
Long-term reduction of short wavelength light affects sustained 

attention and visuospatial working memory 

 

Aleksandra Domagalik1*, Halszka Oginska2, Ewa Beldzik2, Magdalena Fafrowicz1, Tadeusz 

Marek1,2 

1 NeuroImaging Group, Neurobiology Department, Malopolska Centre of Biotechnology, 

Jagiellonian University, Krakow, Poland  

2 Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, 

Jagiellonian University, Krakow, Poland 

 

To whom correspondence should be addressed: Aleksandra Domagalik, 

aleksandra.domagalik@uj.edu.pl 

 

AUTHOR CONTRIBUTIONS 

AD, HO, EB, MF, TM: conception or design of the work; AD, HO: acquisition and analysis; AD, 

HO, EB, MF, TM: interpretation of the results; AD: drafting the manuscript; AD, HO, EB, MF, TM: 

revising the manuscript critically and final approval of the version to be published; 

 

FUNDING 

This research was supported by the Polish National Science Centre [grant number 

2013/08/W/NZ3/00700]. 

 

ACKNOWLEDGMENTS 

The authors thank Justyna Janik for support in data acquisition, Mariusz Duda from Department of 

Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology at the Jagiellonian University 

for transmittance measurements of contact lenses used in the study and Piotr Chaniecki, Agnieszka 

Ścisłowicz, Jagoda Miszczyk, Paulina Renke from Ophthalmology Clinic at 5th Military Clinical 

Hospital in Krakow for participants’ eyes examination.  

 

CONFLICT OF INTEREST STATEMENT 
The authors declare no conflict of interest. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581314doi: bioRxiv preprint 

mailto:aleksandra.domagalik@uj.edu.pl
https://doi.org/10.1101/581314


 

 
2 

ABSTRACT 

The short wavelength, i.e. blue light, is crucial for non-image forming effects such as entrainment of 

circadian system. Moreover, many studies showed that blue light enhances alertness and performance 

in cognitive tasks. However, most of scientific reports in this topic is based on studies using short 

exposure to blue or blue-enriched light and only few focused on the effects of its reduced 

transmittance, especially in longer period. The latter could potentially give insight into understanding 

if age-related sleep problems and cognitive decline are related to less amount of blue light reaching 

the retina, as our lenses become more yellow with age. In this study, we investigated the effects of 

prolonged blocking of blue light on cognitive functioning, in particular - sustained attention and 

visuospatial working memory, and sleep. We used amber contact lenses reducing transmittance of 

blue light by approximately 90% for the period of four weeks on a group of young, healthy 

participants. No changes were observed for measurements related to sleep and sleep-wake rhythm. 

The significant effect was shown both for sustained attention and visuospatial memory, i.e. the longer 

blocking the blue light lasted, the greater decrease in performance was observed. Additionally, the 

follow-up session was conducted (approximately one week after taking off the blue-blocking lenses) 

and revealed that in case of sustained attention this detrimental effect of blocking BL is fully 

reversible. Our findings provide evidence that prolonged reduction of BL exposure directly affects 

human cognitive functioning regardless of sleep-related conditions. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581314doi: bioRxiv preprint 

https://doi.org/10.1101/581314


 

 
3 

1 Introduction 

Humans adapted their life to 24-h light-dark cycle. As a diurnal species, we are exposed to light 

which is necessary not only for vision, but also constitutes a powerful modulator of non-visual 

functions. The non-visual (or Non-Image Forming, NIF) effects of light are mediated in general by a 

retinal photoreceptor system built of the intrinsically photosensitive retinal ganglion cells (ipRGC, 

Güler et al., 2008). However, it was shown that the latter plays a key role in the regulation of the NIF 

effects such as circadian rhythms and pupil constriction (Czeisler et al., 1995; Güler et al., 2008; 

Zaidi et al., 2007) probably due to direct neuronal projections of ipRGC cells to many hypothalamic 

nuclei, including suprachiasmatic nuclei (master circadian pacemaker) and olivary pretectal nuclei 

(Hattar et al., 2006). Human and animal studies provide evidence that the NIF system detects 

variations in ambient irradiance and elicits a long-term modifications of circadian rhythms as well as 

acute changes in hormone secretion, heart rate, sleep propensity, alertness, core body temperature, 

retinal neurophysiology, pupillary constriction, and gene expression (reviewed by Vandewalle, 

Maquet, & Dijk, 2009).  

In these unique ipRGC cells, the triggering signal transduction is accomplished by photopigment 

melanopsin, which has maximum sensitivity in the blue, i.e. short wavelength, part of the spectrum 

(around 480nm; Berson, Dunn, & Takao, 2002; S Hattar, Liao, Takao, Berson, & Yau, 2002). 

Behavioral, biochemical and neuroimaging studies, as well as subjective measurements, 

demonstrated that the sensitivity of the human circadian rhythm and alerting and cognitive responses 

to light is blue-shifted relative to the three-cone visual photopic system, thus related to melanopsin 

phototransduction (see reviews by Cajochen, 2007; Chellappa et al., 2011; Vandewalle et al., 2009). 

Here, we focus on alerting and cognitive functions, and how these are affected by changed light 

condition. Studies demonstrated that exposure to monochromatic blue light improves performance, 

i.e. participants respond faster and with better accuracy, and at the same time reduces sleepiness in 

terms of subjective ratings (Lockley et al., 2006) or stimulates higher cognitive brain activity, 

independently of vision (Vandewalle et al., 2013). Recently, Alkozei and co-workers (2016) have 

shown that exposure to blue versus amber (placebo) light led to better performance on a working 

memory task and increased functional brain responses related to the memory process. Later, the same 

group used verbal learning test and demonstrated better subsequent memory recall in the participants 

exposed to blue light during memory consolidation when compared to individuals exposed to an 

amber light condition (Alkozei et al., 2017). Recently, another neuroimaging study revealed that 
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melanopsin-based photoreception activates a cerebral network including frontal regions, classically 

involved in attention and oculomotor responses (Hung et al., 2017). A range of studies introduced 

blue-enriched white light and showed that it improves subjective alertness and performance (Viola et 

al., 2008), speeds response times (Newman et al., 2016) and is more effective in reducing subjective 

sleepiness and enhancing cognitive performance, specifically associated with tasks of sustained 

attention (Chellappa et al., 2011).  

Most studies focusing on the effects of short wavelength light present the experiments with exposure 

to blue or blue-enriched light as a condition of interest. Also, in most of the cases they report the 

effect of short-lasting exposure to light (from minutes to few hours). Only a few studies reported the 

consequences of short-term blue light filtering intervention using the short-wavelength attenuated 

polychromatic white light or blue-light blocking glasses. It was shown that this reduction leads to 

decrement of performance, subjective vigilance and efficiency, and affects physiological parameters 

linked to sleepiness and vigilance (van de Werken et al., 2013) as well as attenuation of LED-induced 

melatonin suppression in the evening and decreased vigilant attention and subjective alertness before 

bedtime (van der Lely et al., 2015). A chronic reduction of short-wavelength was introduced by 

Giménez and co-workers (2014) in the study on melatonin and sleep patterns. They used soft orange 

contact lenses (reducing about 50% in short wavelength range) for two weeks in order to mimic, to a 

certain extent, the aging effects of the lens yellowing in healthy young participants. No differences 

were found in the melatonin measures and the effects on sleep parameters were limited. 

The goal of current study was to observe long-term effects of blue light filtering. In contrast to the 

aforementioned study by Giménez et al. (2014), we used lenses that reduce transmittance of blue 

light by about 90% and introduced them for 4 weeks. We focused on the alertness (as one aspect of 

sustained attention) defined as the ability to achieve and maintain a certain level of cognitive 

performance in a given task as well as on visuospatial working memory performance. Participants 

were tested once a week with Psychomotor Vigilance task and sequential picture location task. 

Actigraphy measurements as well as Pittsburgh Sleep Quality Index and Epworth Sleepiness Scale 

were used to control for factors related to sleep and sleep-wake rhythm. We hypothesized that our 

experimental condition causes a progressive deterioration of performance similar to the effect of 

aging-related cognitive decline, which might be to some extent related to reduced amount of blue 

light reaching the retina. Furthermore, to investigate whether these changes are reversible, we 

introduced a follow-up session one week after returning to normal light conditions. 
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2 Materials and methods 

2.1 Participants 

Forty-eight healthy participants started the experiment and were divided in two groups differing in 

the type of contact lenses used: BL-blocked (BLB) group and control group (CTRL). All of them had 

nearsightedness (myopia) and good experience with contact lenses wearing. Each participant 

underwent thorough ophthalmologic exam to exclude other sight problems and passed the Ishihara 

test for color blindness. Participants assigned to BLB group wore the amber contact lenses reducing 

the transmittance of BL by approximately 90% on the 24-hour basis (UltraVision, Igel RX, water 

content 77%, orange tint density 40%), whereas CTRLs wore the regular contact lenses (see filter 

properties on Fig 1.). The lenses were adjusted according to participants’ refractive error. There were 

8 dropouts due to discomfort and/or eye irritation (7 of them initially assigned to BLB group). All 

participants were under ophthalmologist care throughout the whole experiment. Two (out of forty 

participants that completed the study) were excluded due to elevated level of daytime sleepiness 

throughout the whole experiment; they were from the CTRL group. Thus, data obtained from 38 

participants underwent further analyses. 

All participants were right-handed, with no neurological or psychiatric disorders and drug-free. 

During selection procedure we excluded individuals with poor sleep quality (Pittsburgh Sleep Quality 

Index, PSQI >6; Buysse et al., 1989) and elevated level of daytime sleepiness (Epworth Sleepiness 

Scale scores, ESS >10; Johns, 1991). The chronotype was assessed with Chronotype Questionnaire 

(Oginska et al., 2017). A T-test for independent samples was used to check the differences between 

groups in terms of age, sex, sleep quality, level of daytime sleepiness and chronotype (data are 

summarized in Table 1). No difference was found between groups. None of the participants worked 

night shifts or traveled across more than two time zones in the previous two months. Participants 

were financially rewarded for their participation, were informed about the procedure and gave their 

written consent. The study was approved by the bioethics commission at the Polish Military Institute 

of Aviation Medicine and conducted in accordance with ethical standards described in the 

Declaration of Helsinki. 
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Table 1. Demographic and questionnaire data. 

 BLB group (n=19) CTRL group (n=19) Difference 

Females (nb) 11 11 p=1.00 

Age (years) 23.58 ± 2.76 24.89 ± 4.85 p=0.31 

PSQI 3.00 ± 1.16 3.00 ± 1.33 p=1.00 

ESS 5.90 ± 2.73 6.74 ± 2.05 p=0.29 

ChQ-ME 20.79 ± 5.63 20.37 ± 5.82 p=0.82 

Note: Data are reported as mean ± SD (except number of females); statistical 

difference measured with t-test. PSQI = Pittsburgh Sleep Quality Index, ESS = 

Epworth Sleepiness Scale score, ChQ-ME = morningness-eveningness scale of 

Chronotype Questionnaire 

 

2.2 Experimental protocol  

The experiment lasted six weeks (Fig 2). For each participant, the measurements were obtained once a 

week on the same day of the week in the evenings. Participants from CTRL group performed the task 

approximately at 7:30 p.m. and those from BLB group approximately at 9:30 p.m. The timing of the 

test differed between groups; however, it was the same in every session for each group. The goal was 

to match individual participants from each groups in terms of study dates, to make sure they were 

exposed to the same photoperiod. To check whether this discrepancy did not introduce bias regarding 

circadian and/or homeostatic factors, we have compared the results from the baseline session between 

groups. No significant differences were observed, thus the time difference between acquisition did not 

affect our results. 

For the first two weeks, all participants wore regular, daily disposable contact lenses. At the first 

session participants familiarized themselves with experimental procedures and the laboratory. The 

second session was treated as a baseline. For the next four weeks participants wore monthly 

disposable contact lenses with different filter properties according to group. Additionally, 

participants from BLB group had one more session (follow-up) about one week after the main 

experiment. 
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There were no behavioral restrictions imposed on participants. The experiment was conducted during 

spring to fall months ensuring greater availability of sunlight.  

At each session, participants performed two experimental tasks in front of the computer screen and 

filled in the ESS questionnaire. During baseline session and on last experimental session participants 

additionally fulfilled the PSQI questionnaire. Through the whole experiment (six weeks) they wore 

actigraphs (AMI – Ambulatory Monitoring Inc. or MotionWatch8 – CamNtech Ltd.) on their non-

dominant wrist.  

To avoid any expectancy effect, a possible positive or negative influence of the blue light filtering on 

functioning and the general well-being was not suggested to participants before the start of 

experiment. They were informed that the research goal is primarily, the observation of cognitive 

functioning in the situation of "sharpening the eye" (amber lenses were advertised as an aid for the 

eye to support sharp vision, especially at dusk, which can be useful for drivers and athletes). 

2.3 Experimental tasks 

Participants performed a Psychomotor Vigilance Task (PVT), a widely used test of sustained 

attention (Basner and Dinges, 2011; Dinges and Powell, 1985). The task required pressing a response 

button (with index finger) as soon as the stimulus appears, which stops the stimulus counter and 

displays the reaction time (RT) in milliseconds for a 1s period. It was emphasized to the participants 

not to press the button in the absence of stimuli, which yielded a false start warning on the screen. If 

a reaction was slower than 1s, the warning "too slow" appeared. The inter-trial interval varied 

randomly from 2 to 10s, and the task duration was 5min, comprising about 42 stimuli. 

To study visuospatial working memory we used a sequential picture location task (SPLT; Fig 3). In 

the task, 4 pictures were sequentially presented in random square of the 4×3 grid for 500ms with 

900ms interval between them. Participants were asked to remember the location of pictures. After a 

delay lasting from 2 to 9s, a memory probe was presented at the screen until response was given. The 

instruction was to respond “yes” (index finger) if the memory probe was in the same location as 

during the preceding sequence or “no” (middle finger) if the location was different. A 5s blank screen 

was presented between trials. There were 56 trials what resulted in approximately 15 min of task 

duration (actual task duration was dependent on participants’ response time). The pictures for the task 

were taken from BOSS database - the Bank of Standardized Stimuli (Brodeur et al., 2010). 

Participants did not perform the task during follow-up session. One participant from CTRL group 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581314doi: bioRxiv preprint 

https://doi.org/10.1101/581314


 

 
8 

was excluded from the analysis due to low performance (less than 70% accuracy in all sessions). 

Nine of thirty seven participants performed shorter version of task, i.e. there were 31 trials and 3 

pictures to remember in each trial. 

Both tasks were performed on computer with 19-inch LCD screen. For training and baseline session 

for BLB group as well as for all experiment for CTRL group the blue-blocking filter was used on the 

screen to ensure similar visual condition (i.a. color perception) for all participants (see filter 

properties on Fig 1). Participants responded with arrow keys on the keyboard. 

2.4 Data analysis 

In the PVT, errors of commission were defined as responses without a stimulus or those with RT < 

100ms, whereas errors of omission as lack of response on stimulus or responses with RT ≥ 500ms. 

The number of errors was calculated as a percentage of all stimuli in the task. For correct responses 

mean RT, mean RT for 10% of the fastest responses and mean RT for 10% of the slowest responses 

were calculated as the most frequently reported PVT outcome metrics (Basner and Dinges, 2011). 

First three stimuli were discarded from analysis in each PVT trial. In the SPLT task, only accuracy 

(in %) was measured since there was no time restriction on response. 

The outcomes of both tasks were established for each experimental session and then compared using 

mixed analysis of variance (ANOVA) with sessions (5 levels accounting for one baseline and four 

sessions of wearing BLB/regular contact lenses) as within-subject and group (2 levels: BLP and 

CTRL group) as between-subject factors. To reveal if there is a changing pattern of task outcomes 

through consecutive sessions and if this pattern differs between groups, the interaction of session and 

group factors was reviewed. The Tukey HSD test was used for post-hoc comparisons. For the SPLT 

task, additional between-subject factor was added to the ANOVA analysis in order to take into 

account the two version of task (note: none of the effect including task version factor was 

significant). 

For PVT task, indicators of state instability, i.e. standard deviation of RT and the time-on-task effect 

was tested and compared between sessions. The mean RT for each minute of task was calculated and 

introduced in mixed effect ANOVA with minutes, sessions and group as factors. Additionally, to 

evaluate if there is a difference in the time-on-task effect across experimental sessions, the slope of 

linear regression line across RT for each minute of task was calculated and compared using mixed 
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effect ANOVA with sessions and group as factors. The standard deviation of RT was compared in 

the same way.  

Furthermore, the comparison of the follow-up session with baseline and last week of wearing the 

BLB contact lenses was performed on data from BLB group with repeated measures ANOVA test. 

The goal of this analysis was to check whether any changes in behavior diminish approximately one 

week after taking off the blue light blocking contact lenses. 

The questionnaire data was analyzed using analogical statistical tests.  

3 Results 

The PVT outcome metrics are presented on graphs in figure 4. Significant interaction effect of 

session and group factors was observed for mean RT (F(4, 144)=2.59, p<0.05, partial η2=0.07) and 

mean RT for 10% of the fastest responses (F(4, 144)=2.80, p<0.05, partial η2=0.07). The Tukey HSD 

post-hoc comparisons yielded a significant increase of these measures in consecutive sessions only 

for BLB group; detailed test results are presented on the graphs (Fig 4). Other measures did not reach 

the significance level: mean RT for 10% of the slowest responses (F(4, 144)=1.54, p=0.19), number of 

omission errors (F(4, 144)=1.37, p=0.25) and number of commission errors (F(4, 144)=1.51, p=0.20). 

The time-on-task effect, i.e. increasing RT in the course of task, was present (F(4, 144)=9.94, p<0.001, 

partial η2=0.22), however interaction with group and session was not significant (F(16, 576)=1.21, 

p=0.25, partial η2=0.03). The comparison of slopes did not reveal significant interaction between 

sessions and groups (F(4, 144)=0.64, p=0.63), neither the standard deviation of RT (F(4, 144)=0.55, 

p=0.70). 

For the PVT task, we compared the follow-up session with the baseline and last week of wearing the 

BLB contact lenses for BLB group (Fig 5). The repeated-measure ANOVA analysis revealed 

significant differences between those three sessions in mean RT (F(2, 36)=21.79, p<0.001, partial 

η2=0.55), mean RT for 10% of the fastest responses (F(2, 36)=12.02, p<0.001, partial η2=0.40), mean 

RT for 10% of the slowest responses (F(2, 36)=13.58, p<0.001, partial η2=0.43) and number of 

omission errors (F(2, 36)=5.15, p<0.05, partial η2=0.22). The post-hoc tests for all of the above 

mentioned analyses revealed significant difference between the baseline session and 4th week of 

wearing BLB contact lenses and between this session and the follow-up. There was no difference 
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between the baseline and follow-up session. Number of commission errors did not show significant 

differences between sessions (F(2, 36)=0.13, p=0.88). 

There was significant interaction between group and session for the accuracy in the SPLT task 

(F(4,132)=3.77, p<0.01, partial η2=0.10; Fig. 6). The post-hoc test revealed significant decrease in 

accuracy only for BLB group (see Fig 6). 

Sleep parameters assessed with actigraphy are presented in Table 2. Actigraphy data for whole 

experiment from 6 participants (1 form EXP and 5 from CTRL group) were not recorded due to 

technical problems. There were no significant differences between groups and sessions for those 

measures (sleep onset:  F(4, 120)=0.68, p=0.61; sleep offset: F(4, 120)=0.40, p=0.81; sleep latency: F(4, 

120)=0.24, p=0.92; actual sleep time: F(4, 120)=0.72, p=0.58). 

Table 2. Actimetry-derived sleep parameters in baseline and during experiment period in 

experimental (BLB) and control groups.  

Actigraphy 

measure 
Group Baseline 

weeks of contact lenses wearing 

1st 2nd 3rd 4th 

Sleep onset 

BLB 
00:58 ± 

1h27min 

01:04 ± 

1h53min 

01:11 ± 

2h14min 

01:09 ± 

2h10min 

01:02 ± 

1h56min 

CTRL 
00:44 ± 

50min 

00:21 ± 

43min 

00:33 ± 

1h11min 

00:42 ± 

1h9min 

00:45 ± 

51min 

Sleep offset 

BLB 
08:15 ± 

1h34min 

08:24 ± 

1h57min 

08:43 ± 

2h18min 

08:45 ± 

2h11min 

08:28 ± 

2h2min 

CTRL 
07:53 ± 

45min 

08:01 ± 

57min 

08:00 ± 

1h39min 

08:10 ± 

1h34min 

08:02 ± 

58min 

Sleep onset 

latency 

BLB 
14min ± 

13min 

14min ± 

12min 

15min ± 

13min 

14min ± 

12min 

11min ± 

10min 

CTRL 12min ± 9min 10min ± 8min 12min ± 8min 11min ± 7min 
10min ± 

7min 

Actual sleep 

time 

BLB 
6h38min ± 

39min 

6h42min ± 

52min 

6h52min ± 

1h5min 

6h55min ± 

38min 

6h38min ± 

47min 

CTRL 
6h46min ± 

1h8min 

7h12min ± 

1h8min 

6h59min ± 

1h16min 

6h58min ± 

1h11min 

6h48min ± 

56min 
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The subjective sleepiness (ESS) and sleep quality (PSQI) results are presented in figure 7. The 

interaction effect of session and group factors in ANOVA test for both scores was not significant 

(ESS: F(4, 144)=1.72, p=0.15, PSQI: Current effect: F(1, 36)=0.12, p=0.73). When considering the 

follow-up session, ESS score did not show significant effect of session (F(2, 36)=2.24, p=0.12). 

4 Discussion 

In this study we investigated the effects of prolonged blocking of blue light on sustained attention 

and visuospatial working memory. We used the PVT, a simple reaction time task that indicates the 

ability to achieve and maintain a certain level of cognitive performance (Souman et al., 2018), as well 

as a SPLT task requiring memory both for object and spatial locations. Actigraphy was applied to 

control for timing and duration of sleep, PSQI for assessing its quality, and ESS to control for 

daytime sleepiness levels. We compared the data collected from two groups of participants wearing 

either contact lenses with filter blocking approximately 90% of blue light or normal contact lenses 

during four consecutive weeks. Results show significant change of pattern in majority of the PVT 

outcome metrics in the BLB group. Particularly, the longer blocking the blue light lasted, the slower 

were responses as indicated by mean RT and mean of the 10% fastest responses. The effects on other 

PVT measures did not reach significance level, although they show also increasing pattern in the 

course of weeks with reduced blue light. In the CTRL groups, all the metrics were stable through all 

sessions. There was no effect of changed light condition on RT variability measured by standard 

deviation as well as on time-on-task effect. The comparison between baseline session and last 

experimental session in the BLB group revealed significant increase in all of the PVT outcome and 

significant decrease of those measures at the follow-up session. In case of the SPLT task, significant 

decrease in accuracy was shown only for BLB group. Sleep timing and length, subjective sleep 

quality and daytime sleepiness did not change during the experimental intervention. 

As hypothesized, our study show that blocking blue light slows down reactions in sustained attention 

task and cause deterioration of performance in visuospatial memory task. This effect gradually 

strengthens during the consecutive weeks. Interestingly, our results revealed that in case of sustained 

attention this effect is reversible, as the reaction times decrease to the baseline level after returning to 

‘normal’ light conditions (i.e. with BL in the spectrum). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581314doi: bioRxiv preprint 

https://doi.org/10.1101/581314


 

 
12 

The effect of blue light on cognitive processes may be considered in terms of complex interactions 

between circadian, sleep, and arousal factors. Particularly, blue light, through NIF system, can either 

act directly on neuronal system and thus on alertness and behavior, or indirect effects may occur due 

to disrupted entrainment of circadian system and/or sleep (Fisk et al., 2018). Therefore, the effects of 

changed blue light condition can be interpreted in terms of different mechanisms. 

Taking into consideration studies on sleep-wake regulation, it can be stated that blocking blue light 

causes similar outcomes to those of sleep deprivation. Thus, performance decrement reported in our 

study might be linked to disruption of sleep or sleep-wake rhythm. However, in contrast to research 

on sleep deprivation, our measurements imply that participants had no sleep problems in conditions 

of blue light filtering. Both, sleep duration and sleep quality were not affected. Taking into account 

the direct impact of light on melatonin secretion and circadian regulation, one could expect, in 

conditions of blue light blockade, the following changes in participants' sleep-wake pattern: earlier 

bedtime, shorter sleep latency, and longer sleep. This could lead to improved well-being due to better 

sleep. However, it may be also the case that lack of triggering effect of blue light would be the key 

factor of daytime drowsiness, hence - lack of energy and decreased well-being. In our study, 8 out of 

18 participants (44%) showed earlier sleep onset after four weeks of experiment (so did 5 out of 14 

controls, i.e. 36%), 35% of experiment participants (vs. 43% of controls) exhibited shortened sleep 

latency, and 39% of participants (vs. 36% of controls) had longer sleep. Those results do not support 

the above assumptions on direct link between blue light and sleep/wake rhythm. In general, the 

prolonged blue light reduction did not result in significant changes of sleep pattern, although we are 

aware of the fact that the ‘pristine’ internal sleep timing is influenced by external social factors that 

are not controlled in case of an experiment conducted in 'natural' conditions. Moreover, the results of 

Giménez et al. (2014) where blue light exposure was reduced for two weeks did not show differences 

in the timing of sleep, its efficiency and subjective quality, likewise no effect was found on dim light 

melatonin onset or on amplitude of melatonin rhythms. Thus, the unchanged sleep related indicators 

in our study may be interpreted as speaking for lack of BLB effect on sleep-wake rhythm and sleep 

per se and in consequence on performance through this indirect pathway.  

Therefore, the results of our study could be interpreted in terms of direct effect of light on alertness. 

The series of neuroimaging experiments by Vandewalle and colleagues demonstrated that blue light 

induces modulations of brain activity while participants are engaged in non-visual cognitive tasks 

(Vandewalle et al., 2007a, 2007b, 2009). Those activations regarded alertness-related subcortical 
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structures such as brainstem, hypothalamus, dorsal and posterior parts of thalamus, hippocampus and 

amygdala. The modulations were detected also in the cortex, in areas involved in bottom-up 

reorientation of attention and in the regions linked with top-down regulation of attention. At the 

behavioral level, blue enriched light was shown to enhance subjective alertness and led to 

significantly faster reaction times in tasks associated with sustained attention and working memory 

(Alkozei et al., 2016; Chellappa et al., 2011a). Our experimental condition is opposite, as we reduce 

blue light exposure and so are our results as we observe increasing reaction times and decreasing 

accuracy. Hence, the reduced amount of blue light reaching the retina may be associated with 

insufficient stimulation of the alerting and/or orienting system in the brain that in consequence have 

impact on cognitive processes. 

Prolonged filtering of the blue light takes place in the aging process of the eye - the natural lens 

becomes more yellow because of accumulation of chromophores that decrease transmission 

especially in the short wavelength range of visible spectrum (Giménez et al., 2010; Kessel et al., 

2010).  It was shown the transmission of light at 480nm decreases by 72% from the age of 10 to 80 

years (Kessel et al., 2010).  As known, aging is often associated with sleep and circadian disturbances 

(Duffy and Czeisler, 2002) as well as cognitive decline (Cabeza et al.). A large sample study show 

that the age-related lens yellowing may be responsible for sleep problems in the elderly because of 

disturbed photoentrainment of circadian rhythms (Kessel et al., 2011). Our results suggest that 

reduced amount of blue light reaching the retina might be one of factors influencing the deterioration 

of cognitive functioning. A finding by Schmoll and co-workers (2011) supports this explanation. 

They examined patients after cataract surgery and revealed that improved blue light transmission has 

a beneficial effect on cognitive function (responses became both quicker and more consistent 

following surgery). Moreover, the detrimental effect of blocking blue light can be reversed as 

demonstrated in our study (returning to baseline level of task performance after returning to normal 

light conditions) or attenuated as shown in studies on elderly population (a long-term, whole-day 

bright light exposure in large cohort of care facilities residents, (Riemersma-van der Lek et al., 

2008)). 

In summary, we studied the effects of prolonged reduction of blue light on sustained attention and 

visuospatial memory in natural conditions with simultaneous control of measures related to sleep and 

sleep-wake cycle. The results revealed worsening of performance during changed light conditions in 

comparison to control group where no filter was applied. No effects on sleep parameters were found. 
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Our findings demonstrate that filtering blue light affects human cognitive functioning. The lack of 

significant changes in sleep and sleep-wake indicators during four-week experiment may be an 

indirect proof of stability of sleep-wake rhythm. Thus, the observed deterioration of cognitive 

functioning through the decrease in 'psychomotor vigilance' and visuospatial working memory may 

be directly attributed to weakening of alerting effect of blue light. 

 

KEYWORDS: 

short-wavelength light; blue light; visuospatial memory; sustained attention; PVT; 

 

HIGHLIGHTS: 

The effects of prolonged reduction of blue light on human cognition were studied. 

Filtering of blue light affects sustained attention and visuospatial memory. 

The longer blocking the blue light lasted, the worse performance was observed. 

No effects on sleep and sleep-wake cycle parameters were found. 
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FIGURES: 

 

 

Figure 1. Transmittance of the contact lenses and filter used in the study. Note: melanopsin 

sensitivity adapted from Irradiance Toolbox (Lucas et al., 2014) 
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Figure 2. Experimental protocol.  
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Fig. 3.  Example of trial for the SPLT task. The item shown would require a response “no” 
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Figure 4. PVT outcomes for BLB and CTRL group for the baseline and 4 weeks of experimental 

condition: A) mean reaction time, B) number of omission errors, C) reaction time for 10% of the 

fastest responses, D) reaction time for 10% of the slowest responses. Note: *** denote p< 0.001; ** 

denote p< 0.01; * denote p< 0.05; ## denote p< 0.1; bars indicate standard error. 
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Figure 5. Comparison of PVT outcomes for BLB group between baseline, 4th week of blue light 

reduction and the follow-up session: A) mean reaction time, B) number of omission errors, C) 

reaction time for 10% of the fastest responses, D) reaction time for 10% of the slowest responses. 

Note: *** denote p< 0.001; ** denote p< 0.01; * denote p< 0.05; ## denote p< 0.1; bars indicate 

standard errors. 
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Figure 6. Accuracy in SPLT task for BLB and CTRL group for the baseline and 4 weeks of 

experimental condition. Note: *** denote p< 0.001; ** denote p< 0.01; * denote p< 0.05; ## denote 

p< 0.1; bars indicate standard errors. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2019. ; https://doi.org/10.1101/581314doi: bioRxiv preprint 

https://doi.org/10.1101/581314


 

 
25 

 

 

 

 

 

Figure 7. Subjective measures of sleepiness and sleep quality: A) EES score for BLB and CTRL 

group in consecutive experimental session as well as comparison to follow-up session for BLB group, 

B) PSQI score at the baseline session and after 4 weeks of experimental condition for both groups. 

Note: bars indicate standard errors. 
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