
Multi-omics profiling establishes the polypharmacology of FDA Approved CDK4/6 inhibitors and 

the potential for differential clinical activity  

 

Marc Hafner*,1,3, Caitlin E. Mills*,1, Kartik Subramanian1, Chen Chen1, Mirra Chung1, Sarah A. 

Boswell1, Robert A. Everley1, Changchang Liu1, Charlotte S. Walmsley2, Dejan Juric1,2,�, and Peter K. 

Sorger1,†,� 

* These authors contributed equally to this work. 
� These authors contributed equally to this work. 
 
 
1Laboratory of Systems Pharmacology 
Department of Systems Biology 
Harvard Medical School 
Boston, MA 02115 
 
2Termeer Center for Targeted Therapies 
Massachusetts General Hospital Cancer Center 
Boston, MA 02114 
 
3Current address:  
Department of Bioinformatics & Computational Biology 
Genentech, Inc. 
South San Francisco, CA 94080 
 

† Lead contact: Peter Sorger (peter_sorger@hms.harvard.edu, 617-432-6901/6902); orcid.org/0000-
0002-3364-1838 copying Chris Bird (christopher_bird@hms.harvard.edu). 

 

 

Running title: Advantageous polypharmacology of CDK4/6 inhibitors  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2019. ; https://doi.org/10.1101/211680doi: bioRxiv preprint 

https://doi.org/10.1101/211680
http://creativecommons.org/licenses/by-nd/4.0/


SUMMARY 

The target profiles of many drugs are established early in their development and are not 

systematically revisited at the time of FDA approval. Thus, it is often unclear whether therapeutics with 

the same nominal targets but different chemical structures are functionally equivalent. In this paper we 

use five different phenotypic and biochemical assays to compare approved inhibitors of cyclin-

dependent kinases 4/6 – collectively regarded as breakthroughs in the treatment of hormone receptor-

positive breast cancer.  We find that transcriptional, proteomic and phenotypic changes induced by 

palbociclib, ribociclib, and abemaciclib differ significantly; abemaciclib in particular has advantageous 

activities partially overlapping those of alvocidib, an older polyselective CDK inhibitor. In cells and 

mice, abemaciclib inhibits kinases other than CDK4/6 including CDK2/Cyclin A/E – implicated in 

resistance to CDK4/6 inhibition – and CDK1/Cyclin B. The multi-faceted experimental and 

computational approaches described here therefore uncover under-appreciated differences in CDK4/6 

inhibitor activities with potential importance in treating human patients. 
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INTRODUCTION 

Progression through the cell cycle is controlled by more than a dozen distinct protein complexes 

involving cyclins and cyclin-dependent kinases (CDKs). Because dysregulation of the cell cycle is a 

hallmark of cancer, several generations of CDK inhibitors have been tested as potential therapeutic 

agents. However, identifying CDK inhibitors that are more active on tumor than normal cells has been a 

challenge and it is only recently that CDK4/6 inhibitors have emerged as promising therapies, 

particularly in breast cancer. CDK4 and CDK6 bind cyclin D early in the G1 phase of the cell cycle and 

phosphorylate the retinoblastoma protein (pRb). pRb is then hyper-phosphorylated by CDK2/cyclin E, 

relieving its inhibitory activities against transcription factors of the E2F family and allowing for S phase 

entry. Later in the cell cycle, CDK2/cyclin A and CDK1 in complex with cyclin A and B promote entry 

and progression through G2 and mitosis. Multiple genetic changes in cancer cells disrupt critical steps in 

cell cycle regulation: amplification of CDK4, CDK6, cyclin D, or cyclin E are common in solid tumors 

including breast cancers (Asghar et al., 2015; Balko et al., 2014). Also common are deficiencies in pRb 

function, which cause unregulated S phase entry, and deletion of the CDK4/6 inhibitor p16 (encoded by 

CDKN2A) (Asghar et al., 2015; Franco et al., 2014). 

First generation pan-CDK inhibitors active against cell cycle regulators such as CDK1/2/4/6 and 

transcriptional regulators such as CDK9 arrest cells in both G1 and G2 and are broadly cytotoxic, and 

their clinical development has been challenged by poor therapeutic windows (Asghar et al., 2015). 

Subsequent generations of CDK inhibitors have been designed to inhibit specific CDK proteins (or 

subfamilies). In February 2015, the CDK4/6 inhibitor, palbociclib (PD0332991; Ibrance®) (Cristofanilli 

et al., 2016) received FDA approval for management of hormone receptor-positive (HR+) metastatic 

breast cancer (MBC) (Finn et al., 2009; O’Leary et al., 2016). Clinical trials of the CDK4/6 inhibitors, 

ribociclib (LEE011; KISQALI®) (Hortobagyi et al., 2016) and abemaciclib (LY2835219; Verzenio®) 

(Dickler et al., 2016; Sledge et al., 2017) also demonstrated substantial improvements in progression-

free survival in HR+ metastatic breast cancer (Cristofanilli et al., 2016; Griggs and Wolff, 2017) leading 
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to their approval by the FDA. CDK4/6 inhibitors are currently regarded as some of the most promising 

new drugs for the treatment of HR+ breast cancer and are also being tested against other malignancies 

(Goel et al., 2016; Lim et al., 2016; McCain, 2015; Patnaik et al., 2016a). 

As observed with many other targeted therapies, acquired resistance to CDK4/6 inhibitors 

develops over time and nearly all initially responsive patients ultimately progress (Sherr et al., 2016). 

Resistance to CDK4/6 inhibitors is associated with multiple genomic alterations including amplification 

of Cyclin E, which promotes CDK2-dependent phosphorylation of pRb, amplification of CDK6, and 

loss of pRb function (Asghar et al., 2015; Yang et al., 2017). High expression of cyclin E is also 

associated with high CDK2 activity post-mitosis, which appears to bypass a requirement for CDK4/6 for 

cell cycle reentry (Asghar et al., 2017). 

Despite having the same nominal targets and similar clinical indications, emerging evidence 

suggests that palbociclib, ribociclib, and abemaciclib differ in the clinic: abemaciclib in particular has 

been reported to have unique single-agent activities and distinct adverse effects (O’Brien et al., 2018; 

Patnaik et al., 2016b). The three drugs are dosed differently, have different pharmacokinetics, and are 

reported to differ with respect to target selectivity (Chen et al., 2016; Cousins et al., 2017; Gelbert et al., 

2014; Kim et al., 2013).  Among abemaciclib secondary targets examined to date, inhibition of 

DYRK/HIPK kinases is thought to contribute to cellular cytotoxicity (Knudsen et al., 2017); inhibition 

of GSK3α/β can activate WNT signaling (Cousins et al., 2017); inhibition of CDK9 is thought to be 

therapeutically unimportant (Torres-guzmán et al., 2017); however, overall the biological significance of 

differences in potency against primary CDK4/6 targets and secondary targets remains largely 

unexplored. 

The target profiles of most clinical compounds are established relatively early in their 

development and are not necessarily revised at the time of approval. This is further complicated in the 

case of kinase inhibitors by the use of different measurement technologies to assess selectivity and the 

steady evolution of these technologies over the course of development of a single drug. By directly 
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comparing the target profiles and biological activities of palbociclib, ribociclib and abemaciclib, as well 

as an earlier generation pan-CDK inhibitor, alvocidib (flavopiridol), we sought to address three related 

questions: (i) are the three approved CDK4/6 inhibitors interchangeable with respect to biochemical and 

cell-based activities; (ii) is there a possibility that tumors that have become resistant to one CDK4/6 

inhibitor remain responsive to another inhibitor; and (iii) what are the relative merits of different 

approaches to characterizing the target spectra of kinase inhibitors? 

In this paper we report the analysis of the clinically-approved CDK4/6 inhibitors using five 

experimental approaches that provide complementary insights into drug mechanisms of action: (i) 

mRNA sequencing of drug-perturbed cells, (ii) phosphoproteomics using mass spectrometry, (iii) GR-

based dose-response measurement of cellular phenotypes (Hafner et al., 2016), (iv) mRNA sequencing 

of drug-treated xenograft tumors and (v) in vitro analysis for inhibitory activity using three different 

approaches: activity assays with recombinant enzymes; kinome-wide profiling using the commercial 

KINOMEscan platform from DiscoverX (Fabian et al., 2005); and kinase enrichment proteomics based 

on affinity purification on kinobeads (Duncan et al., 2012). We find that the five experimental 

approaches provide different but complementary views of target coverage and demonstrate that 

palbociclib, ribociclib, and abemaciclib have substantial differences in biological activities and 

secondary targets in breast cancer cell lines of varying genotypes. Multiple lines of evidence, including 

an in vivo xenograft model and preliminary data on patients and patient-derived cell lines treated with 

abemaciclib, suggest that the unique activities of abemaciclib arise from inhibition of kinases in addition 

to CDK4/6, notably CDK1 and CDK2 and may be therapeutically advantageous. 

 

RESULTS 

Approved CDK4/6 inhibitors induce distinct molecular signatures in breast cancer cells 

To compare the mechanisms of action of palbociclib, ribociclib, and abemaciclib we performed 

transcriptional profiling (mRNA-seq) on a panel of seven breast cancer cell lines following 6 or 24 hours 
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of exposure to 0.3, 1, or 3 μM of drug (Figure 1a and Table S1). In all but pRb-deficient BT-549 cells, 

treatment with any of the three drugs gave rise to a signature (signature 1; Figure 1a in red) comprising 

87 significantly down-regulated genes (FDR < 0.2). In addition, treatment of cells with abemaciclib in 

the low micromolar range (gray box in Figures 1a) induced a second transcriptional signature (signature 

2; Figure 1a in cyan) comprising 688 significantly down-regulated genes (FDR < 0.2) that was absent 

from ribociclib-exposed cells and only weakly present in cells exposed to palbociclib. We queried the 

Broad Connectivity Map (CMAP) (Lamb et al., 2006) with the two sets of down-regulated genes to 

determine which drug-induced changes they most closely matched. For signature 1, palbociclib and 

inhibitors of MEK (MAP kinase kinase) were the strongest hits (ribociclib and abemaciclib are absent 

from the CMAP dataset; Figure 1b and Table S2). Like CDK4/6 inhibition, MEK inhibition is anti-

mitogenic in breast cancer cells, causing cells to arrest at the G1/S transition (Caunt et al., 2015; 

Meloche and Pouysségur, 2007). Gene set enrichment analysis showed that signature 1 was enriched for 

genes in the set Reactome “Cell Cycle” (p=9.0×10-50); it therefore appears to reflect cell cycle arrest in 

G1 (O’Leary et al., 2016). We scored the strength of this signature (the “G1-arrest score”) as the 

absolute mean log2 fold-change in the expression of all genes comprising signature 1. When signature 2 

was compared to CMAP, the strongest hits were alvocidib and other pan-CDK inhibitors (Figure 1c and 

Table S2), suggesting that this signature arises from inhibition of CDKs other than CDK4 and CDK6. 

The strength of signature 2 (the “pan-CDK score”) was also calculated as the absolute mean log2 fold-

change in gene expression. The G1-arrest score was high for all three drugs (Figure S1) whereas the 

strength of the pan-CDK score varied with drug and dose; it was highest for abemaciclib above 0.3 µM 

and lowest for ribociclib. Palbociclib exposure was associated with intermediate scores (Figure 1d). 

To better understand the origins of the pan-CDK signature, we collected RNAseq data from a 

larger set of conditions using the high-throughput, low-cost RNA sequencing method 3’ Digital Gene 

Expression (DGE-seq) (Soumillon et al., 2014). Seven cell lines, including two that are pRB-deficient 

(BT-549 and PDX-1258), were exposed for 6 hours to palbociclib, ribociclib, or abemaciclib or to 
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alvocidib (which inhibits CDK1/2/4/6/9); data were collected in triplicate at four CDK4/6 inhibitor 

concentrations and two alvocidib concentrations. Differential expression of genes in signatures 1 and 2 

(as defined above) was then used to compute G1-arrest and pan-CDK scores for each condition (Figure 

2, Table S3). From these data we found that the strength of the average pan-CDK score was ordered as 

follows: alvocidib > abemaciclib > palbociclib > ribociclib (Figure 2, x-axis). For abemaciclib and 

alvocidib the pan-CDK score was strongly dose dependent (r=0.78, p=9.3×10-7 and r=0.76, p=1.5×10-3 

respectively) as were the G1 arrest scores for all four drugs. Notably, the pan-CDK score for 0.1 µM and 

1 µM alvocidib across all cell lines (green) substantially overlapped abemaciclib at 1 µM and 3 µM 

(blue).   

In pRb-deficient lines, only four genes in the G1 signature were differentially regulated by 

ribociclib (two-sided Fisher exact test p=2×10-4 as compared to pRb-proficient lines) consistent with the 

hypothesis that a pure CDK4/6 inhibitor should be inactive in cells lacking pRb, the primary substrate of 

CDK4/6 kinases. G1 arrest scores were lower in pRb-deficient than in pRb-proficient cell lines (0.25 vs. 

0.73 on average) but they were not zero. This likely arises because pan-CDK and G1 arrest signatures 

are not orthogonal and inhibition of CDKs contributes to both. It was nonetheless true that high G1-

arrest scores were observed when pan-CDK scores were near zero, particularly for ribociclib and 

palbociclib (data points lying along the y-axis in Figure 2). These RNA-seq data strongly suggest that 

palbociclib, ribociclib, and abemaciclib have different target spectra in breast cancer cells. Moreover, 

like alvocidib, abemaciclib is biologically active in pRb-deficient cells, as judged by changes in gene 

transcription.  

 

Effects of CDK4/6 inhibitors on the activity of CDK/cyclin complexes 

To study the effects of CDK4/6 inhibitors on the phosphoproteome we performed isobaric 

(TMT) tag based liquid-chromatography mass spectrometry (LC/MS) (McAlister et al., 2012). MCF7 

cells were treated with DMSO, palbociclib, or abemaciclib for one hour (to focus on immediate-early 
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changes in the phosphoproteome) and a total of 9958 phosphopeptides were detected across all samples; 

among these phosphopeptides, 739 were down-regulated in the presence of palbociclib and 2287 in the 

presence of abemaciclib (log2 fold-change > 1.5; Figure 3a, Table S4). Enrichment analysis (Drake et 

al., 2012) involving known kinase-substrate relationships (see Methods) was used to infer changes in the 

activities of upstream kinases potentially accounting for observed changes in the phosphoproteome. The 

inferred activities for CDK4, CDK6, and Aurora A/B kinases (AURKA/B) were significantly lower in 

cells treated with either palbociclib or abemaciclib than a DMSO-only control whereas the activities of 

CDK1, CDK2, and CaM-kinase II subunit alpha (CAMKIIα) were lower only in cells treated with 

abemaciclib (Figure 3b, Table S5).  

Kinase inference suggests that palbociclib and abemaciclib down-regulate the activities of 

multiple kinases other than CDK4 and CDK6. However, this conclusion has several caveats, most 

importantly, that kinase inhibitors can act indirectly, for example, by blocking the activity of an 

upstream kinase in a multi-step cascade or by arresting cells at a point in the cell cycle at which some 

kinases are not normally active (CDKs for example). Second, even when using state-of the-art mass 

spectrometers and methods, less than 10% of the total phosphoproteome can be analyzed in any single 

sample, making kinase-inference subject to statistical error. Third, there exists a poorly established 

many-to-many mapping between kinases and substrates, necessitating predictive models based on motif 

signatures and binding probabilities, all with associated uncertainties. Because of these limitations we 

consider kinase inference to be a semi-quantitative method: large differences across drugs are likely 

meaningful but dose-response relationships can be hard to capture.  

To distinguish direct and indirect effects of kinase inhibitors on the phosphoproteome we 

performed three different type in vitro assays. First, we used the commercial KINOMEscan assay, which 

measures binding between members of a 468 DNA-tagged recombinant kinase library and an 

immobilized ATP-like ligand; the assay is performed in the presence and absence of an ATP-

competitive drug (Fabian et al., 2005). KINOMEscan profiling showed that ribociclib is the most 
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selective CDK4/6 inhibitor and abemaciclib the least (Figure 3c, Figure S2a-b and Table S6).  

KINOMEscan assays have previously been performed on CDK4/6 inhibitors (Chen et al., 2016; Gelbert 

et al., 2014); our data agree with earlier findings. 

Several CDKs are not found in the KINOMEscan library (e.g. CDK1, CDK6) or are not 

complexed with cyclins (e.g. CDK2); therefore, we used a second method to obtain kinome profiles: 

multiplexed inhibitor bead mass spectrometry (MIB/MS) (Duncan et al., 2012). In this approach, a cell 

lysate is mixed with beads conjugated to pan-kinase inhibitors in the presence and absence of a test drug 

and the levels of bound kinases then determined by mass spectrometry (Figure 3d, Table S7); to 

generate a lysate with the greatest number of expressed kinases, we mixed several cell types (Médard et 

al., 2015). We detected 164 kinases, including 13 CDKs in the unfractionated extract by TMT LC/MS, 

and found that ribociclib, palbociclib, and abemaciclib all bound to CDK4 and CDK6. In addition, 

abemaciclib bound to CDK1, CDK2, CDK7, CDK9, GSK3α/β and CAMKIIγ/δ. These results agree 

well with data for abemaciclib recently published by Cousins et al. (Spearman’s ρ = 0.62, P = 8.9×10-16) 

(Cousins et al., 2017). Moreover, when KINOMEscan data (obtained in the presence of 1 µM 

abemaciclib) and MIB data (obtained with 10 µM abemaciclib) were compared, 19 of 25 kinases 

strongly inhibited in the KINOMEscan and also present in cell extracts were significantly reduced in 

binding to MIBs (log2 fold change > 1.5), demonstrating good reproducibility between different types of 

assays. We conclude that ribociclib is the most selective CDK4/6 inhibitor tested and abemaciclib the 

least, with a dose-dependent increase in the number of targets significantly inhibited by abemaciclib 

from 4 at 0.1 µM drug to 13 at 1 µM and 28 at 10 µM. 

As a third approach, we performed in vitro kinase activity assays at 10 concentrations (using 

SelectScreen technology by Thermo Fisher and HotSpot technology by Reaction Biology; see Methods). 

Drugs were tested on the kinases and kinase-cyclin complexes that we identified as potential 

abemaciclib targets by transcriptional, phospho-proteomic or kinase profiling assays. The data showed 

that abemaciclib was the most potent inhibitor of CDK4 and CDK6 of the three drugs tested and that it 
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was also active against multiple kinases that were not inhibited, or were only weakly inhibited, by 

palbociclib or ribociclib (Figure 3e, Figure S3 and Table S8). These kinases include CDK2/cyclin A/E, 

CDK1/cyclin B, CDK7/cyclin H, CDK9/cyclin K/T1, CAMKIIα/β/γ, and GSK-3α/β (Figure 3e, Figure 

S3). Compared to the first-generation CDK inhibitor alvocidib, abemaciclib had similar potency against 

CDK2/cyclin A/E but was ~10-fold less potent against CDK1/cyclin B, CDK7/cyclin H, and 

CDK9/cyclin K/T1 (potentially explaining the improved toxicity profile of abemaciclib relative to pan-

CDK inhibitors), whereas ribociclib and palbociclib were at least another order of magnitude less potent 

than abemaciclib against these secondary targets. The potency of the three drugs against CDK4 vs. 

CDK6 was dependent on the cyclin partner and the assay, but the kinases generally differed by no more 

than 3-fold (Table S8).   

Results from KINOMEscan, MIB/MS, and SelectScreen assays performed in vitro were largely 

concordant with mRNA-seq and phosphoproteome profiling with a few notable exceptions (Figure 3f). 

CDK1 and CDK6 were absent from the KINOMEscan panel and CDK2 was not found to be a target, 

probably because the appropriate cyclin was absent and cyclin binding changes CDK2 activity (Echalier 

et al., 2014). Such a false-negative result in the widely used KINOMEscan assay may explain why the 

activity of abemaciclib against CDK2-cyclin A/E is under-appreciated. Biochemical assays showed that 

abemaciclib was inactive against other kinases such as AURKA/B, and PAK1 (Figure S3a) and the 

downregulation inferred from phosphoproteomic data most likely reflects an indirect effect: arrest of 

cells in G1 by CDK4/6 inhibition is expected to block normal phosphorylation of AURKA/B, and PAK1 

in G2/M phase. Thus, it was only by combining multiple in vitro and cell-based assays that a complete 

picture of kinase inhibitor activities was obtained (Figure 3f). 

 

Comparing CDK4/6 inhibitors in breast cancer cell lines 

To compare the biological activities of CDK4/6 inhibitors, we acquired dose-response curves in 

34 breast cancer cell lines spanning all clinical subtypes and computed GR values (Figure 4a and Table 
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S9) which distinguish between drug-induced cell cycle arrest and cell death while correcting for 

artifactual differences in drug sensitivity arising from variability in proliferation rates (Hafner et al., 

2016, 2017). Both palbociclib and abemaciclib elicited cytostatic responses with GR50 values in the 10-

100 nM range (Table S10). Potency was highly correlated between the drugs (Spearman’s ρ = 0.91, P = 

5.7×10-14) with abemaciclib ~5.5-fold more potent on average at inducing cytostasis (t-test P = 5.3×10-

7); this difference is consistent with a 3-fold difference between palbociclib and abemaciclib in in vitro 

IC50 values for CDK4/6 kinase activity (Figure 3e). Efficacy at 0.1 µM drug, as measured by GR value, 

varied between 0 (complete cytostasis) and 0.76 (weak growth inhibition) in pRb-proficient cell lines 

but was similar for palbociclib and abemaciclib, showing that at these concentrations the drugs induce 

similar phenotypic effects and only fractionally inhibit cell proliferation. In pRb-deficient cell lines, 

palbociclib was inactive at all doses and abemaciclib had little or no effect below 0.3 µM (yellow lines 

Figure 4a). The cytostatic response observed at lower abemaciclib doses and all doses of palbociclib is 

most likely a result of CDK4/6 inhibition. 

However, abemaciclib also elicited a second response at doses greater than 0.3 µM; this response 

was characterized by negative GR values and cell death (see Methods; Figure 4a). As a result, the 

complete dose-response behavior of abemaciclib was significantly better fitted in most cell lines by the 

product of two sigmoidal curves (Figure 4b, Figure S4, and Methods). The mid-point of the second 

response curve was offset to a similar degree as in vitro dose-response curves for CDK1/2 vs. CDK4/6 

inhibition (Table S8). This behavior is consistent with inhibition of two sets of targets: CDK4/6 at low 

dose – resulting in G1 arrest – and kinases such as CDK1/2 above 0.3 µM – resulting in cell death. At all 

doses tested in all cell lines, responses to palbociclib and ribociclib were purely cytostatic (GR > 0). As 

a result, abemaciclib was substantially more efficacious than palbociclib in inhibiting and killing pRb-

proficient cells of all subtypes, having a GRmax value on average 0.52 below that of palbociclib (t-test 

P=4.5×10-9; Table S10).  
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 A search of 30 cell cycle regulators for genes whose mRNA expression levels could 

discriminate between responsiveness to 3 µM palbociclib and abemaciclib in the 26 pRb-proficient cell 

lines yielded a high-performing multi-linear model involving only four genes (q2 = 0.85, P = 2.9×10-6 by 

leave-one-out cross validation; Figures 4c-d and S4). The genes were CCNE1 (cyclin E1), which has 

been implicated in palbociclib resistance (Sherr et al., 2016; Turner et al., 2019), CDKN1A (p21 – an 

inhibitor of CDK1/2/4/6), CDK9 (a target of abemaciclib and pan-CDK inhibitors), and CDKL5 (cyclin-

dependent kinase-like 5).  Our data showed CDKL5 to be strongly inhibited by abemaciclib (IC50 ~ 18 

nM in vitro) but not by palbociclib or ribociclib (IC50>3 µM or >10 µM respectively; Table S8). Thus, 

differences in the efficacy of CDK4/6 inhibitors on cell lines are related to the expression level of genes 

targeted uniquely by abemaciclib. 

 

Abemaciclib blocks cells in the G2 phase of the cell cycle  

Consistent with the known biology of CDK4/6 inhibition, abemaciclib, ribociclib, and 

palbociclib all suppressed pRb phosphorylation and arrested cells in G1 (Figure 5). The 3-fold 

difference in drug concentration needed to induce arrest matched measured differences in potency in 

biochemical assays (with abemaciclib the most potent and ribociclib the least; Figure 3e). A fraction of 

cells treated with abemaciclib also arrested in G2 rather than G1, particularly at drug concentrations of 

0.3 µM and above (Figure 5, Figure S5), a possible consequence of inhibition of CDK1 and CDK2, 

whose activities are required for progression through S-phase and mitosis. Treating pRb-deficient cells 

with ribociclib or palbociclib had no effect on cell cycle distribution whereas treatment with abemaciclib 

caused cells to accumulate in G2, consistent with an abemaciclib-induced cell cycle arrest independent 

of CDK4/6 (Figure 5, Figure S5). 

 

Assaying abemaciclib polypharmacology in xenograft tumors 
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When a drug inhibits multiple targets with different potencies the question arises whether both 

primary and secondary targets can be engaged at doses achievable in vivo.  When we compared G1-

arrest and pan-CDK signature scores and cellular phenotypes across a range of abemaciclib doses in 

multiple cell lines, we found that pan-CDK scores were significant only above 0.3 µM (P=2.1×10-4, 

ranksum test) and cytotoxicity was observed in pRb-deficient cells only at concentrations of 1 µM and 

above. This compares well with a maximum serum concentration in humans (Cmax) for abemaciclib of 

0.5 µM to 1 µM when active metabolites are included (Burke et al., 2016; Patnaik et al., 2016a). As a 

direct test of in vivo activity we generated MCF-7 xenografts in nude mice and exposed them to CDK4/6 

inhibitors at a range of doses. When tumors reached ~300 mm3, animals were randomly assigned to 

treatment groups and treated daily for 4 days to a vehicle-only control or to 150 mg/kg ribociclib, 150 

mg/kg palbociclib or 25-150 mg/kg abemaciclib, doses previously shown to be effective in xenografts 

(Fry et al., 2004; Gelbert et al., 2014; O’Brien et al., 2014). Animals were euthanized and tumors 

divided into two samples; one was fixed in formaldehyde and paraffin embedded and the other 

processed for mRNA-sequencing. FFPE specimens were imaged by immunofluorescence using 

vimentin and E-cadherin staining to distinguish tumor cells from mouse stroma.  

We found that all conditions tested resulted in a significant reduction in the fraction of p-pRb 

positive cells (Dunnett’s multiple comparison P < 0.0001) providing pharmacodynamic evidence that all 

tumors were exposed to drug at active concentrations (Figure 6a).  mRNA-seq data showed that all three 

drugs induced a G1-arrest signature (Figure 6b, Table S11), the strength of which was correlated with 

the degree of p-pRb inhibition (Spearman’s ρ = -0.80, P = 1.1×10-10). Furthermore, at doses above 100 

mg/kg, abemaciclib (but not ribociclib or palbociclib) also induced a strong pan-CDK signature (Figure 

6b). These data provide in vivo confirmation that abemaciclib can engage targets other than CDK4 and 

CDK6, recapitulating data on the drug’s off-target activity in cell culture. 

 

Cross-resistance between abemaciclib and palbociclib or ribociclib is incomplete 
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As previously described (Asghar et al., 2017; Herrera-Abreu et al., 2016), cells adapt to CDK4/6 

inhibition over time. Within 48 hours of exposure to palbociclib or ribociclib we found that cells re-

entered the cell cycle and acquired a p-pRb positive state at drug concentrations as high as 3.16 µM 

(Figure 5a). In contrast, pRb phosphorylation remained low in cells exposed to 1 µM or more 

abemaciclib (Figure 5a) with ongoing cell death and no evidence of adaptation five days after drug 

exposure (Figure 7a, Figure S6 and Table S12). In studies designed to assess long-term adaptation to 

drug, we observed that breast cancer cells grown for several months in the presence of 1 µM palbociclib 

had higher cyclin E (CCNE1) and lower pRb levels than parental cells (Figure 7b). These palbociclib-

adapted cells were cross-resistant to ribociclib (Figure 7c, Figure S7a-b and Table S13) but sensitive to 

abemaciclib at doses of 1 µM and above, consistent with the ability of abemaciclib to target kinases not 

inhibited by palbociclib. 

We observed similar differences in a cell line established from a patient with 

advanced/metastatic HR+/Her2- breast cancer whose disease had progressed following eight months on 

ribociclib/letrozole. The tumor lacked pRb by immunohistochemistry (Figure S7c) as did the derived 

cell line (MGH312; Figure S7d). The tumor cells were responsive to abemaciclib as judged by inhibition 

of cell proliferation and induction of cell death but were completely resistant to palbociclib or ribociclib 

even at high doses (Figure 7d and Table S14). The potential for abemaciclib to benefit this patient 

remains unknown because she was now deceased and was never treated with abemaciclib.   

 

DISCUSSION 

 It is not uncommon for multiple therapeutics targeting the same proteins to be approved in close 

succession. In the case of CDK4/6 inhibitors, palbociclib, ribociclib and abemaciclib have all proven 

highly effective in the treatment of HR+ metastatic breast cancer and are currently being tested in ~100 

ongoing clinical trials for activity in other malignancies. It has hitherto been assumed that the 

mechanisms of action of the three drugs are very similar, and distinct from those of older-generation 
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CDK inhibitors such as alvocidib: observed differences in the efficacy and toxicity of palbociclib, 

ribociclib and abemaciclib have generally been attributed to differences in dosing schedules or potency 

against CDK4 versus CDK6 (Sherr et al., 2016). However, our work presents six lines of evidence that 

alvocidib, abemaciclib, palbociclib and ribociclib actually span a spectrum of increasing selectivity for 

CDK4/6-cyclin complexes. In particular, abemaciclib has biochemical and physiological activities not 

manifest by ribociclib and only weakly by palbociclib.  

First, exposure of breast cancer cells of different subtypes to any of the three approved CDK4/6 

inhibitors induces transcriptional changes associated with G1 arrest but abemaciclib alone induces dose-

dependent transcriptional changes similar to those elicited by alvocidib reflective of pan-CDK 

inhibition. Second, exposing cells to abemaciclib results in more extensive changes in the 

phosphoproteome than exposure to palbociclib and kinase inference suggests that this is due in part to 

inhibition of CDK1 and CDK2. Third, kinome profiling using industry-standard KINOMEscan panels, 

multiplexed inhibitor bead mass spectrometry, and kinase activity assays confirms that abemaciclib has 

multiple targets in addition to CDK4/6. Fourth, abemaciclib causes arrest of cells in both the G1 and G2 

phases of the cell cycle and the drug is cytotoxic (at high concentrations) even in the absence of pRb; in 

contrast, cells exposed to palbociclib and ribociclib arrest only in G1 and elicit little or no cell death. 

The difference in efficacy between abemaciclib and other CDK4/6 inhibitors is greatest in cell lines with 

a specific transcriptional profile (high CCNE1, CDKN1A and CDKL5 and low CDK9 expression 

levels).  Fifth, in a mouse xenograft model, abemaciclib induces both CDK4/6-like G1 arrest and pan-

CDK transcriptional signatures, as observed in cultured cells. Sixth, whereas abemaciclib durably 

inhibits cell division, cultured cells adapt within 2-3 days of continuous exposure to palbociclib or 

ribociclib and resume proliferation. Preliminary evidence of the clinical significance of these findings is 

provided by an abemaciclib-sensitive, palbociclib- and ribociclib-resistant cell line from a deceased 

patient with HR+/Her2- breast cancer who had progressed on ribociclib/letrozole.  
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Evidence of substantial differences among CDK4/6 inhibitors is scattered throughout the 

literature but has not been consolidated or rigorously evaluated, consistent with a general lack of 

comparative biochemical data on many FDA-approved drugs. Large-scale kinase profiling studies using 

KINOMEscan or MIB/MS are one exception to this generalization (Cousins et al., 2017; Fabian et al., 

2005; Gelbert et al., 2014; Klaeger et al., 2017). However, our findings strongly argue for a multi-

faceted approach to comparative mechanism of action studies. Proteomic, transcriptional, biochemical, 

and phenotypic approaches measure different aspects of drug action and, in the current work, a 

combination of methods was needed to obtain an accurate and complete picture of target spectrum. For 

example, the false negative finding in KINOMEscan data that abemaciclib does not interact with CDK2 

may explain why biological differences among CDK4/6 inhibitors have not been widely appreciated. 

Similarly, whereas GSK3β was found to be an abemaciclib target of borderline significance by 

phosphoproteome profiling (perhaps as a result of proteome under-sampling (Riley and Coon, 2016)), it 

was clearly a target by kinase activity assays (Cousins et al., 2017).  Conversely, proteomic profiling 

assays suggesting that abemaciclib exposure results in downregulation of AURKA/B and PLK1 

activities is most likely an indirect consequence of cell cycle arrest. In agreement with Cousins et al. 

(Cousins et al., 2017), our results using multiple different assays provide little support for the assertion 

that ribociclib, palbociclib or abemaciclib are systematically more active against CDK4 than CDK6 

(Gelbert et al., 2014; Patnaik et al., 2016a, 2016b). Although, enzymatic assays show the IC50 for CDK4 

is about 2.5-fold greater than for CDK6 for all three drugs, this is unlikely to be therapeutically 

significant because both targets are strongly inhibited at doses used in patients. 

In the case of a polyselective drug such as abemaciclib the question arises whether activities 

observed at different drug concentrations are all biologically relevant. There is no question that CDK4 

and CDK6 are the highest affinity targets of abemaciclib and that abemaciclib is the most potent of the 

three approved drugs against these CDKs. Our data show abemaciclib to be 10- to 100-fold less potent 

against CDK2 and CDK1 than CDK4/6, but we detect the cellular consequences of CDK1/2 inhibition 
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in cell lines at concentrations as low as 0.3 µM, well within the Cmax range in humans, and also 

achievable in xenograft mouse models (Burke et al., 2016; Patnaik et al., 2016a; Raub et al., 2015). 

Abemaciclib also exhibits substantially reduced drug adaptation with respect to anti-proliferative effects, 

which is beneficial for an anti-cancer drug. 

The current generation of CDK4/6 inhibitors has benefited from a considerable investment in 

increasing target selectivity, mainly as a means of reducing toxicity relative to earlier generation drugs 

(Asghar et al., 2015; Peplow, 2017; Toogood et al., 2005). However, our findings suggest that 

abemaciclib is not equivalent to palbociclib or ribociclib. Its activities against kinases other than 

CDK4/6 may be beneficial for anti-cancer activity and targeting them jointly with CDK4/6 may be a 

means to achieve more durable responses than with CDK4/6 inhibition alone. Inhibition of CDK1/7/9 

may also contribute to cell killing (Kitada et al., 2000; Wittmann et al., 2003) and inhibition of mitotic 

kinases such as TTK may enhance tumor immunogenicity, a key contributor to drug response (Luen et 

al., 2016). Blocking CDK2/cyclin E should mitigate resistance resulting from amplification of cyclin E 

(a resistance mechanism in cell culture (Dean et al., 2010; Herrera-Abreu et al., 2016)) and also achieve 

a more complete therapeutic response by targeting mitotic cells with high CDK2 activity (Asghar et al., 

2017). Patients whose tumors exhibit high expression levels of cyclin E1 and are non-responsive to 

palbociclib (Turner et al., 2019) may represent another cohort who might benefit from abemaciclib. 

 

SIGNIFICANCE 

The integration of multiple cell-based and in vitro profiling methods has made it possible to 

directly compare the target spectra of three recently approved CDK4/6 inhibitors regarded as 

breakthroughs in the treatment of HR+ breast cancer.  The substantially wider spectrum of activities 

detected for abemaciclib relative to other CDK4/6 inhibitors provides a rationale for treating patients 

with abemaciclib following disease progression on palbociclib or ribociclib. Cells, including cells 

derived from a breast cancer patient treated with ribociclib plus letrozole, who acquired resistance to 
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these two drugs remain sensitive to abemaciclib at concentrations of 0.3 µM and above, overlapping 

human Cmax concentrations. The possibilities for use of abemaciclib in tumors that are pRb-deficient 

remain less certain, since drug activity is observed only at micromolar concentrations in pRb-deficient 

cell lines. A final possibility suggested by this work is combining CDK4/6 inhibitors with drugs that 

inhibit secondary targets of abemaciclib such as CDK2, a strategy Pfizer is pursuing in a single molecule 

(US patent 20180044344A1). In all of these cases, our work shows that polypharmacology can be 

exploited to achieve more durable responses than with “pure” CDK4/6 inhibitors such as ribociclib. 

More generally, our data suggest the value of systematic comparative target profiling of human 

therapeutics developed against the same targets but having different chemical structures. 
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FIGURE LEGENDS 

Figure 1: Transcriptional responses of breast cancer cell lines to CDK4/6 inhibitors. (a) Clustering 

of transcriptional responses for seven breast cancer cell lines treated for 6 or 24 hours with ribociclib, 

palbociclib, or abemaciclib at 0.3, 1, or 3 µM. Only genes for which statistically significant (FDR < 0.2) 

changes were observed in at least 3 conditions are shown. Down-regulated genes comprising signature 1 

and 2 are outlined in red and cyan, respectively, and the gray box denotes the cluster containing 

expression profiles with the highest signature 2 scores. (b-c) Enrichment scores for signature 1 (b) and 2 

(c) based on L1000 signatures identified by Enrichr (see Methods). (d) Score of the pan-CDK 

transcriptional signature per cell line following six hours of exposure to drug based on RNA-seq data 

from panel (a).  

 

Figure 2: G1-arrest and pan-CDK scores induced by CDK4/6 inhibitors. Score of the G1-arrest 

signature relative to the pan-CDK signature for seven cell lines treated with palbociclib, ribociclib, 

abemaciclib, or alvociclib at 0.1, 0.3, 1, or 3 µM; squares denote pRb-deficient lines. Distributions of 

scores for pRb-competent lines are shown at the margins for each signature. 

 

Figure 3: Inhibition of CDK/cyclin activity by CDK4/6 inhibitors. (a) Clustering of changes in 

phosphopeptide levels for MCF7 cells treated for 1 hour with either abemaciclib or palbociclib at 0.3 or 

3 µM. (b) Normalized enrichment scores for kinases based on the phosphoproteomic data in panel (a). 

Only kinases inferred as significantly down-regulated (FDR < 0.2) in at least two conditions are shown. 

(c) Fraction of unbound kinases at 0.1 and 1 µM of each CDK4/6 inhibitor as measured by the 

KINOMEscan assay for the top 100 bound kinases plus kinases inferred in (b) (see Figure S2). 

CAMKIIα, CDK6, PKCγ, and PKCζ were not present in the panel. (d) Degree of inhibition (log2 fold 

change) of each CDK as detected by MIB/MS after treating a mixed cell lysate with a CDK4/6 inhibitor 

at the doses indicated. (e) IC50 values for CDK/cyclin complexes for CDK4/6 inhibitors and alvocidib as 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2019. ; https://doi.org/10.1101/211680doi: bioRxiv preprint 

https://doi.org/10.1101/211680
http://creativecommons.org/licenses/by-nd/4.0/


measured using purified kinases in vitro (see Figure S3). (f) Summary of kinases that were assayed by 

phosphoproteomics, KINOMEscan, MIB/MS, and SelectScreen. Each slice of the pie represents 

inhibition by abemaciclib, ribociclib, palbociclib, or alvocidib. For each assay, slices are colored only if 

the corresponding drug substantially inhibited the kinases (defined as FDR <= 0.2 for 

phosphoproteomics inference, 90% inhibition at 1 µM drug by KINOMEscan, log2 fold-change < -0.45 

for MIB/MS, or IC50 < 0.5 µM by in vitro kinase assays). An ‘x’ inside a slice denotes that that drug was 

not profiled in that assay. A large ‘X’ in place of a pie indicates that that kinase was not profiled in that 

assay. Bound complexes such as CDK4/cyclin D1or CDK4/cyclin D3 cannot be disambiguated in kinase 

inference and MIB/MS assays and are therefore depicted as a single entity within a box. 

 

Figure 4: Comparison of the phenotypic response of breast cancer cell lines to CDK4/6 inhibitors. 

(a) GR curves for cell growth (top) and increase of dead cells relative to a vehicle-only control (bottom) 

for 26 pRb-proficient breast cancer cell lines (blue) and 8 pRb-deficient cell lines (yellow) treated with 

palbociclib (left) or abemaciclib (right) for 72 hours. The vertical box illustrates the maximum serum 

concentration for abemaciclib (Cmax). (b) Dose-response curve for palbociclib (red) and abemaciclib 

(blue) in MCF7 cells. Dotted lines depict two fitted sigmoidal curves whose product optimally 

recapitulates the blue curve with extracted values for GEC50 (50%-maximal effective concentration) 

shown below and for GRmax (maximal efficacy) shown to the right (See Figure S4). (c-d) Performance of 

a pharmacogenomic predictor of palbociclib vs. abemaciclib drug response constructed from data on 

mRNA levels for 30 cell cycle regulators; (c) shows the observed versus predicted (leave-one-out cross 

validation) difference in GR value at 3 µM between palbociclib and abemaciclib based on a linear model 

containing the expression of four genes, whose coefficients are shown in (d); error bars represent the 

standard error of the model.  
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Figure 5: Comparison of the effects of ribociclib, palbociclib, and abemaciclib on the cell cycle.  

Distribution of DNA content in MCF7 cells exposed to one of three CDK4/6 inhibitors over a range of 

concentrations for 24 (left) or 48 (middle) hours, and in PDX-1258 cells, which are pRb-deficient, 

exposed to the same conditions for 48 hours (right). In each curve the phospho-pRb positive cell 

population is depicted in a darker shade. One representative replicate out of three is shown.  

 

Figure 6: Transcriptional response of MCF-7 xenografted cells to CDK4/6 inhibitors 

(a) Fraction of phospho-pRb positive tumor cells in MCF-7 xenografts after four days of CDK4/6 

inhibitor treatment. (b) Score of the pan-CDK transcriptional signature as compared to the G1-arrest 

signature across MCF-7 tumors following four days of exposure to drug; same analysis as in Figure 2.  

 

Figure 7: Acute and adaptive responses of breast cancer cell lines and tumors to CDK4/6 

inhibitors. (a) Time-dependent GR values for MCF7, Hs 578T, and PDX12-58 cells treated with 3.16 

μM ribociclib, palbociclib, or abemaciclib for up to five days. One representative replicate out of four is 

shown. (b) Western Blots of cyclin E and total pRb levels in Hs 578T and MCF7 parental cells and in 

cells adapted to grow in 1 µM palbociclib. (c) GR values for Hs 578T and MCF7 parental cells and cells 

adapted to grow in 1 µM palbociclib following exposure to 3.16 µM ribociclib, palbociclib, or 

abemaciclib for 72 h (see Figure S7); * denotes P < 0.05 and ** P < 0.01 as measured using a t-test with 

six replicates in each group. Error bars denote SEM of six replicates. (d) GR values (left) and increase in 

dead cells relative to a vehicle-only control (right) for the patient-derived line MGH312 in response to 

96-hour exposure to ribociclib, palbociclib, or abemaciclib. Error bars show the SEM of three replicates.  
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SUPPLEMENTAL FIGURE LEGENDS 

Figure S1, Related to Figure 1: G1-arrest transcriptional signature score. Score of the G1-arrest 

transcriptional signature per cell line following 6 hours of exposure to drug based on the RNA-seq data 

from Figure 1a.  

Figure S2, Related to Figure 3: KINOMEscan results for the three CDK4/6 inhibitors. (a) Kinases 

with less than 10% activity remaining for drug concentrations of 0.1 μM and 1.0 μM of each of the three 

CDK4/6 inhibitors (see Table S6). Images generated using Coral (Metz et al., 2018). (b) The differential 

binding between 0.1 μM and 1.0 μM of the 100 most bound kinases, plus kinases inferred to be inhibited 

by phosphoproteomics, for all drugs. CAMKIIα, CDK6, PKCγ, and PKCζ were not present in the panel. 

Figure S3, Related to Figure 3: In vitro activity of CDK4/6 inhibitors and alvocidib. (a) IC50 values 

for CDK4/6 inhibitors and alvocidib for kinases other than CDKs inferred to be inhibited from 

phosphoproteomics data by either palbociclib or abemaciclib (see Figure 3b). (b) IC50  values for 

CDK4/6 inhibitors and alvocidib for kinases inhibited by 10 μM abemaciclib in the MIB assay (log2 fold 

change > 2, only kinases non-overlapping with those shown in Figures 3e and S3a are shown). 

Figure S4, Related to Figure 4: Difference in efficacy between palbociclib and abemaciclib. (a) 

Comparison of fit parameters defined in Figure 4b for the dose response curves for palbociclib and 

abemaciclib shown in Figure 4a: (top) Mid-point concentrations for palbociclib (left) and the 2nd phase 

of abemaciclib (right) versus the mid-point concentrations for the 1st phase of abemaciclib. (bottom) 

Maximal efficacy for 1st phase of abemaciclib (left) and abemaciclib (right) versus the maximal efficacy 

of palbociclib. (b) Measured difference in GR value between palbociclib and abemaciclib at 3 µM 

plotted against the variables of the predictive model defined in Figure 4c-d. 

Figure S5, Related to Figure 5: Effect of CDK4/6 inhibitors on the distribution of cells through the 

cell cycle.  Cell cycle distribution of MCF7 and PDX1258 breast cancer cell lines under the same 
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conditions as shown in Figure 5. MCF7 cells exposed to one of three CDK4/6 inhibitors over a range of 

concentrations for 24 (left) or 48 (middle) hours, and in PDX-1258 cells, which are pRb-deficient in the 

same conditions for 48 hours (right). Cells were labeled with EdU to quantitate those in S-phase.  

Figure S6, Related to Figure 7: Time dependent increase in the fraction of dead cells treated with 

CDK4/6 inhibitors. Increased percent of dead cells treated with 3.16 μM ribociclib, palbociclib, or 

abemaciclib relative to control conditions over time (see Figure 7a).  

Figure S7, Related to Figure 7: Characterization of CDK4/6-inhibitor resistant cell lines. (a) GR 

values for cell lines adapted to grow in 1 μM palbociclib and their parental lines in response to 72-hour 

treatments with ribociclib, palbociclib, or abemaciclib. Error bars show the SEM of six replicates. (b) 

Increased percent of dead cells over vehicle-only control conditions for cell lines adapted to grow in 1 

μM palbociclib and their parental lines in response to 72-hour treatments with ribociclib, palbociclib, or 

abemaciclib. Error bars show the SEM of six replicates. (c) pRb immunohistochemistry staining of the 

patient biopsy at the site from which the cell line MGH312 was derived. (d) Western Blot of total pRb 

for MCF7, BT-549, and MGH312 cells. 
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Figure S1. Related to Figure 1.
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Figure S3. Related to Figure 3.
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Figure S4. Related to Figure 4.
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Figure S5. Related to Figure 5.
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Figure S6. Related to Figure 7.
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Figure S7. Related to Figure 7.
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