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ABSTRACT

Over the last decade, artificial neural networks (ANNs), have undergone a revolution, catalyzed
in large part by better tools for supervised learning. However, training such networks requires
enormous data sets of labeled examples, whereas young animals (including humans) typically learn
with few or no labeled examples. This stark contrast with biological learning has led many in the
ANN community posit that instead of supervised paradigms, animals must rely instead primarily on
unsupervised learning, leading the search for better unsupervised algorithms. Here we argue that
much of an animal’s behavioral repertoire is not the result of clever learning algorithms—supervised
or unsupervised—but arises instead from behavior programs already present at birth. These programs
arise through evolution, are encoded in the genome, and emerge as a consequence of wiring up the
brain. Specifically, animals are born with highly structured brain connectivity, which enables them
learn very rapidly. Recognizing the importance of the highly structured connectivity suggests a path
toward building ANNs capable of rapid learning.

Introduction

Not long after the invention of computers in the 1940s, expectations were high. Many believed that computers would
soon achieve or surpass human-level intelligence. Herbert Simon, a pioneer of artificial intelligence (AI), famously
predicted in 1965 that “machines will be capable, within twenty years, of doing any work a man can do”—to achieve
general artificial intelligence. Of course, these predictions turned out to be wildly off the mark.

In the tech world today, optimism is high again. Much of this renewed optimism stems from the impressive recent
advances in artificial neural networks (ANNs) and machine learning, particularly “deep learning” ((LeCun et al., 2015)).
Applications of these techniques—to machine vision, speech recognition, autonomous vehicles, machine translation
and many other domains—are coming so quickly that many predict we are nearing the “technological singularity,” the
moment at which artificial superintelligence triggers runaway growth and transform human civilization (Kurzweil 2005).
In this scenario, as computers increase in power, it will become possible to build a machine that is more intelligent than
the builders. This superintelligent machine will build an even more intelligent machine, and eventually this recursive
process will accelerate until intelligence hits the limits imposed by physics or computer science.

But in spite of this progress, ANNs remain far from approaching human intelligence. ANNs can crush human opponents
in games such as chess and Go, but along most dimensions—language, reasoning, common sense—they cannot
approach the cognitive capabilities of a four-year old. Perhaps more striking is that ANNs remain even further from
approaching the abilities of simple animals. Many of the most basic behaviors—behaviors that seem effortless to even
simple animals—turn out to be deceptively challenging and out of reach for AI. In the words of one of the pioneers of
AI, Hans Moravec (Moravec, 1988):

“Encoded in the large, highly evolved sensory and motor portions of the human brain is a billion
years of experience about the nature of the world and how to survive in it. The deliberate process
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we call reasoning is, I believe, the thinnest veneer of human thought, effective only because it is
supported by this much older and much more powerful, though usually unconscious, sensorimotor
knowledge. We are all prodigious Olympians in perceptual and motor areas, so good that we make
the difficult look easy. Abstract thought, though, is a new trick, perhaps less than 100 thousand years
old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do
it.”

We cannot build a machine capable of building a nest, or stalking prey, or loading a dishwasher. In many ways, AI is far
from achieving the intelligence of a dog or a mouse, or even of a spider, and it does not appear that merely scaling up
current approaches will achieve these goals.

The good news is that, if we do ever manage to achieve even mouse-level intelligence, human intelligence may be only
a small step away. Our vertebrate ancestors, who emerged about 500 million years ago, may have had roughly the
intellectual capacity of a shark. A major leap in the evolution of our intelligence was the emergence of the neocortex,
the basic organization of which was already established when the first placental mammals arose about 100 million
years ago (Kaas, 2011); much of human intelligence seems to derive from an elaboration of the neocortex. Modern
humans (Homo sapiens) evolved only a few hundred thousand years ago—a blink in evolutionary time—suggesting
that those qualities such as language and reason which we think of as uniquely human may actually be relatively easy
to achieve, provided that the neural foundation is solid. Although there are genes and perhaps cell types unique to
humans—just as there are for any species—there is no evidence that the human brain makes use of any fundamentally
new neurobiological principles not already present in a mouse (or any other mammal), so the gap between mouse and
human intelligence might be much smaller than that between than that between current AI and the mouse. This suggests
that even if our eventual goal is to match (or even exceed) human intelligence, a reasonable proximal goal for AI would
be to match the intelligence of a mouse.

As the name implies, ANNs were invented in an attempt to build artificial systems based on computational principles
used by the nervous system (Hassabis et al., 2017). In what follows, we identify additional principles from neuroscience
that might accelerate the goal of achieving artificial mouse, and eventually human, intelligence. We argue that much
in contrast to ANNs, animals rely heavily on a combination of both learned and innate mechanisms. These innate
processes arise through evolution, are encoded in the genome, and take the form of rules for wiring up the brain (Seung,
2012). We discuss the implications of these observations for generating next-generation machine algorithms.

Learning by ANNs

Since the earliest days of AI, there has been a competition between two approaches: symbolic AI and ANNs. In
the symbolic “good old fashion AI” approach (Haugeland, 1989) championed by Marvin Minsky and others, it is
the responsibility of the programmer to explicitly program the algorithm by which the system operates. In the ANN
approach, by contrast, the system “learns” from data. Symbolic AI can be seen as the psychologist’s approach—it draws
inspiration from the human cognitive processing, without attempting to crack open the black box—whereas ANNs,
which use neuron-like elements, take their inspiration from neuroscience. Symbolic AI was the dominant approach
from the 1960s to 1980s, but since then it has been eclipsed by ANN approaches inspired by neuroscience.

Modern ANNs are very similar to their ancestors three decades ago (Rumelhart, 1986). Much of the progress can be
attributed to increases in raw computer power: Simply because of Moore’s law, computers today are several orders of
magnitude faster than they were a generation ago, and the application of graphics processors (GPUs) to ANNs has sped
them up even more. The availability of large data sets is a second factor: Collecting the massive labeled image sets used
for training would have been very challenging before the era of Google. Finally, a third reason that modern ANNs are
more useful than their predecessors is that they require even less human intervention. Modern ANNs—specifically
“deep networks” (LeCun et al., 2015)—learn the appropriate low-level representations (such as visual features) from
data, rather than relying on hand-wiring to explicitly program them in.

In ANN research, the term “learning” has a technical usage that is different from its usage in neuroscience and
psychology. In ANNs, learning refers to the process of extracting structure—statistical regularities—from input data,
and encoding that structure into the parameters of the network. These network parameters contain all the information
needed to specify the network. For example, a fully connected network with N neurons might have one parameter
(e.g. a threshold) associated with each neuron, and an additional N2 parameters specifying the strengths of synaptic
connections, for a total of N +N2 free parameters. Of course, as the number of neurons N becomes large, the total
parameter count in a fully connected ANN is dominated by the N2 synaptic parameters.

There are three classic paradigms for extracting structure from data, and encoding that structure into network parameters
(i.e. weights and thresholds). In supervised learning, the data consist of pairs—an input item (e.g. an image) and its
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Figure 1: The "bias-variance tradeoff" in machine learning can be seen as a formalization of Occam’s Razor. (A)
As an example of the bias-variance tradeoff and the risks of overfitting, consider the following puzzle: Find the next
point in the sequence {2, 4, 6, 8, ?}. Although the natural answer may seem to be 10, a fitting function consisting of
polynomials of degree 4—a function with 5 free parameters—might very well predict that the answer is 42. (B) The
reason is that in general, it takes two points to fit a line, and k + 1 points to fit the coefficients ci of a polynomial
f(x) = c0 + c1x+ . . .+ ckx

k of degree k. Since we only have data for 4 points, the next entry could be literally any
number (e.g. red curve). To get the expected answer, 10, we might restrict the fitting functions to something simpler,
like lines, by discouraging the inclusion of higher order terms in the polynomial (blue line).

label (e.g. the word “giraffe”)—and the goal is to find network parameters that generate the correct label for novel
pairs. In unsupervised learning, the data have no labels; the goal is to discover statistical regularities in the data without
explicit guidance about what kind of regularities to look for. For example, one could imagine that with enough examples
of giraffes and elephants, one might eventually infer the existence of two classes of animals, without the need to have
them explicitly labeled. Finally, in reinforcement learning, data are used to drive actions, and the success of those
actions is evaluated based on a “reward” signal.

Much of the progress in ANNs has been in developing better tools for supervised learning. A central consideration in
supervised learning is “generalization.” As the number of parameters increases, so too does that “expressive power”
of the network—the complexity of the input-output mappings that the network can handle. A network with enough
free parameters can fit any function (Cybenko, 1989; Hornik, 1991), but the amount of data required to train a network
without overfitting generally also scales with the number of parameters. If a network has too many free parameters, the
network risks “overfitting” data, i.e. it will generate the correct responses on the training set of labeled examples, but
will fail to generalize to novel examples. In ANN research, this tension between the flexibility of a network (which
scales with the number of neurons and connections) and the amount of data needed to train the network (more neurons
and connections generally require more data) is called the "bias-variance tradeoff" (Figure 1). A network with more
flexibility is more powerful, but without sufficient training data the predictions that network makes on novel test
examples might be wildly incorrect—far worse than the predictions of a simpler, less powerful network. To paraphrase
“Spiderman”: With great power comes great responsibility (to obtain enough labeled training data) (Lee, 1962). The
bias-variance tradeoff explains why large networks require large amounts of labeled training data.

Learning by animals

The term “learning” in neuroscience (and in psychology) refers to a long-lasting change in behavior that is the result
of experience. Learning in this context encompasses animal paradigms such as classical and operant conditioning, as
well as an array of other paradigms such as learning by observation or by instruction. Although there is some overlap
between the neuroscience and ANN usage of learning, in some cases the terms differ enough to lead to confusion.

Perhaps the greatest divergence in usage is the application of the term “supervised learning.” Supervised learning is
central to the many successful recent applications of ANNs to real-world problems of interest. For example, supervised
learning is the paradigm that allows ANNs to categorize images accurately. However, to ensure generalization, training
such networks requires enormous data sets; one visual query system was trained on more than 107 “labeled” examples
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Figure 2: Evolutionary tradeoff between innate and learning strategies. (A) Two species differ in their reliance on
learning, and achieve the same level of fitness. All other things being equal, the species relying on a strongly innate
strategy will outcompete the species employing a mixed strategy. (B) A species using the mixed strategy may thrive if
that strategy achieves a higher asymptotic level of performance.

(question-answer pairs) (Antol et al., 2015). Although the final result of this training is an ANN with a capability that,
superficially at least, mimics the human ability to categorize images, the process by which the artificial system learns
bears little resemblance to that by which a newborn learns. There are only 107 seconds in a year, so a child would need
to ask one question every second of her life to receive a comparable volume of labeled data; and of course, most images
encountered by a child are not labeled. There is, thus, a mismatch between the available pool of labeled data and how
quickly children learn. Clearly, children do not rely mainly on supervised algorithms to learn to categorize objects.

Considerations such as these have motivated the search in the machine learning community for more powerful learning
algorithms, for the “secret sauce” posited to enable children to learn how to navigate the world within a few years.
Many in the ANN community posit that instead of supervised paradigms, we rely instead primarily on unsupervised
paradigms to construct representations of the world. Because unsupervised algorithms do not require labeled data,
they could potentially exploit the tremendous amount of raw (unlabeled) sensory data we receive. Indeed, there are
several unsupervised algorithms which generate representations reminiscent of those found in the visual system (Bell
and Sejnowski, 1997; Olshausen and Field, 1996; van Hateren and Ruderman, 1998). Although at present these
unsupervised algorithms are not able to generate visual representations as efficiently as supervised algorithms, there is
no known theoretical principle or bound that precludes the existence of such an algorithm (although the No-Free-Lunch
theorem for learning algorithms (Wolpert, 1996) states that no completely general-purpose learning algorithm can exist,
in the sense that for every learning model there is a data distribution on which it will fare poorly). Every learning model
must contain implicit or explicit restrictions on the class of functions that it can learn. Thus, while the number of labeled
images a child encounters during her first 107 seconds of life might be small, the total sensory input received during
that time is quite large; perhaps Nature has evolved a powerful unsupervised algorithm to exploit this large pool of data.
Discovering such an unsupervised algorithm—if it exists—would lay the foundation for a next generation of ANNs.

Learned and innate behavior in animals

A central question, then, is how animals function so well so soon after birth, without the benefit of massive supervised
training data sets. It is conceivable that unsupervised learning, exploiting algorithms more powerful than any yet
discovered, may play a role establishing sensory representations and driving behavior. But even such a hypothetical
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unsupervised learning algorithm is unlikely to be the whole story. Indeed, the challenge faced by this hypothetical
algorithm is even greater than it appears. Humans are an outlier: We spend more time learning than perhaps any other
animal, in the sense that we have an extended period of immaturity. Many animals function effectively after 106, 105,
or even fewer seconds of life: A squirrel can jump from tree to tree within months of birth, a colt can walk within hours,
and spiders are born ready to hunt. Examples like these suggest that the challenge may exceed the capacities of even the
cleverest unsupervised algorithms.

So if unsupervised mechanisms alone cannot explain how animals function so effectively at (or soon after) birth, what
is the alternative? The answer is that much of our sensory representations and behavior are largely innate. For example,
many olfactory stimuli are innately attractive or appetitive (blood for a shark (Yopak et al., 2015) or aversive (fox urine
for a rat (Apfelbach et al., 2005)). Responses to visual stimuli can also be innate. For example, mice respond defensively
to looming stimuli, which may allow for the rapid detection and avoidance of aerial predators (Yilmaz and Meister,
2013). But the role of innate mechanisms goes beyond simply establishing responses to sensory representations. Indeed,
most of the behavioral repertoire of insects and other short-lived animals is innate. There are also many examples of
complex innate behaviors in vertebrates, for example in courtship rituals (Tinbergen, 1951). A striking example of
a complex innate behavior in mammals is burrowing: Closely related species of deer mice differ dramatically in the
burrows they build with respect to the length and complexity of the tunnels (Weber and Hoekstra, 2009; Metz et al.,
2017). These innate tendencies are independent of parenting: Mice of one species reared by foster mothers of the other
species build burrows like those of their biological parents. Thus, it appears that a large component of an animal’s
behavioral repertoire is not the result of clever learning algorithms—supervised or unsupervised—but rather of behavior
programs already present at birth.

From an evolutionary point of view, it is clear why innate behaviors are advantageous. The survival of an animal
requires that it solve the so-called “four Fs”—feeding, fighting, fleeing, and mating—repeatedly, with perhaps only
minor tweaks. Each individual is born, and has a very limited time—from a few days to a few years—to figure out
how to solve these four problems. If it succeeds, it passes along part of its solution (i.e. half its genome) to the next
generation. Consider a species X that achieves at 98% of its mature performance at birth, and its competitor Y that
functions only at 50% at birth, requiring a month of learning to achieve mature performance. (Performance here is taken
as some measure of fitness, i.e. ability of an individual to survive and propagate). All other things being equal (e.g.,
assuming that mature performance level is the same for the two species), species X will outcompete species Y, because
of shorter generation times and because a larger fraction of individuals survive the first month to reproduce (Fig. 2A).

In general, however, all other things may not be equal. The mature performance achievable via purely innate mechanisms
might not be the same as that achievable with additional learning (Fig. 2A). If an environment is changing rapidly—e.g.
on the timescale of a single individual—innate behavioral strategies might not provide a path to as high a level of
mature performance as a mixed strategy that relies in part on learning. For example, a fruit-eating animal might evolve
an innate tendency to look for trees; but the locations of the fruit groves in its specific environment must be learned
by each individual. There is, thus, pressure to evolve an appropriate tradeoff between innate and learned behavioral
strategies, reminiscent of the bias-variance tradeoff in supervised learning.

Innate and learned behaviors are synergistic

The line between innate and learned behaviors is, of course, not sharp. Innate and learned behaviors and representations
interact, often synergistically. For example, rodents and other animals form a representation of space—a “cognitive
map”—in the hippocampus. This representation consists of place cells, which become active when the animal enters a
particular place in its environment known as a “place field.” A given place cell typically has only one (or a few) place
fields in a particular environment. The propensity to form place fields is innate: A map of space emerges when young
rat pups explore an open environment outside the nest for the very first time (Langston et al., 2010). However, the
content of place fields is learned; indeed, it is highly labile, since new place fields form whenever the animal enters
a new environment. Thus, the scaffolding for the cognitive map is innate, but the specific maps constructed on this
scaffolding are learned.

This form of synergy between innateness and learning is common. For example, human infants can discriminate faces
soon after birth, and monkeys raised with no exposure to faces show a preference for faces upon first exposure, reflecting
the contribution of innate mechanisms to face salience and perception (McKone et al., 2009). In human and non-human
primates there exists a specific cortical area, the FFA (fusiform face area), which is selectively engaged in the perception
of faces; patients with focal loss of the FFA suffer a permanent deficit in face processing (Kanwisher and Yovel, 2006).
However, the specific faces recognized by each individual are learned during the course of that individual’s lifetime.
Thus, as with place cells in the hippocampus, the innate circuitry for processing faces may provide the scaffolding, but
the specific faces that populate this scaffolding are learned. Similar synergy may accelerate the acquisition of language
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by children: The innate circuitry in areas like Wernicke’s and Broca’s may provide the scaffolding, enabling the specific
syntax and vocabulary of any specific language to be learned rapidly (Pinker, 1994; Marcus, 2004). This synergy
between innate and learned behavior could arise from evolutionary pressure of the sort depicted in Figure 2B.

Genomes specify rules for brain wiring

We have argued that the main reason that animals function so well so soon after birth is that they rely heavily on innate
mechanisms. Innate mechanisms, rather than heretofore undiscovered unsupervised learning algorithms, provide the
base for Nature’s secret sauce. These innate mechanisms are encoded in the genome. Specifically, the genome encodes
blueprints for wiring up their nervous system, where by wiring we refer to both the specification of which neurons
are connected, as well as to the strengths of those connections. These blueprints have been selected by evolution
over hundreds of millions of years, operating on countless quadrillions of individuals. The circuits specified by these
blueprints provide the scaffolding for innate behaviors, as well as for any learning that occurs during an animal’s
lifetime.

If the secret sauce is in our genomes, then we must ask what exactly our genomes specify about wiring. In some
simple organisms, genomes specify every connection between every neuron, to the minutest detail. The simple worm
c. elegans, for example, has 302 neurons and about 7000 synapses; in each individual of an inbred strain, the wiring
pattern is exactly the same (Chen et al., 2006). So, at one extreme, the genome can encode a lookup table, which is then
transformed by developmental processes into a circuit with precise and stereotyped connections.

But in larger brains, such as those of mammals, synaptic connections cannot be specified so precisely; the genome
simply does not have sufficient capacity to specify every connection explicitly. The human genome has about 3× 109

nucleotides, so it can encode no more than about 1 GB of information—an hour or so of streaming video (Wei et al.,
2013). But the human brain has about 1011 neurons, and more than 103 synapses per neuron. Since specifying a
connection target requires about log2 10

11 = 35 bits/synapse, it would take about 3.5 × 1015 bits to specify all 1014
connections. (This may represent an underestimate because it considers only the presence or absence of a connection; a
few extra bits/synapse would be required to specify graded synaptic strengths. But because of synaptic noise and for
other reasons, synaptic strength may not be specified very precisely. So, in large and sparsely connected brains, most of
the information is probably needed to specify the locations the nonzero elements of the connection matrix rather than
their precise value.). Thus, even if every nucleotide of the human genome were devoted to efficiently specifying brain
connections, the information capacity would still be at least six orders of magnitude too small.

These fundamental considerations explain why in most brains, the genome cannot specify the explicit wiring diagram,
but must instead specify a set of rules for wiring up the brain during development. Even a short set of rules can readily
specify the wiring of a very large number of neurons; in the limit, a nervous system wired up like a grid would require
only the single rule that each neuron connect to its 4 nearest neighbors (although such a nervous system would probably
not be very interesting). Another simple rule, but which yields a much more interesting result, is: Given the rules of the
game, find the network that plays Go as well as possible (Silver et al., 2018). In practice, the circuits found in animal
brains often seem to rely on repeating modules. There has long been speculation that the neocortex consists of many
copies of a basic “canonical” microcircuit (Douglas et al., 1989; Harris and Shepherd, 2015), which are wired together
to form the entire cortex.

Supervised learning or supervised evolution?

As noted above, the term “learning” is used differently in ANNs and neuroscience. At the most abstract level, learning
can be defined as the process of encoding statistical regularities from the outside world into the parameters (mostly
connection weights) of the network. But in the context of animal learning, the source of the input data for learning
is limited only to the animal’s “experience,” i.e. to those events that occur during the animal’s lifetime. Wiring rules
encoded in the genome that do not depend on experience, such as those used to wire up the retina, are not usually termed
"learning." Because the terms “lifetime” and “experience” are not well defined when applied to an ANN, reconciling
the two definitions of learning in ANNs vs. neuroscience poses a challenge.

If, as we have argued above, much of an animal’s behavior is innate, then an animal’s life experiences represent only a
small fraction of the data that contribute to its fitness; another potentially much larger pool of data contributes to its
innate behaviors and representations. These innate behaviors and representations arise through evolution by natural
selection. Thus evolution, like learning, can also be viewed as a mechanism for extracting statistical regularities, albeit
on a much longer time scale than learning. Evolution can be thought of as a kind of reinforcement algorithm, operating
on the timescale of generations, where the reinforcement signal consists of the number of progeny an individual
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generates. ANNs are engaged in an optimization process that must mimic both what is learned during evolution and the
process of learning within a lifetime, whereas for animals learning only refers to within lifetime changes.

In this view, supervised learning in ANNs should not be viewed as the analog of learning in animals. Instead, since
most of the data that contribute an animal’s fitness are encoded by evolution into the genome, it would perhaps be just
as accurate (or inaccurate) to call rename it “supervised evolution.” Such a renaming would emphasize that "supervised
learning" in ANNs is really recapitulating the extraction of statistical regularities that occurs in animals by both evolution
and learning. In animals, there are two nested optimization processes: an outer “evolution” loop acting on a generational
timescale, and an inner “learning” loop, which acts on the lifetime of a single. Supervised (artificial) evolution may
be much faster than natural evolution, which succeeds only because it can benefit from the enormous amount of data
represented by the life experiences of quadrillions of individuals over hundreds of millions of years.

Although there are parallels between learning and evolution, there are also important differences. Notably, whereas
learning can act directly on synaptic weights through Hebbian and other mechanisms, evolution acts on brain wiring
only indirectly, through the genome. The genome doesn’t encode representations or behaviors directly; it encodes
wiring rules and connection motifs. The limited capacity of the mammalian genome—orders of magnitude smaller than
would be needed to specify all connections explicitly—may act as a regularizer (Poggio et al., 1985) or an information
bottleneck (Tishby et al., 2000), shifting the balance from variance to bias. In this regard, it is interesting to note that
the size of the genome itself is not a fixed constraint, but is itself highly variable across species. The size of the human
genome is about average for mammals, but dwarfed in size by that of many fish and amphibians; the lungfish of the
marbled genome is more than 40 times larger than that the humans (Leitch, 2007). The fact that the human genome
could potentially have been much larger suggests that the regularizing effect imposed by the limited capacity of the
genome might represent a feature rather than a bug.

Implications for ANNs

We have argued that animals are able to function well so soon after birth because they are born with highly structured
brain connectivity. This connectivity provides a scaffolding upon which rapid learning can occur. Innate mechanisms
thus work synergistically with learning. We suggest that analogous approaches might inspire new approaches to
accelerate progress in ANNs.

The first lesson from neuroscience is that much of animal behavior is innate, and does not arise from learning. Animal
brains are not the blank slates, equipped with a general purpose learning algorithm ready to learn anything, as envisioned
by some AI researchers; there is strong selection pressure for animals to restrict their learning to just what is needed for
their survival (Fig. 2). The idea that animals are predisposed to learn certain things rapidly is related to the idea of
“meta-learning” in AI research (Andrychowicz et al., 2016; Finn et al., 2017; Bellec et al., 2018), and related ideas in
cognitive science (Tenenbaum et al., 2011). In this formulation, there is an outer loop (e.g. evolution) which optimizes
learning mechanisms to have inductive biases that allow us to learn very specific things very quickly.

The importance of innate mechanisms suggests that an ANN solving a new problem should attempt as much as possible
to build on the solutions to previous related problems. Indeed, this idea is related to an active area of research in ANNs,
“transfer learning,” in which connections pre-trained in the solution to one task are transferred to accelerate learning
on a related task (Pan and Yang, 2010; Vanschoren, 2018). For example, a network trained to classify objects such
as elephants and giraffes might be used as a starting point for a network that distinguishes trees or cars. However,
transfer learning differs from the innate mechanisms used in brains in an important way. Whereas in transfer learning
the ANN’s entire connection matrix (or a significant fraction of it) is typically used as a starting point, in animal brains
the amount of information “transferred” from generation to generation is smaller, because it must pass through the
bottleneck of the genome. Passing the information through the genomic bottleneck may select for wiring rules that are
more generic. For example, the wiring of the visual cortex is quite similar to that of the auditory cortex (although each
area has idiosyncrasies (Oviedo et al., 2010). This suggests that the hypothesized canonical cortical circuit provides,
with perhaps only minor variations, a foundation for the wide variety of tasks that mammals perform. Neuroscience
suggests that there may exist more powerful mechanisms—a kind of generalization of transfer learning—which operate
not only within a single sensory modality like vision, but across sensory modalities and even beyond.

A second lesson from neuroscience follows from the fact that the genome doesn’t encode representations or behaviors
directly or optimization principles directly. The genome encodes wiring rules and patterns, which then must instantiate
behaviors and representations. It is these wiring rules that are the target of evolution. This suggests wiring topology and
network architecture as a target for optimization in artificial systems. Classical ANNs largely ignored the details of
network architecture, guided perhaps by theoretical results on the universality of fully connected three-layer networks
(Cybenko, 1989; Hornik, 1991). But of course, one of the major advances in the modern era of ANNs has been
convolutional neural networks (CNNs), which use highly constrained wiring to exploit the fact that the visual world
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is translation invariant (LeCun et al., 1989, 1998). The inspiration for this revolutionary technology was in part the
structure of visual receptive fields (Fukushima, 1980). This is the kind of innate constraint that in animals would
be expected to arise through evolution (Real et al., 2017); there might be many others yet to be discovered. Other
constraints on wiring and learning rules are sometimes imposed in ANNs through hyperparameters, and there is
an extensive literature on hyperparameter optimization. At present, however, ANNs exploit only a tiny fraction of
possible network architectures, raising the possibility that more powerful, cortically-inspired architectures remain to be
discovered.

In principle, wiring motifs could be discovered by experimental neuroscience, through analysis of brain connectivity.
Unfortunately, we still have only a very incomplete understanding of the details of cortical wiring, because we have
lacked the experimental tools for studying neuronal wiring at sufficient throughput and resolution. However, significant
recent advances in experimental methods may soon provide the necessary details. Local circuitry can be determined
with serial electron microscopy; there is now an ambitious project to determine every synapse within a 1 mm3 cube of
mouse visual cortex (Strickland, 2017). Long-range projections can be determined in a high-throughput manner using
MAPseq (Kebschull et al., 2016) or by other methods. Thus the details of cortical wiring may soon be available, and
provide an experimental basis for ANNs.

Conclusions

The notion that the brain provides insights for AI is not novel; indeed, it is at the very foundation of ANN research.
ANNs represented an attempt to capture some key aspects of the nervous system: many simple units, connected
by synapses, operating in parallel. Several subsequent advances also arose from neuroscience. For example, the
reinforcement learning algorithms underlying recent successes such as AlphaGo Zero (Silver et al., 2018) draw their
inspiration from the study of animal learning. Similarly, CNNs were inspired by the structure of the visual cortex.

But it remains controversial whether further progress in AI will benefit from the study of animal brains. Perhaps we
have learned all that we need to from animal brains. Just as airplanes are very different from birds, so one could imagine
that an intelligent machine would operate by very different principles from those of a biological organism. We argue
that this is unlikely because what we demand from an intelligent machine—what is sometimes misleadingly called
“artificial general intelligence”—is not general at all; it is highly constrained to match human capacities so tightly that
only a machine structured similarly to a brain can achieve it. An airplane is by some measures vastly superior to a bird:
It can fly much faster, at greater altitude, for longer distances, with vastly greater capacity for cargo. But a plane cannot
dive into the water to catch a fish, or swoop silently from a tree to catch a mouse. In the same way, modern computers
have already by some measures vastly exceeded human computational abilities (e.g. chess), but cannot match humans
on the decidedly specialized set of tasks defined as general intelligence. If we want to design a system that can do what
we do, we will need to build it according to the same design principles.
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