/A
5D	Retrieval	$\begin{aligned} & +/ 74 \mathrm{C}(\mathrm{n}=32) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=30) \\ & \text { shits }^{\mathrm{s} / 74 \mathrm{C}}(\mathrm{n}=32) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,91)=2.22, \\ & p=0.11 \end{aligned}$	Tukey	N/A
5E	Consolidation	$\begin{aligned} & +/ 74 \mathrm{C}(\mathrm{n}=21) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=21) \\ & \text { shits }^{\mathrm{t}} / 74 \mathrm{C}(\mathrm{n}=21) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,71)=3.51, \\ & p=0.04 \end{aligned}$	Tukey	+/ shits vs +/74C $p=0.46$ + / shits vs shit/74C $p=0.14$ $+/ 74 \mathrm{C}$ vs shit ${ }^{\text {is }} / 74 \mathrm{C} p=0.008$
6b	Acquisition	$\begin{aligned} & +/ 18 B(n=20) \\ & +/ \text { shit }^{s}(n=21) \\ & \text { shits }^{\text {ts}} / 18 B(n=25) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,63)=2.18 \\ & p=0.12 \end{aligned}$	N/A	N/A
6c	Retrieval	$\begin{aligned} & +/ 18 B(n=36) \\ & +/ \text { shit }^{s}(n=38) \\ & \text { shits }^{\text {ts}} / 18 B(n=45) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,116)=19.46, \\ & p=5.17 \times 10^{\wedge}-08 \end{aligned}$	Tukey	+/ shits vs $+/ 18 \mathrm{~B} \mathrm{p}=0.40$ $+/$ shits vs shits $/ 18 B p=0.00004$ $+/ 18 B$ vs shits/18B $p=0.0000001$
6d	Acquisition	$\begin{aligned} & +/ 58 B(n=28) \\ & +/ \text { shit }^{s}(n=30) \\ & \text { shits }^{\prime} / 58 B(n=30) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,85)=0.202, \\ & p=0.817 \end{aligned}$	N/A	N/A
6 e	Retrieval	$\begin{aligned} & +/ 58 \mathrm{~B}(\mathrm{n}=18) \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=20) \\ & \text { shits }^{i s} / 58 \mathrm{~B}(\mathrm{n}=22) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,57)=3.612, \\ & p=0.03 \end{aligned}$	Tukey	$+/$ shits $^{\text {s }}$ vs $+/ 58 \mathrm{~B} \mathrm{p}=0.68$ $+/$ shi $^{\text {ts }}$ vs shit $/ 58 \mathrm{~B} p=0.18$ $+/ 58 B$ vs shits/58B $p=0.03$
6h	dD2R	$\begin{aligned} & \text { +/18B }(n=20) \\ & \text { +/D2Ri }(n=20) \\ & \text { D2Ri/18B }(n=20) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,57)=0.113, \\ & p=0.90 \end{aligned}$	N/A	N/A
6 i	dD1R1;dD1R2	$\begin{aligned} & \hline \text { +/18B (n=14) } \\ & \text { +/D1R1i;D1R2i } \\ & \text { (n=14) } \\ & \text { D1R1iD1R2i/18B } \\ & (n=12) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,37)=2.00, \\ & p=0.15 \end{aligned}$	N/A	N/A
S. 2	Dopamine Acquisition and Retrieval	$\begin{aligned} & \text { shits/042B } \left.^{\text {(n }}=11\right) \\ & \text { shits }^{\text {t/ } / 196 B ~}(n=11) \\ & \text { shit }^{\text {t/ }} / 299 B(n=6) \end{aligned}$	KruskalWallis	$\begin{aligned} & \chi^{2}(18)=30.81, \\ & p=0.03 \end{aligned}$	Dunnett's Test	shits/042B vs shits/PBP $\mathrm{p}=0.38$ shits/196B vs shit/PBP $p=0.64$ shits/299B vs shit/PBP $p=0.55$

						shits/047B vs shits/PBP $p=0.71$ shits/195B vs shits/PBP $p=0.79$ shits/316B vs shits/PBP $p=0.71$ shits/312B vs shits/PBP $p=0.49$ shit ${ }^{\text {ts }} / 194 \mathrm{~B}$ vs shits/PBP $\mathrm{p}=0.71$ shits/025B vs shit/PBP $p=0.17$ shits/043B vs shits/PBP $p=0.86$ shit ${ }^{\text {ts }} / 213 \mathrm{~B}$ vs shis ${ }^{\text {t/ }} / \mathrm{PBP} \mathrm{p}=0.67$ shits $/ 301 \mathrm{~B}$ vs shits/PBP $p=0.27$ shits/040B vs shits/PBP $p=0.54$ shits/087C vs shits/PBP $p=0.17$ shits $/ 315 \mathrm{C}$ vs shits/PBP $\mathrm{p}=0.04$ shits/109B vs shits/PBP $p=0.03$ shits $/ 188 \mathrm{~B}$ vs shits $/$ PBP $p=0.008$ shits/032B vs shits/PBP $p=0.01$
S. 2	MB Acquisition and Retrieval		KruskalWallis	$\begin{aligned} & \chi^{2}(10)=27.97 \\ & p=0.002 \end{aligned}$	Dunnett's Test	shit ${ }^{\text {ts }} / 010 \mathrm{~B}$ vs shits $/$ PBP $\mathrm{p}=0.04$ shit ${ }^{\text {ts }} / 152 \mathrm{~B}$ vs shits/PBP $\mathrm{p}=3.69 \times 10^{\wedge}-05$ shit ${ }^{\text {ts }} / 364 \mathrm{~B}$ vs shit/PBP $\mathrm{p}=0.04$ shits/009B vs shit/PBP $\mathrm{p}=4.86 \times 10^{\wedge}-04$ shit/417B vs shit/PBP $\mathrm{p}=2.68 \times 10^{\wedge}-04$ shits/005B vs shits/PBP $p=0.002$ shits/370B vs shits/PBP $p=0.04$ shits/461B vs shits/PBP $p=0.04$ shits/008B vs shit/PBP $\mathrm{p}=1.87 \times 10^{\wedge}-04$ shits/371B vs shits/PBP $p=0.045$
S.3A	Acquisition	$\begin{aligned} & \text { +/HL9 (n=8) } \\ & \text { +/shits }(n=8) \\ & \text { Shit } \left.^{\text {s/} / H L 9 ~} / n=8\right) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,21)=0.24, \\ & p=0.788 \end{aligned}$	N/A	N/A
S.3B	Consolidation	$\begin{aligned} & \text { +/HL9 (n=8) } \\ & \text { +/shits }(n=8) \\ & \text { Shit }^{\text {s/ } / H L 9 ~}(n=8) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,21)=0.698, \\ & p=0.509 \end{aligned}$	N/A	N/A
S.3C	Retrieval	$\begin{aligned} & \text { +/HL9 (n=8) } \\ & \text { +/shits }(n=8) \\ & \text { Shit }^{\text {s }} / \mathrm{HL9}(n=8) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,21)=8.596, \\ & p=0.00187 \end{aligned}$	Tukey	+/ shits vs +/HL9 p=0.92 +/ shits vs shit ${ }^{\text {t/ }} / \mathrm{HL} 9 \mathrm{p}=0.003$ +/HL9 vs shit/HL9 p=0.007
S. 4	Dopamine Fluorescence	$\begin{aligned} & \text { Air }(n=7) \\ & \text { Ethanol }(n=11) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(1,16)=2.947, \\ & p=0.105 \end{aligned}$	N/A	N/A
S. 5	dDop1R1	$\begin{aligned} & \text { RNAi/Elav (} \mathrm{n}=6 \text {) } \\ & \text { RNAi/+ }(\mathrm{n}=6) \\ & \hline \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(1,10)=20.05, \\ & p=0.001 \end{aligned}$	N/A	N/A
S. 5	dDop1R2	$\begin{aligned} & \text { RNAi/Elav }(n=6) \\ & \text { RNAi/+ }(n=6) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(1,10)=30.31, \\ & p=0.0002 \end{aligned}$	N/A	N/A
S. 5	dD2R	$\begin{aligned} & \text { RNAi/Elav }(n=3) \\ & \text { RNAi/+ }(n=3) \\ & \hline \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(1,4)=19.14, \\ & p=0.01 \end{aligned}$	N/A	N/A
S.6A	R58E02 Temperature Controls	$\begin{aligned} & \text { +/R58E02 }(n=25) \\ & \text { +/shits }(n=24) \\ & \text { Shits } / \text { R58E02 }(n=25) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,42)=1.953, \\ & n=0155 \end{aligned}$	N/A	N/A
S.6B	HL9 Temperature Controls	$\begin{aligned} & \text { +/HL9 (n=8) } \\ & +/ \text { shit }^{\mathrm{s}}(\mathrm{n}=8) \\ & \text { Shit }^{\text {t/ } / H L 9 ~}(\mathrm{n}=8) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,21)=0.823, \\ & p=0.453 \end{aligned}$	N/A	N/A
S.6C	109B Temperature Controls	$\begin{aligned} & +/ 109 B(n=35) \\ & +/ \text { shit }^{s}(n=35) \\ & \text { shits}^{\text {t }} / 109 B(n=35) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,109)=0.411, \\ & p=0.664) \end{aligned}$	N/A	N/A
S.6D	58B Temperature Controls	$\begin{aligned} & \hline+/ 58 \mathrm{~B}(\mathrm{n}=18) \\ & +/ \mathrm{shit}^{\mathrm{s}}(\mathrm{n}=18) \\ & \text { shits }^{\mathrm{s} / 58 \mathrm{~B}}(\mathrm{n}=18) \end{aligned}$	One-way ANOVA	$\begin{aligned} & F(2,50)=0.516, \\ & p=0.6 \end{aligned}$	N/A	N/A

S.6E	18 B Temperature Controls	$+/ 18 \mathrm{~B}(\mathrm{n}=24)$ $+/$ shit $^{\mathrm{s}}(\mathrm{n}=25)$ shits $^{\mathrm{s} / 18 \mathrm{~B}(\mathrm{n}=25)}$	One-way ANOVA	$\mathrm{F}(2,71)=0.225$, $\mathrm{p}=0.799$	$\mathrm{~N} / \mathrm{A}$	N / A
S.6F	399 B Temperature Controls	$+/ 399 \mathrm{~B}(\mathrm{n}=18)$ $+/$ shits $(\mathrm{n}=18)$ shis $/ 399 \mathrm{~B}(\mathrm{n}=18)$	One-way ANOVA	$\mathrm{F}(2,51)=1.039$, $\mathrm{p}=0.361$	N/A	N/A

Supplementary Table 3. Statistical Analysis Summary for Figures 1-7 and Supplemental Figure 2-6

Oligonucleotide Name	Sequence
CG13646F	AGTTTGACATCCACCCCGTC
CG13646R	CTCACTGGCGATTCCGATGA
Dop2RF	CTGAACTGCACCAACGAGACGC
Dop2RR	CAGGATGTTGCCGAAGAGGGTC
Dop1R1F	CCGTCGTGTCCAGCTGTATCAG
Dop1R1R	CTTCTCGGCCACCTCACCTG
Dop1R2F	CCTGGCTCGGCTGGATCAAC
Dop1R2R	ATCGTGGGCTGGTACTTGCG

Supplementary Table 4. Primers for RT-qPCR

Target Gene	Stock \#	Citation
Dop1R1	VDRC-KK-107058	(Wang, Pu et al. 2013, Agrawal and Hasan 2015, Wang, Lin et al. 2016, Ferguson, Petty et al. 2017, Lark, Kitamoto et al. 2017)
Dop1R2	VDRC-GD-3391	(Dietzl, Chen et al. 2007, Regna, Kurshan et al. 2016, Wang, Lin et al. 2016)
D2R	VDRC-GD-11471	(Neckameyer and White 1993, Dietzl, Chen et al. 2007, Bang, Hyun et al. 2011, Shang, Haynes et al. 2011, Agrawal and Hasan 2015, Wang, Lin et al. 2016, Andreatta, Kyriacou et al. 2018, Petruccelli, Feyder et al. 2018)

Supplementary Table 5. Previous publications using RNAi lines in this paper.

Supplemental References

Agrawal, T. and G. Hasan (2015). "Maturation of a central brain flight circuit in Drosophila requires $\mathrm{Fz2} / \mathrm{Ca}(2)(+)$ signaling." Elife 4.
Andreatta, G., C. P. Kyriacou, T. Flatt and R. Costa (2018). "Aminergic Signaling Controls Ovarian Dormancy in Drosophila." Sci Rep 8(1): 2030.
Bang, S., S. Hyun, S. T. Hong, J. Kang, K. Jeong, J. J. Park, J. Choe and J. Chung (2011). "Dopamine signalling in mushroom bodies regulates temperature-preference behaviour in Drosophila." PLoS Genet 7(3): e1001346.
Claridge-Chang, A., R. D. Roorda, E. Vrontou, L. Sjulson, H. Li, J. Hirsh and G. Miesenbock (2009). "Writing memories with light-addressable reinforcement circuitry." Cell 139(2): 405-415. Dietzl, G., D. Chen, F. Schnorrer, K. C. Su, Y. Barinova, M. Fellner, B. Gasser, K. Kinsey, S. Oppel, S. Scheiblauer, A. Couto, V. Marra, K. Keleman and B. J. Dickson (2007). "A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila." Nature 448(7150): 151156.

Ferguson, L., A. Petty, C. Rohrscheib, M. Troup, L. Kirszenblat, D. W. Eyles and B. van Swinderen (2017). "Transient Dysregulation of Dopamine Signaling in a Developing Drosophila Arousal Circuit Permanently Impairs Behavioral Responsiveness in Adults." Front Psychiatry 8: 22. Lark, A., T. Kitamoto and J. R. Martin (2017). "Modulation of neuronal activity in the Drosophila mushroom body by DopEcR, a unique dual receptor for ecdysone and dopamine." Biochim Biophys Acta Mol Cell Res 1864(10): 1578-1588.
Neckameyer, W. S. and K. White (1993). "Drosophila tyrosine hydroxylase is encoded by the pale locus." J Neurogenet 8(4): 189-199.
Petruccelli, E., M. Feyder, N. Ledru, Y. Jaques, E. Anderson and K. R. Kaun (2018). "Alcohol Activates Scabrous-Notch to Influence Associated Memories." Neuron 100(5): 1209-1223 e1204.
Regna, K., P. T. Kurshan, B. N. Harwood, A. M. Jenkins, C. Q. Lai, M. A. Muskavitch, A. S. Kopin and I. Draper (2016). "A critical role for the Drosophila dopamine D1-like receptor Dop1R2 at the onset of metamorphosis." BMC Dev Biol 16(1): 15.
Shang, Y., P. Haynes, N. Pirez, K. I. Harrington, F. Guo, J. Pollack, P. Hong, L. C. Griffith and M. Rosbash (2011). "Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine." Nat Neurosci 14(7): 889-895.
Wang, Q. P., Y. Q. Lin, L. Zhang, Y. A. Wilson, L. J. Oyston, J. Cotterell, Y. Qi, T. M. Khuong, N. Bakhshi, Y. Planchenault, D. T. Browman, M. T. Lau, T. A. Cole, A. C. Wong, S. J. Simpson, A. R. Cole, J. M. Penninger, H. Herzog and G. G. Neely (2016). "Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response." Cell Metab 24(1): 75-90.
Wang, Y., Y. Pu and P. Shen (2013). "Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae." Cell Rep 3(3): 820-830.

