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Abstract 19 

Genotype imputation has become a standard technique prior genome-wide association studies 20 

(GWASs). For common and low-frequency variants, genotype imputation can be performed 21 

sufficiently accurately with publicly available and ethnically heterogeneous imputation reference 22 

panels like 1000 Genomes Project (1000G) and Haplotype Reference Consortium. However, the 23 

imputation of rare variants has been shown to be significantly more accurate when ethnically matched 24 

reference panel is used. Even more, greater genetic similarity between reference panel and target 25 

samples facilitates the detection of rare (or even population-specific) causal variants. Notwithstanding, 26 

the genome-wide downstream consequences and differences of using ethnically mixed and matched 27 

reference panels have not been yet comprehensively explored. 28 

We determined and quantified these differences by performing several comparative evaluations of the 29 

discovery-driven analysis scenarios. A variant-wise GWAS was performed on seven complex diseases 30 

and body mass index by using genome-wide genotype data of ~37,000 Estonians imputed with 31 

ethnically mixed 1000G and ethnically matched imputation reference panels. Although several 32 

previously reported common (minor allele frequency; MAF > 5%) variant associations were replicated 33 

in both imputed datasets, no major differences were observed among the genome-wide significant 34 

findings or in the fine-mapping effort. In the analysis of rare (MAF < 1%) coding variants, 46 35 

significantly associated genes were identified in the ethnically matched imputed data as compared to 36 

four genes in the 1000G panel based imputed data. All resulting genes were consequently studied in 37 

the UK Biobank data. 38 

These associated genes provide an example of how rare variants can be efficiently analysed to 39 

discover novel, potentially functional genetic variants in relevant phenotypes. Furthermore, our work 40 

serves as proof of a cost-efficient study design, demonstrating that the usage of ethnically matched 41 

imputation reference panels can enable improved imputation of rare variants, facilitating novel high-42 

confidence findings in rare variant GWAS scans.  43 
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Author summary 44 

Over the last decade, genome-wide association studies (GWASs) have been widely used for detecting 45 

genetic biomarkers in a wide range of traits. Typically, GWASs are carried out using chip-based 46 

genotyping data, which are then combined with a more densely genotyped reference panel to infer 47 

untyped genetic variants in chip-typed individuals. The latter method is called imputation and its 48 

accuracy depends on multiple factors. Publicly available and ethnically heterogeneous imputation 49 

reference panels (IRPs) such as 1000 Genomes Project (1000G) are sufficiently accurate for imputation 50 

of common and low-frequency variants, but custom ethnically matched IRPs outperform these in case 51 

of rare variants. In this work, we systematically compare downstream association analysis effects on 52 

eight complex traits in ~37,000 Estonians imputed with ethnically mixed and ethnically matched IRPs. 53 

We do not observe major differences in the single variant analysis, where both imputed datasets 54 

replicate previously reported significant loci. But in the gene-based analysis of rare protein-coding 55 

variants we show that ethnically matched panel clearly outperforms 1000G panel based imputation, 56 

providing 10-fold increase in significant gene-trait associations. Our study demonstrates empirically 57 

that imputed data based on ethnically matched panel is very promising for rare variant analysis – it 58 

captures more population-specific variants and makes it possible to efficiently identify novel findings. 59 

Introduction 60 

Genome-wide association studies (GWASs) have been successfully implemented to capture genetic 61 

variants with small to modest effect sizes and have identified thousands of common variants robustly 62 

associated with different complex traits and diseases [1]. However, even in aggregate, these explain 63 

only a small fraction of the heritability of studied diseases. 64 

The sample size of a GWAS can be increased through relatively cheap chip-based genotyping and 65 

subsequent genotype imputation. Imputation is a commonly used computational method for lending 66 

information from a densely genotyped reference panel of phased haplotypes, allowing to study 67 

variants that have not been directly genotyped in target samples and thereby this approach not only 68 

increases the power but also the resolution of GWAS [2–4]. Genotype imputation can also facilitate 69 
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better fine-mapping association signals through the increase of genetic variant density in candidate 70 

genomic regions [5]. 71 

Publicly accessible imputation reference panels like 1000 Genomes Project (1000G) [6] and 72 

Haplotype Reference Consortium (HRC) [7] have been frequently used for imputation in advance to 73 

GWAS. Nevertheless, both of these ethnically heterogeneous reference panels have only limited 74 

capacity to provide complete and accurate imputation of rare (minor allele frequency; MAF < 1%) 75 

variants [8], suggested to contribute to the missing heritability [9]. During the last few years it has 76 

been shown that using an ethnically matched reference panel can greatly improve the ‘completeness’ 77 

and accuracy of genotype imputation [10–15], resulting in higher imputation accuracy compared to the 78 

1000G panel even in case of smaller panel size [16,17]. In addition, several recent studies have 79 

demonstrated the utility of ethnically matched datasets for the discovery of disease or trait-associated 80 

rare variants [18–25]. 81 

Imputed datasets based on ethnically matched reference panels are considered to be powerful tools to 82 

discover previously unidentified rare variants. However, the typical approaches for testing associations 83 

of genetic variants with phenotypes based on simple regression models, and are underpowered for rare 84 

variants in most studies due to their low frequencies and large numbers [26]. To overcome these 85 

issues, different methods have been proposed to increase statistical power in rare variant association 86 

studies, typically by combining information across multiple rare variants within a specific genomic 87 

region or functional unit (e.g. gene) [27–29]. Often these methods focus on certain categories of 88 

variation (e.g. missense or loss-of-function (LoF) variants) [30], and have been applied successfully in 89 

several studies [31–33]. Therefore, gene-based tests allow to capture the joint contribution of multiple 90 

rare variants, improve power and enable to identify novel disease associated genes encompassing 91 

putatively functional variants [34–37]. 92 

In the current study, we impute 51,886 chip-typed Estonians with both ethnically matched Estonian-93 

Finnish (EstFin) and ethnically mixed 1000G imputation reference panels (IRPs) to determine and 94 

quantify the differences in analysis results of eight complex traits. In particular, we evaluate two 95 

analysis scenarios: 1) a variant-wise GWAS; 2) a gene-wise analysis to determine the joint 96 
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contribution of rare (MAF < 1%) nonsynonymous 97 

Biobank data. 98 

Results 99 

First, we developed a high-coverage (100 

reference panel comprising of ethnically closely related 2,279 Estonians and 1,856 Finns, resulting in 101 

8,270 haplotypes in the EstFin IRP. Secondly, we imputed 51,886 chip102 

EstFin and 1000G IRPs (S1 Appendix103 

million (M) and the 1000G IRP 104 

with MAF > 0.05% in 36,716 unrelated individual105 

comparative GWAS and gene-wise association testing of rare variants with eight complex traits106 

Finally, the identified significant gene107 

Fig 1. Schematic overview of imputation reference panels and downstream associa

scheme gives an overview of used imputation reference pane

comparative association analyses, where gene

5 

contribution of rare (MAF < 1%) nonsynonymous (NS) and LoF variants which we validate 

coverage (~30×) whole genome sequencing (WGS) based imputation 

reference panel comprising of ethnically closely related 2,279 Estonians and 1,856 Finns, resulting in 

8,270 haplotypes in the EstFin IRP. Secondly, we imputed 51,886 chip-genotyped

S1 Appendix, S1 Table, S1 and S2 Figs). The EstFin IRP provided 13.8

the 1000G IRP 9.06 M confidently imputed variants (imputation 

36,716 unrelated individuals, which were further used to carry out a 

wise association testing of rare variants with eight complex traits

identified significant gene-trait associations were studied in the UK Bio

verview of imputation reference panels and downstream associa

scheme gives an overview of used imputation reference panels, chip-based and imputed 

association analyses, where gene-based results were validated in the UK Biobank 

which we validate in the UK 

30×) whole genome sequencing (WGS) based imputation 

reference panel comprising of ethnically closely related 2,279 Estonians and 1,856 Finns, resulting in 

genotyped Estonians with the 

The EstFin IRP provided 13.86 

imputation INFO-value > 0.8) 

further used to carry out a 

wise association testing of rare variants with eight complex traits. 

in the UK Biobank data (Fig 1).

 

verview of imputation reference panels and downstream association analysis. This 

and imputed genotype datasets, and 

Biobank data. 
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Single variant analysis 108 

We analyzed the associations between imputed variants and eight complex traits: body mass index and 109 

seven complex diseases of major public health importance [38] – bipolar disorder (BD), coronary 110 

artery disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1 111 

diabetes (T1D), and type 2 diabetes (T2D) (S2 Table). Analyses were conducted separately in both 112 

imputed datasets. Results of variant-wise GWA studies are summarized in Table 1 and S3 Fig. We 113 

detected 12 and 13 genome-wide significant (P < 6.25 × 10
−9

) loci based on EstFin and 1000G IRPs, 114 

respectively. In both datasets we discovered eleven identical loci and three IRP-specific associations, 115 

all of which have been previously reported [1] (S3 Table). Autoimmune diseases RA and T1D 116 

demonstrated common variant associations in the HLA-region, BMI and T2D revealed long 117 

established association with FTO gene (Fig 2). Although lead variants did not overlap (except 118 

rs11102694 and rs9273363 with T1D), top hits from both datasets were in close proximity and in high 119 

linkage disequilibrium (S4 Table and S4 Fig). 120 

IRP-specific associations included BCL2L15 association with T1D in case of the EstFin panel based 121 

imputation, whereas an intergenic locus at chromosome 6p12.3 was associated with BMI and TLE1 122 

locus with T2D in the 1000G-based imputed data only, although the lowest P values of another IRP-123 

based imputed data were close to the genome-wide significance level (S4 Table and S3 Fig). 124 
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Table 1. Significant loci detected by single variant association analysis with complex traits. Confidently 

imputed variants (INFO > 0.8) are tested for associations with complex traits (BMI – body mass index, CAD – 

coronary artery disease, RA – rheumatoid arthritis, T1D – type 1 diabetes, T2D – type 2 diabetes). Analyses are 

conducted separately in the EstFin-based and the 1000G-based imputed datasets. The genome-wide significance 

threshold after correction for multiple testing is P < 6.25 × 10
−9

. For each locus, associated gene containing 

variant with the lowest P value, is reported. In the last two columns, results of fine-mapping analysis are shown 

with the numbers of putative causal variants per genomic region. 
(1) Genome-wide significant (P < 3.27 × 10

−8
, 10-fold enrichment in Estonians) variants detected in MAF-

enriched analysis in comparison of 503 European individuals from the 1000G phase 3 data. 

 

  
  

Associated gene Number of putative causal variants 

Trait Chromosomal 

locus 

EstFin IRP 1000G IRP EstFin IRP 1000G IRP 

BMI 1p13.3 AMPD2 GPR61 1 1 

BMI 1q25.2(1) SEC16B Intergenic 1 1 

BMI 2p25.3(1) Intergenic Intergenic 2 2 

BMI 6p12.3 - Intergenic - 1 

BMI 12q13.12 FAIM2 Intergenic 1 1 

BMI 16q12.2 FTO FTO 1 1 

BMI 18q21.32(1) Intergenic Intergenic 1 1 

CAD 9p21.3 Intergenic Intergenic 1 1 

RA 6p21.32(1) Intergenic Intergenic 1 2 

T1D 1p13.2 BCL2L15 - 1 - 

T1D 6p21.32(1) Intergenic Intergenic 5 3 

T2D 9q21.32 - TLE1 - 1 

T2D 10q25.2-25.3 TCF7L2 TCF7L2 1 1 

T2D 16q12.2 FTO FTO 1 1 

Total 
 

12 13 17 17 

 

To identify the likely causal variant at each locus, we performed fine-mapping analysis in all 125 

significant genomic regions discovered in genome-wide association scan. All but three (BMI at 126 

2p25.3, RA and T1D at the HLA-region) significant regions demonstrated only one likely causal 127 

variant (Table 1). We also tested variants having allele frequency enrichment in Estonians as com-128 

pared to the 503 European individuals from the 1000G data. Genome-wide significant (P < 3.27 × 10
−8

 129 

for 10-fold enrichment) variants were detected for BMI at 1q25.2, 2p25.3, and 18q21.32 loci and for 130 

RA and T1D in the HLA-region in both imputed datasets (Table 1). 131 

In conclusion, single variant association analyses did not indicate major differences in results based on 132 

these data imputed with ethnically matched and mixed IRPs.  133 
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Fig 2. Significant associations at 

association analysis results for the EstFin

IRP imputed data. The purple symbol represents the lead variant, and the rest 

LD with the lead variant estimated by

results of both imputed datasets indicate

correlated. A) Regional association plots for 

the EstFin panel provides evidence for an association between T2D and alleles of the 

P value at rs8047395 (P = 4.4 × 10

1000G IRP (P = 1.5 × 10
-10

), but the lowest 

rs8047395 and rs1421085). 

Gene-based analysis 134 

We conducted gene-based tests of rare (MAF < 1%) nonsynonymous (NS) and loss135 

variants for eight complex traits 136 

least two confidently imputed (INFO > 0.8) 137 

the number of genes analysed – 138 

genes, respectively. In the analysis of rare 139 

663 genes were tested in the EstFin panel imputation and only six genes in the 1000G panel 140 

imputation. 141 

8 

Significant associations at the FTO locus. The left panel of regional plot shows the 

the EstFin-based imputed data, while the right panel shows results for the 1000G 

he purple symbol represents the lead variant, and the rest of the colour

by r
2
 from the 1000G phase 3 (EUR population) data. Comparison of a

indicates that variants with the lowest P value do not 

Regional association plots for BMI. B) Regional association plots for T2D.

evidence for an association between T2D and alleles of the FTO 
-11

). The same SNV shows a significant association in the data 

, but the lowest P value is at rs1421085 (P = 7.9 × 10
-11

, Pearson’s

based tests of rare (MAF < 1%) nonsynonymous (NS) and loss

variants for eight complex traits separately in the imputed datasets. When considering genes with at 

least two confidently imputed (INFO > 0.8) rare NS variants, we observed noteworthy diffe

 EstFin IRP outperformed 1000G, providing 12,930 and 1,274 unique 

In the analysis of rare LoF variants, we identified even more dras

663 genes were tested in the EstFin panel imputation and only six genes in the 1000G panel 

 

The left panel of regional plot shows the genome-wide 

imputed data, while the right panel shows results for the 1000G 

olour-coded variants denote 

Comparison of analysis 

value do not overlap, but are highly 

T2D. Imputed data based on 

FTO locus with the lowest 

a significant association in the data imputed with 

Pearson’s r
2
=0.82 between 

based tests of rare (MAF < 1%) nonsynonymous (NS) and loss-of-function (LoF) 

atasets. When considering genes with at 

NS variants, we observed noteworthy differences in 

performed 1000G, providing 12,930 and 1,274 unique 

we identified even more drastic differences – 

663 genes were tested in the EstFin panel imputation and only six genes in the 1000G panel 
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Consequently, whilst testing the genes including 142 

associations (PNS < 4.83 × 10
−7

) in the EstFin143 

imputation (Table 2). At significance level 144 

variants based on the EstFin imputed data and 145 

parative results of gene-based analysis are presented in Figure146 

associated genes were implicated 147 

involved in gene-wise analysis (S5 Table)148 

significant gene-trait associations149 

relied on four or more NS/LoF variants and 150 

by multiple variants (P < 0.05) for 22/52 tests151 

Fig 3. Miami plot of the gene-based

association analysis results using the EstFin

1000G IRP imputed data. Blue dots represent tested genes including NS variants and 

variants. Dashed lines indicate significance levels 

variants (blue) and P < 9.40 × 10
−6

analysis of NS variants we identify

1000G-based data. In the EstFin-

substitutions, whereas none of the 

1000G IRP. 

9 

Consequently, whilst testing the genes including rare NS variants, we detected 38 significant gene

) in the EstFin-based imputed data and four in the 1000G panel based 

ficance level PLoF < 9.40 × 10
−6

 we detected 10 genes 

based on the EstFin imputed data and none in the 1000G-based imputation

based analysis are presented in Figures 3 and S5. While none of these 

genes were implicated in our single variant GWAS, 122 NS and 22

(S5 Table). We determined that the large majority (45 out of 52)

s relied on two or three NS/LoF variants. Seven out of 52 associations 

relied on four or more NS/LoF variants and the signal of joint contribution of rare variants 

< 0.05) for 22/52 tests (S5 Table). 

based analysis on bipolar disorder. The top panel shows the gene

results using the EstFin-based imputed data, while the bottom part shows results for the 

Blue dots represent tested genes including NS variants and 

variants. Dashed lines indicate significance levels after correction for multiple testing: P
−6

 for LoF variants (orange). Red symbols denote significant genes. In the 

variants we identify six genes based on the EstFin IRP data and one 

-based imputed data we detect a single gene-trait association of LoF 

of the significant associations is observed in the data based on e

s, we detected 38 significant gene-trait 

puted data and four in the 1000G panel based 

we detected 10 genes including rare LoF 

based imputation (Table 2). Com-

. While none of these 

22 LoF variants were 

large majority (45 out of 52) of 

Seven out of 52 associations 

bution of rare variants was driven 

 

The top panel shows the gene-based 

based imputed data, while the bottom part shows results for the 

Blue dots represent tested genes including NS variants and orange squares LoF 

P < 4.83 × 10
−7

 for NS 

Red symbols denote significant genes. In the 

 significant gene in the 

trait association of LoF 

bserved in the data based on ethnically mixed 
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Table 2. Overview of significant gene-based associations. Genes with at least two confidently imputed (INFO > 0.8) rare (MAF < 1%) nonsynonymous (NS) and loss-of-

function (LoF) variants are tested for association with complex traits (BMI – body mass index, BD – bipolar disorder, RA – rheumatoid arthritis, T1D – type 1 diabetes, T2D – 

type 2 diabetes). Analyses are performed separately in the EstFin-based and the 1000G-based imputed datasets. Multiple testing corrected significance levels are applied based on 

the number of genes tested in both datasets: PNS < 4.83 × 10
−7

 for genes containing NS variants and PLoF < 9.40 × 10
−6

 for genes containing LoF variants. First, the results of gene-

based analysis in 36,716 Estonian Biobank (EBB) individuals are presented. Next, the gene-trait associations are validated in 405,379 UK Biobank (UKBB) individuals. Finally, 

for each significant gene-trait result detected in the EBB data, variant-trait association with the smallest P value from the UKBB single variant GWAS is provided. 

 

     

Gene-based 

analysis of 

EBB data 

Gene-based 

analysis of 

UKBB data 

Single variant analysis of UKBB data 

IRP 
Functional 

annotation 
Trait Gene Chr P value P value Lead variant 

Minor 

allele 
MAF Beta Se P value 

1000G NS 

BD GGNBP1 6 3.35 × 10
−7

 1 rs141041358 A 1.32 × 10
−3

 0.0032 0.0011 5.08 × 10
−3

 

CD HTR3D 3 9.48 × 10
−10

 0.676 rs570697703 G 4.02 × 10
−7

 4.5451 1.4028 1.20 × 10
−3

 

CD GPRC6A 6 4.35 × 10
−7

 0.749 rs150641887 A 3.84 × 10
−6

 0.4667 0.0380 1.30 × 10
−34

 

T1D FAM186B 12 6.19 × 10
−8

 0.220 rs140980069 T 3.56 × 10
−5

 0.0385 0.0080 1.60 × 10
−6

 

EstFin 

 

 

 

 

 

 

 

 

 

 

 

 

NS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BMI CYLD 16 1.68 × 10
−7

 - rs190787930 A 4.17 × 10
−3

 0.0592 0.0190 1.89 × 10
−3

 

BD SHE 1 7.88 × 10
−9

 0.179 rs79480105 A 4.49 × 10
−2

 0.0008 0.0003 1.01 × 10
−2

 

BD AMMECR1L 2 1.74 × 10
−7

 0.375 rs137977337 T 1.72 × 10
−3

 0.0045 0.0015 2.85 × 10
−3

 

BD VGLL4 3 1.08 × 10
−7

 1 rs528386411 C 1.16 × 10
−5

 0.1132 0.0323 4.49 × 10
−4

 

BD LIN54 4 6.00 × 10
−9

 0.324 rs142253468 C 3.78 × 10
−5

 0.0825 0.0110 6.05 × 10
−14

 

BD FZD10 12 3.69 × 10
−7

 0.711 rs1046893 C 3.76 × 10
−1

 0.0001 0.0001 2.75 × 10
−1

 

BD SAMHD1 20 6.62 × 10
−9

 0.755 rs566610995 G 1.58 × 10
−3

 0.0029 0.0010 4.59 × 10
−3

 

CD HTR3D 3 2.38 × 10
−8

 0.676 rs570697703 G 4.02 × 10
−7

 4.5451 1.4028 1.20 × 10
−3

 

CD PLA2G12A 4 1.44 × 10
−7

 0.468 rs763365177 G 1.61 × 10
−3

 0.0033 0.0017 5.25 × 10
−2

 

CD HLA-G 6 4.33 × 10
−7

 - rs80153902 A 3.60 × 10
−5

 0.0360 0.0106 6.83 × 10
−4

 

CD RAPGEF5 7 1.55 × 10
−7

 0.227 rs578001462 T 2.16 × 10
−4

 0.0191 0.0048 6.65 × 10
−5

 

CD ZNF92 7 5.86 × 10
−10

 0.046 rs144227733 A 2.22 × 10
−4

 0.0109 0.0045 1.58 × 10
−2

 

CD ORC5 7 1.78 × 10
−10

 1 rs76304209 T 4.26 × 10
−3

 0.0037 0.0011 2.23 × 10
−4

 

CD R3HCC1 8 6.58 × 10
−9

 0.368 rs375458319 A 2.45 × 10
−3

 0.0027 0.0014 4.82 × 10
−2

 

CD TMEM64 8 5.18 × 10
−10

 0.083 rs185086305 T 2.93 × 10
−5

 0.0500 0.0138 2.98 × 10
−4

 

CD NEU3 11 3.61 × 10
−7

 0.876 rs35872360 G 2.86 × 10
−1

 -0.0004 0.0001 1.12 × 10
−2

 

CD EED 11 1.87 × 10
−8

 - rs534451904 A 2.44 × 10
−3

 0.0040 0.0014 2.97 × 10
−3

 

CD KCNA1 12 1.16 × 10
−7

 - rs149959487 A 3.80 × 10
−4

 -0.0032 0.0036 3.68 × 10
−1

 

CD TAOK2 16 7.01 × 10
−9

 0.792 rs10445105 G 5.37 × 10
−2

 -0.0007 0.0003 1.76 × 10
−2

 

CD ANKRD30B 18 3.03 × 10
−8

 0.766 rs9675858 T 4.99 × 10
−1

 -0.0004 0.0001 4.03 × 10
−4

 

CD TRIP10 19 1.36 × 10
−7

 0.288 rs61757561 C 1.68 × 10
−2

 0.0012 0.0005 2.20 × 10
−2

 

CD GRWD1 19 1.59 × 10
−7

 0.022 rs199819631 G 1.11 × 10
−3

 0.0065 0.0021 2.13 × 10
−3

 

CD WRB 21 1.37 × 10
−7

 0.105 rs553712185 G 2.23 × 10
−1

 0.0004 0.0002 1.01 × 10
−2

 

CD NIPSNAP1 22 1.05 × 10
−7

 - rs549356766 A 2.36 × 10
−6

 -0.0049 0.0530 9.27 × 10
−1

 

RA CREBRF 5 3.24 × 10
−9

 0.260 rs78586862 G 5.66 × 10
−2

 -0.0015 0.0005 5.51 × 10
−3

 

RA HSPB1 7 3.97 × 10
−7

 - rs145206720 C 2.62 × 10
−4

 -0.0094 0.0081 2.47 × 10
−1

 

RA PRPF31 19 2.83 × 10
−7

 0.783 rs187106635 A 2.40 × 10
−3

 -0.0066 0.0027 1.58 × 10
−2
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Gene-based 

analysis of 

EBB data 

Gene-based 

analysis of 

UKBB data 

Single variant analysis of UKBB data 

IRP 
Functional 

annotation 
Trait Gene Chr P value P value Lead variant 

Minor 

allele 
MAF Beta Se P value 

 

 

 

 

NS 

RA THOC5 22 1.47 × 10
−7

 0.284 rs571323390 C 1.08 × 10
−3

 0.0040 0.0012 5.44 × 10
−4

 

T1D RNF13 3 6.88 × 10
−9

 0.586 rs140200425 C 2.90 × 10
−2

 0.0009 0.0003 1.25 × 10
−3

 

T1D CENPU 4 7.30 × 10
−9

 0.617 rs776959139 A 2.24 × 10
−3

 0.0030 0.0008 7.98 × 10
−5

 

T1D HIST1H1C 6 3.63 × 10
−7

 0.371 rs201637343 T 5.73 × 10
−4

 0.0065 0.0021 2.08 × 10
−3

 

T1D BAK1 6 5.96 × 10
−11

 0.583 rs11757379 T 2.26 × 10
−1

 0.0003 0.0001 4.96 × 10
−3

 

T1D FAM170B 10 1.14 × 10
−8

 0.464 rs75297145 T 2.09 × 10
−1

 0.0002 0.0001 3.59 × 10
−2

 

T1D SLC22A8 11 1.61 × 10
−7

 0.210 rs11568481 A 2.33 × 10
−4

 0.0110 0.0023 1.41 × 10
−6

 

T1D C11orf30 11 1.32 × 10
−7

 0.576 rs74904466 A 2.70 × 10
−2

 0.0008 0.0002 2.09 × 10
−4

 

T1D ISLR 15 3.63 × 10
−7

 0.249 rs1052622 G 3.23 × 10
−1

 0.0002 0.0001 4.14 × 10
−2

 

T1D HOXB6 17 3.23 × 10
−7

 1 rs33990581 T 1.22 × 10
−2

 -0.0006 0.0004 1.70 × 10
−1

 

T1D ZNF701 19 1.40 × 10
−7

 0.324 rs370776009 G 3.43 × 10
−1

 0.0002 0.0001 2.91 × 10
−2

 

EstFin LoF 

BD OR11H6 14 3.07 × 10
−8

 - rs143225754 T 1.28 × 10
−3

 0.0021 0.0011 6.67 × 10
−2

 

CD HLA-G 6 2.67 × 10
−7

 - rs80153902 A 3.60 × 10
−5

 0.0360 0.0106 6.83 × 10
−4

 

CD IQCE 7 2.51 × 10
−6

 - rs80187333 A 6.83 × 10
−3

 -0.0023 0.0008 6.29 × 10
−3

 

CD YME1L1 10 1.47 × 10
−7

 - rs558886293 T 2.33 × 10
−3

 0.0043 0.0015 3.71 × 10
−3

 

CD ANKRD30B 18 9.83 × 10
−8

 - rs9675858 T 4.99 × 10
−1

 -0.0004 0.0001 4.03 × 10
−4

 

CD FERMT1 20 1.43 × 10
−7

 - rs78566304 A 1.06 × 10
−3

 0.0069 0.0021 1.09 × 10
−3

 

T1D ALLC 2 1.42 × 10
−6

 - rs573758969 C 1.45 × 10
−3

 0.0036 0.0010 2.38 × 10
−4

 

T1D LPP 3 9.76 × 10
−8

 - rs186012592 G 6.79 × 10
−5

 0.0224 0.0045 8.11 × 10
−7

 

T1D ZIC2 13 1.44 × 10
−11

 - rs13542 A 2.23 × 10
−1

 0.0002 0.0001 4.98 × 10
−2

 

T1D ZNF83 19 2.73 × 10
−8

 0.609 rs329940 A 1.09 × 10
−4

 0.0168 0.0056 2.50 × 10
−3
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Validation of gene-based analysis 152 

We first selected 52 significant gene-trait associations from the gene-wise analysis and repeated the 153 

gene-based tests using 405,379 individuals from the UK Biobank [39,40]. The strongest gene-trait 154 

associations were detected with CD in GRWD1 (P = 0.022) and ZNF92 (P = 0.046) genes, but neither 155 

of these were significant after correcting for multiple testing (Table 2). 156 

Secondly, we used variant-wise GWAS results of the UK Biobank in 361,194 individuals [41]. 157 

Although approximately only 25% of the tested rare NS and LoF variants overlapped between the 158 

Estonian Biobank and the UK Biobank data, the UKBB GWAS analysis confirmed signals (P < 10
-5

) 159 

in five detected genes. Considering the lowest P values in our candidate gene regions, we detected two 160 

significant (P = 1.30 × 10
-34

, CD in GPRC6A with the 1000G imputation; P = 6.05 × 10
-14

, BD in 161 

LIN54 with the EstFin imputation) and three suggestive (P = 8.11 × 10
-7

, T1D in LPP with the EstFin 162 

imputation, P = 1.41 × 10
-6

, T1D in SLC22A8 with the EstFin imputation, P = 1.60 × 10
-6

, T1D in 163 

FAM186B with the 1000G imputation) associations in the UKBB GWAS data (Table 2). Significant 164 

gene-based findings with presumptive evidence of biological meaningfulness including VGLL4, LPP 165 

and HLA-G as well as few other loci are discussed in S1 Appendix. Relevant GWAS Catalog entries 166 

related to significant findings from gene-based analysis are presented in S6 Table. 167 

Gene-based analysis of rare variants demonstrated that our ethnically matched panel outperformed the 168 

1000G-based imputation, provided 10-fold increase in tested genes and significant findings. 169 

Validation indicated that most of the significantly associated genes were previously known, but there 170 

were some which turned out to be worthwhile novel findings. 171 

Discussion 172 

Over the past few years, ethnically matched imputation reference panels have been implemented in 173 

favour of widely used cosmopolitan 1000G and HRC panels. The former mentioned panels have 174 

showed great improvement in imputation accuracy, but their effect to the downstream analysis is not 175 

very well examined. In the current study, we performed a comparison of ethnically matched EstFin 176 

and ethnically mixed 1000G-based imputed genotypes in the Estonian Biobank study cohort of 177 
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~52,000 individuals. In addition to the single variant analysis, we examined downstream differences as 178 

a measure of identified associations in MAF-enriched and rare-variant analysis. We have 179 

demonstrated that ethnically matched panel empowers the detection of rare variant signals and have 180 

identified clinically significant novel loci for complex diseases which will be discussed further below. 181 

Ethnically matched reference panel leads to greater improvement in downstream 182 

consequences for rare variants compared to common variants 183 

Ethnically matched panel provides a significantly higher proportion of confidently imputed variants 184 

compared to the 1000G panel (S1 Table). The difference increases with the decrease of MAF, because 185 

of the insufficient representation of rare variants in the 1000G IRP. We observed that single variant 186 

GWAS identified a similar number of genome-wide significant findings in these two imputed datasets 187 

and we did not detect any major differences in fine-mapping of these loci. At the same time, it should 188 

be taken into consideration that in the current analyses we rely on a relatively small number of disease 189 

cases, resulting in limited statistical power. It is likely one of the main factors why we did not observe 190 

any major differences in single variant GWA analyses. Possibly these results would be different with 191 

significantly larger cohorts as, at some point, one should start detecting low-frequency and rare 192 

variants that have been imputed confidently and therefore can be tested with the ethnically matched 193 

IRPs. Secondly, 1000G reference panel contains European haplotypes, and therefore it can be a 194 

relatively good reference for imputing common variants in the Estonian population. But the results can 195 

differ for those populations, which are more distant from the populations used in transethnic 196 

imputation reference sets. 197 

Rare variant analyses demonstrated great differences, where the EstFin-based imputation clearly out-198 

performed the 1000G imputation, allowing for the identification of 10 times more genome-wide 199 

significant genes (Table 2). The EstFin IRP includes a larger number of haplotypes close to the target 200 

samples, deriving unique variants from genomes not included in the 1000G panel. This improves the 201 

chances of a rare variant being effectively tagged by a haplotype. Moreover, including haplotypes 202 

from ethnically distant populations may not accurately capture LD patterns of population-specific 203 

variants or imputation can introduce polymorphic variants in the target samples that are actually 204 
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monomorphic as observed previously [10]. Our results empirically demonstrate the contribution of 205 

rare variants in complex traits analysis using ethnically matched panel, as compared to ethnically 206 

mixed population reference. 207 

Validation of gene-based analysis 208 

Validation of gene-based analysis results in the UK Biobank individual-level data detected two 209 

significant gene-trait signals (P < 0.05), but neither remained significant after multiple testing 210 

correction. For gene-trait associations detected in the EBB data, we were not able to validate 6 (out of 211 

42) and 9 (out of 10) genes containing NS and LoF variants, respectively. This was accounted for the 212 

UKBB data containing less than two NS and LoF variants within these genes (Table 2). A likely 213 

explanation is that the ethnically matched panel captures a significantly larger number of such rare 214 

variants which are not well-captured through the imputation with more heterogeneous reference 215 

panels. Therefore we argue that failing to validate most of the gene-based analysis results in the UK 216 

Biobank data can be due to the population-specific nature of the rare variant findings. 217 

Nevertheless, some of the associations were validated by matching the observed significant genes with 218 

the variants located in the same gene regions in the UKBB single variant association analysis, as well 219 

as many of the genes detected by us were associated with relevant traits in literature (S1 Appendix). 220 

We hypothesize about a causative role for LPP variants conferring susceptibility to T1D – an 221 

assumption being initially rejected in a study involving both celiac disease and T1D patients [42]. 222 

Pleiotropic effects have been reported for LPP in association studies involving diverse autoimmune di-223 

seases where shared susceptibility factors outside the HLA-region are widely recognized. In addition, 224 

LPP mRNA and protein are expressed in multiple tissues, including islets of Langerhans and pancreas, 225 

and LPP gene is relatively intolerant of  LoF variation (ExAC pLI = 0.58) [43]. 226 

In conclusion, we observed that analysis of rare variants outperforms the ethnically matched 227 

imputation reference panel compared to multi-ethnic panels.  The use of an ethnically matched panel 228 

ensures a far better imputation quality for rare variation and allows capturing more population-specific 229 

variants, enabling more efficient discovery of disease-associated genes. 230 
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Materials and methods 231 

Study cohorts 232 

Estonian Biobank. The Estonian Biobank (EBB) is a population-based biobank of the Estonian 233 

Genome Center at the University of Tartu. EBB contains almost 52,000 individuals of the Estonian 234 

population (aged ≥18 years), which closely reflects the age, sex and geographical distribution of the 235 

Estonian adult population [44]. At baseline, the general practitioners performed a standardized health 236 

examination of the participants, who also donated blood samples for DNA, white blood cells and 237 

plasma tests and filled out a questionnaire on health-related topics. All biobank participants have 238 

signed a broad informed consent form, which allows periodical linking to national registries, 239 

electronic health record databases and hospital information systems. The majority of biobank 240 

participants have been analysed using genotyping arrays. High-coverage whole genome sequencing 241 

data is available for the 2,535 individuals, selected randomly by county of birth. The project was 242 

approved by the Research Ethics Committee of the University of Tartu (application number 234/T-12). 243 

FINRISK. FINRISK is a series of health examination surveys carried out by the National Institute 244 

for Health and Welfare (formerly National Public Health Institute) of Finland every five years since 245 

1972. The surveys are based on random population samples from five (or six in 2002) specified 246 

geographical areas of Finland. The samples have been stratified by 10-year age group, sex and study 247 

area. The sample sizes have varied from approximately 7,000 to 13,000 individuals and the 248 

participation rates from 60% to 90% in different study years. The age-range was 25-64 years until 249 

1992 and 25-74 since 1997. The survey included a self-administered questionnaire, a standardized 250 

clinical examination carried out by specifically trained study nurses and drawing of a blood sample.  251 

Details of the examination have been previously described [45,46]. DNA has been collected since the 252 

1992 survey from approximately 34,000 participants. The surveys have appropriate ethical approvals 253 

following the usual practices of each survey-year and the participants have signed an informed 254 

consent. The validity of clinical diagnoses in these registers has been documented in several 255 

publications [47–50]. 256 
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Finnish Migraine Families collection. The families were collected over a period of 25 years from 257 

six headache clinics in Finland (Helsinki, Turku, Jyväskylä, Tampere, Kemi, and Kuopio) and through 258 

advertisements on the national migraine patient organization web page (http://migreeni.org/). 259 

Geographically, family members are represented from across the entire country. The current collection 260 

consists of 1,589 families, which included a complete range of pedigree sizes from small to large (e.g., 261 

1,023 families had 1–4 related individuals and 566 families had 5+ related individuals). Currently, the 262 

collection consists of 8,319 family members, of whom 5,317 have a migraine diagnosis based on the 263 

third edition of the established International Classification for Headache Disorders (ICHD-3) criteria 264 

[51].  265 

MESTA. The Living Conditions and Physical Health of Outpatients with Schizophrenia study 266 

recruited 276 outpatients with schizophrenia spectrum disorder (ICD-10 F20–F29) from the psychosis 267 

outpatient clinics of three municipalities in Finland (Järvenpää, Mäntsälä, and Tuusula). The study 268 

protocol consisted of a questionnaire and interview assessing current symptoms, functioning, lifestyle, 269 

and a comprehensive health examination. DNA samples were collected as a part of the study based on 270 

a separate informed consent [52,53]. 271 

Health 2000. The Finnish Health 2000 Survey was based on a nationally representative sample of 272 

8,028 persons aged 30 years or over living in mainland Finland. A two-stage stratified cluster 273 

sampling design was used. The sampling frame was regionally stratified according to the five 274 

university hospital regions, and from each university hospital region 16 health care districts were 275 

sampled as clusters (altogether 80 health care districts). Persons within the health care districts were 276 

selected by systematic sampling, and persons aged 80 years and over were oversampled by doubling 277 

the sampling fraction. The field work took place between September 2000 and June 2001, and 278 

consisted of a home interview and a health examination at the local health centre, or a condensed inter-279 

view and health examination of non-respondents at home. In addition, several questionnaires were 280 

used to assess symptoms, lifestyle, and exposures related to different health problems. Of the study 281 

sample, 88% were interviewed, 80% attended a comprehensive health examination and 5% attended a 282 

condensed examination at home [54]. 283 
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Ethnically matched imputation reference panel 284 

WGS data for Estonian and Finnish samples were generated and jointly processed at the Broad 285 

Institute of MIT and Harvard. WGS samples had PCR-free DNA preparation (Estonian Biobank, 286 

FINRISK, Finnish Migraine Families collection, Health 2000) and PCR-amplified preparation 287 

(MESTA), followed by sequencing on the Illumina HiSeq X platform with the use of 151-bp paired-288 

end reads with mean coverage of ~30×. Sequenced reads were aligned to the GRCh37 human 289 

reference genome assembly using BWA-MEM v0.7.7 [55]; PCR duplicates were marked using Picard 290 

v1.136 (http://broadinstitute.github.io/picard/), and the Genome Analysis Toolkit (GATK) v3.4-46 291 

[56,57] best-practice guideline was applied for further BAM processing and variant calling.  292 

Samples were excluded based on high contamination (>5%), high proportion of chimeric alignment 293 

(>5%), low genotype quality (GQ < 50), low coverage (<20×), high coverage (> mean + 3 sd), 294 

relatedness (identity-by-descent (IBD) > 0.1), sex mismatches, high genotype discordance (>5%) 295 

between sequenced and chip-based data. Additionally, samples were filtered (mean ± 3 sd) based on 296 

total number of variants, non-reference variants, singletons, heterozygous/homozygous variants ratio 297 

(single nucleotide variants (SNVs) and indels were tested separately in the above-mentioned cases), 298 

insertion/deletion ratio for novel indels, insertion/deletion ratio for indels observed in dbSNP, and 299 

transition/transversion ratio. After filtering and exclusion of duplicates, the WGS datasets were 300 

merged, containing 4,135 individuals (2,279 Estonians and 1,856 Finns). 301 

The following variants were set to missing: GQ < 20, read depth > 200×, phred-scaled genotype 302 

likelihood of reference allele < 20 for heterozygous and homozygous variant calls, and allele balance 303 

<0.2 or >0.8 for heterozygous calls. The GATK Variant Quality Score Recalibration (VQSR) was 304 

used to filter variants with a truth sensitivity of 99.8% for SNVs and of 99.9% for indels. Variants 305 

with inbreeding coefficient < –0.3, quality by depth < 2 for SNVs and < 3 for indels, call rate < 90%, 306 

and Hardy-Weinberg equilibrium (HWE) P value < 1×10
-9

 were removed. Monomorphic, multi-allelic 307 

variants, and low-complexity regions [58] were further excluded. The final IRP contains 38,226,084 308 

variants. 309 

Autosomal chromosomes and GRCh37 (hg19) human reference genome assembly was used for all 310 

analysis. 311 
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Chip-based genotype data 312 

The EBB participants have been analysed using Illumina genotyping arrays: 1) Global Screening 313 

Array (GSA, N=33,277), 2) HumanCoreExome (CE, N=7,832), 3) HumanOmniExpress (OMNI, 314 

N=8,137), and 4) 370K (N=2,640). Individuals with missing phenotype data were excluded. Final set 315 

of genotyped data contained 48,163 unique individuals. The genotype calling for the microarrays was 316 

performed using Illumina’s GenomeStudio v2010.3 software. The genotype calls for rare variants on 317 

the GSA array were corrected using the zCall software (version May 8th, 2012). After variant calling, 318 

the data was filtered using PLINK v.1.90 [59] by sample (call rate > 95%, no sex mismatches between 319 

phenotype and genotype data, heterozygosity < mean ± 3 sd) and marker-wise (HWE P value > 1 × 320 

10
-6

, call rate > 95%, and for the GSA array additionally by Illumina GenomeStudio GenTrain score > 321 

0.6, Cluster Separation Score > 0.4). Before the imputation, variants with MAF < 1% and C/G or T/A 322 

polymorphisms as well as indels were removed, as these genotype calls do not allow precise phasing 323 

and imputation. 324 

Phasing and imputation 325 

The WGS-based imputation reference panel was phased using Eagle v2.3 [60,61] with default 326 

parameters except the Kpbwt parameter that was set to 20000 to increase accuracy. Pre-phasing of 327 

genotyped data was performed in similar manner for all four arrays separately with Eagle and imputed 328 

with Beagle v4.1 [62]. All pre-phased genotype datasets were imputed twice using the following 329 

reference panels: 1) EstFin IRP containing 8,270 reference haplotypes and 38.2 M autosomal variants; 330 

2) 1000G IRP holding 5,008 reference haplotypes and 81.7 M autosomal markers. All four imputed 331 

arrays were merged by IRP with BCFtools v1.6 (https://samtools.github.io/bcftools/bcftools.html). 332 

Imputation information measure (INFO-value) [4] were added using BCFtools plugin ‘impute-info’. 333 

Monomorphic, multi-allelic and directly genotyped variants were excluded for all downstream 334 

analyses. Only confidently imputed variants (INFO-value > 0.8) with MAF > 0.05% were considered: 335 

13,859,717 (12,872,515 SNVs, 987,202 indels) variants imputed with the EstFin IRP and 9,058,236 336 

(8,232,261 SNVs, 825,975 indels) variants imputed with the 1000G IRP (Fig 1). 337 
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Phenotypes 338 

In the association analysis, only unrelated individuals were included (IBD sharing < 0.2). Samples 339 

were excluded by choosing the minimal list of related individuals to break all kinship ties and, if 340 

possible, cases were preferred over controls using RELOUT5 tool from Allele 341 

(http://www.toomashaller.com/allele.html). Questionnaire-based data was linked to the electronic 342 

health records (the Estonian Health Insurance database, data available for years 2003–2015) and other 343 

health-related databases like the Estonian Causes of Death Registry (2003–2015), and the Estonian 344 

Cancer Registry (2003–2013).  345 

After linking, dead people without time of death, participants without records from registries, and 346 

individuals older than 80 years at recruitment were excluded. The latter because diagnoses in the 347 

elderly people are often related to significant risk-altering comorbidities (cancer or cardiovascular 348 

diseases). Associations of body mass index, three cardiometabolic (coronary artery disease, 349 

hypertension, type 2 diabetes) and four autoimmune (bipolar disorder, Crohn's disease, rheumatoid 350 

arthritis, type 1 diabetes) diseases were analyzed in 36,716 Estonians (S2 Table). 351 

Single variants analysis 352 

Single variant analysis was conducted with Hail 0.1 (http://broadinstitute.github.io/picard/). Linear 353 

regression was used to test each variant’s allelic dosage additive effect with body mass index, and 354 

Firth [63] logistic regression with seven diseases. Models were adjusted for age, sex, first ten principal 355 

components (PC1-10), and genotype array. Only confidently imputed variants (INFO > 0.8) with MAF 356 

> 0.05% were considered. A multiple testing corrected significance level (5 × 10
−8

 / 8 phenotypes) = 357 

6.25 × 10
−9

 were used. 358 

All genome-wide significant loci were visualized by regional association plots using LocusZoom 359 

v0.4.8 [64] with the 1000G phase 3 European population LD reference panel. Pairwise examination of 360 

quantile-quantile plots of GWAS P values indicated that the distribution of the test statistics were 361 

nearly identical for both datasets, and did not demonstrate significant genomic inflation (S6 Fig). All 362 

significantly associated loci were compared to the National Human Genome Research Institute 363 

(NHGRI-EBI) GWAS Catalog [1] (April 10, 2018) data. 364 
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Fine-mapping 365 

To identify causal variants that denote molecular mechanisms behind the associations, we performed 366 

fine-mapping analysis using FINEMAP v1.3 [65] around (± 500 kilobase (kb)) genome-wide 367 

significant loci detected by variant-wise analysis (Table 1). FINEMAP was applied with default 368 

parameters, allowing for at most five causal variants and the highest posterior probability for the 369 

number of causal signals was used. 370 

Enrichment analysis 371 

Enriched variants in the EstFin imputed data were detected in comparison of 503 European (EUR) 372 

individuals from the 1000G phase 3 data. Enrichment rates were calculated as MAF in Estonians (Est) 373 

divided by MAF in 1000G EUR individuals: 374 

Enrichment =
��
���

��
�����_���
.  375 

Corresponding Bonferroni corrected significance level for variants enriched 10-fold in Estonians 376 

(enrichment > 10) was [0.05 / (191,099 variants × 8 phenotypes)] = 3.27 × 10
−8

. 377 

Gene-based analysis 378 

To determine the joint contribution of rare variants on eight complex traits, we implemented gene-379 

based SKAT-O [27] tests with EPACTS (https://genome.sph.umich.edu/wiki/EPACTS). All variants 380 

were annotated with EPACTS module ‘anno’ (GENCODE v14 [66]). Only nonsynonymous 381 

(nonsynonymous, normal splice site or stop gain) and loss-of-function (stop gain, essential splice site 382 

or frameshift) variants with INFO > 0.8 and 0.000001% < MAF < 1% were included. Models were 383 

adjusted for age, sex, PC1-10 and genotype arrays. Results were post-filtered that each gene contained 384 

at least two NS or LoF variants. We identified 12,930 (663) and 1,274 (9) NS (LoF) genes in the 385 

EstFin and the 1000G IRP-based imputed data, respectively. Bonferroni corrected significance levels 386 

based on the number of identified genes in both imputed datasets were used: [0.05 / (12,951 × 8 387 

phenotypes)] = 4.83 × 10
−7

 and [0.05 / (665 × 8 phenotypes)] = 9.40 × 10
−6

 for NS and LoF genes, 388 

respectively. 389 
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UK Biobank data 390 

The UK Biobank enrolled about 500,000 people aged between 40-69 years in 2006-2010 from across 391 

the United Kingdom [67]. Two approaches were used to validate significant gene-trait associations 392 

from the UKBB data:  393 

1) We used genotyped and imputed individual-level data as released by UK Biobank in March 2018 394 

[39,40]. In the analysis we used 405,379 unrelated (IBD sharing < 0.2) individuals with European 395 

origin and confidently imputed variants (INFO > 0.8). Diagnosis of prevalent disease was based on 396 

International Classification of Diseases (ICD-10) diagnosis codes and self-reported data. The same 397 

SKAT-O models were applied as used to discover 52 significant gene-trait associations in the 398 

Estonian Biobank data (Table 2).  399 

2) We used GWAS analysis results of the UK Biobank in 361,194 individuals provided by the Neale 400 

lab [41] and selected variant-trait results with the lowest P value for each significant gene-trait 401 

association (gene ± 5 kb) detected in the Estonian Biobank data (Table 2). 402 
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Supporting information 

S1 Fig. Number of confidently imputed variants. Venn diagrams of confidently imputed variants 

(INFO > 0.8) using EstFin (blue) and 1000G (orange) IRPs in four minor allele frequency categories. 

A) 0.05% < MAF ≤ 0.5%, B) 0.5% < MAF ≤ 1%, C) 1% < MAF ≤ 5%, D) MAF > 5%. 

 

S2 Fig. Distributions of imputation INFO-values. Distribution of imputation INFO-values for the 

EstFin and the 1000G IRPs imputed data measured on chromosome 20 in four minor allele frequency 

categories. A) EstFin IRP, B) 1000G IRP. 

 

S3 Fig. Genome-wide association analysis results of eight common traits. The top panel of Miami 

plot shows the single variant association analysis results using the EstFin-based imputed data, while 

the bottom part shows GWAS results for the 1000G IRP imputed data. Red dots denote significant 

regions and the genome-wide significance threshold after correction for multiple testing (P < 6.25 × 

10
−9

) is indicated by a red dashed line. A) body mass index, B) bipolar disorder, C) Crohn’s disease, 

D) hypertension, E) coronary artery disease, F) rheumatoid arthritis, G) type 1 diabetes, H) type 2 

diabetes. 

 

S4 Fig. Significant regions from single variant association analysis. Regional plots show all 

significant genomic regions from the single variant analysis. The left panel indicates results for the 

EstFin-based imputed data, while the right panel shows results for the 1000G IRP imputed data. The 

purple symbol represents the lead variant, and the rest of the colour-coded variants denote LD with the 

lead variant estimated by r
2
 from the 1000G phase 3 (EUR population) data. 

* 1000G-based imputed data shows a single variant significantly association with HT at 2q22.1, which 

most likely represents a false-positive finding. 

 

S5 Fig. Gene-based association analysis results of common traits. The top panel of Miami plot 

shows the gene-based association analysis results using the EstFin-based imputed data, while the 
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bottom part shows results for the 1000G IRP imputed data. Blue dots represent tested genes including 

NS variants and orange asterisks LoF variants. Dashed lines indicate significance levels after 

correction for multiple testing: P < 4.83 × 10
−7

 for NS variants (blue) and P < 9.40 × 10
−6

 for LoF 

variants (orange). Red symbols denote significant genes. A) body mass index, B) Crohn’s disease, C) 

hypertension, D) coronary artery disease, E) rheumatoid arthritis, F) type 1 diabetes, G) type 2 

diabetes. 

 

S6 Fig. Quantile-quantile plots for single variant association analysis. Quantile-quantile plots of 

the GWAS P values based on the EstFin (left panel, blue dots) and the 1000G (right panel, purple 

dots) IRPs imputed data. Region in gray dashed lines is the 95% confidence band. A) body mass 

index, B) bipolar disorder, C) Crohn’s disease, D) coronary artery disease, E) hypertension, F) 

rheumatoid arthritis, G) type 1 diabetes, H) type 2 diabetes. 

 

S1 Table. Number of imputed variants. Number of overall, well-imputed (INFO > 0.4) and 

confidently imputed (INFO > 0.8) variants with the EstFin and the 1000G IRPs. The last column 

indicates confidently imputed variants common for both IRP-based imputations. 

 

S2 Table. An overview of seven complex diseases. ICD-10 diagnosis codes, number of cases and 

controls for seven complex diseases in 36,716 Estonian Biobank individuals used in the association 

analysis. 

 

S3 Table. Previously known associations for significant single variant analysis results. Relevant 

genome-wide associations from the GWAS Catalog for significant genomic regions (around genes (± 

50 kb) with the lowest P value) detected by variant-wise analysis. Gray background refers to direct 

relationship between studied trait and GWAS Catalog entry. 

 

S4 Table. Summary statistics of lead variants at significant loci identified in single variant GWAS 

results. Confidently imputed variants (INFO > 0.8) are tested for associations with complex traits 
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(BMI – body mass index, CAD – coronary artery disease, RA – rheumatoid arthritis, T1D – type 1 

diabetes, T2D – type 2 diabetes). Analyses are conducted separately for the EstFin and the 1000G 

IRP-based imputed datasets. Multiple testing corrected significance level (P < 6.25 × 10
−9

) is used. For 

each significant loci, lead variant with single variant GWAS summary statistics are provided. 

 

S5 Table. Overview of genetic variants involved in significant gene-trait associations. A list of all 

single variants involved in significant gene-wise associations with single variant GWAS summary 

statistics. In the last column, relevant references are provided, where particular gene-trait association is 

previously identified. 

 

S6 Table. Previously known associations for significant gene-based analysis results. Relevant 

genome-wide associations from the GWAS Catalog for significant genes (± 50 kb) detected by gene-

wise analysis. Gray background refers to direct relationship between studied trait and GWAS Catalog 

entry. 

 

S1 Appendix. Overview of genotype imputation and examples of disease associated genes. A 

detailed overview of genotype imputation with the EstFin and the 1000G IRPs are provided. Five 

examples of significant gene-trait associations from the EstFin-based imputation results with potential 

underlying biological mechanisms are considered in more details. 
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