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1 Materials and Methods

1.1 Clue app interface

In Figure 1 we provide screenshots from the Clue app interface to illustrate how people using

the app log symptoms. Related categories of logs appear on the same screen: for example, all

period log types (spotting, light, medium, and heavy bleeding) appear on the same screen. All

log types except for weight, basal body temperature, and resting heart rate are binary, and can

be logged simply by tapping the screen. Each binary log can be entered only once per day.

People can backfill information (i.e., enter logs for previous days) by tapping the date at the top

of the screen.

1.2 Data processing

1.2.1 Definition of menstrual cycle starts and date relative to period

Consistent with the Clue app, we define a person to be on their period when they log light,

medium, or heavy bleeding. We define a period start as a start of bleeding when the person

has recorded no bleeding for at least 7 days: so if the person records no bleeding in April, and

bleeding on May 1, 2, 3, and 29, the period starts would be May 1 and May 29. We remove

the first logged period start for every person because some people “backfill” their first period

start, potentially creating unreliable dates. We confirm that the distribution of period lengths is

consistent with the previous literature (Figure S9). Given the period starts for each person, we

define the person’s day relative to period start on each day d as d � p (where p is the nearest

period start as measured by absolute difference in days). So if the closest period start occurred

on May 1, the day relative to period on April 30 would be -1, on May 1 would be 0, and on

May 2 would be 1. As discussed below in Section 1.5, we confirm that we observe similar cycle
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trajectories when we compute day relative to period start using only previous period starts or

only subsequent period starts (so day relative to period start is always non-negative or always

non-positive, respectively).

1.2.2 Location information and privacy

Our dataset contains individuals from the 25,000 cities with the most Clue users, covering 97%

of the Clue population. Each city was mapped to its latitude (rounded to the nearest 5 degrees),

country, and timezone; Clue removed latitude-timezone pairs with fewer than 1,000 people to

protect user privacy, and provided us with the rounded latitude, country, and timezone for each

person. We use each person’s timezone to compute the local time for each log, and use the

person’s local time in all analyses. All data is fully de-identified, all Clue users consent to use

of data for research purposes, and analysis was determined to be exempt from review by the

Stanford Institutional Review Board.

1.2.3 Data filtering

For all dimensions, we filter for logs on dates between November 1, 2015 (since on earlier

dates, not all features were available to be logged on the Clue app (30), rendering the data

incomparable), and November 20, 2017 (when our dataset ends). We also filter out logs that

are more than 20 days from a period start, since we will be unable to match these reliably to a

period. In our primary analysis, we analyze people who log in at least twelve unique months,

whom we term long-term loggers. We do this to ensure that we have long enough timespans

to estimate seasonal cycles and that people log reliably, mitigating missing data concerns. We

verify that our estimates of cycle amplitudes do not change substantially when we examine the

remainder of the population (Figure S5).

Because seasonal cycles could potentially be reversed or otherwise altered in the Southern
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and Northern hemispheres, in our analyses which compare to seasonal cycles (e.g., Figure 2)

we analyze only individuals in the Northern hemisphere to avoid falsely attenuating the sea-

sonal cycle. As described in Section 1.5, we verify that cycle amplitudes remain stable when

we substratify by latitude subgroups (e.g., individuals between 25� S and the equator). In all

analyses which focus on the menstrual cycle and do not consider seasonal cycles (e.g., Figures

3 and 4), we analyze all individuals and do not filter for the Northern hemisphere.

While some previous analyses of the menstrual cycle (18) (14,32) have studied only women

who are not taking hormonal birth control (and are thus experiencing their natural hormone

cycle), we do not apply this filter for two reasons. First, women in our dataset do not reliably log

hormonal birth control information, so a hormonal birth control filter would be highly imperfect.

Second, the goal of our analysis is to describe cycles in the general population of women, not

to describe the effect of the natural hormone cycle specifically. Because hormonal birth control

can reduce premenstrual effects (33), the menstrual cycle amplitudes we observe might be larger

in women who were not taking birth control than in the general population we study.

1.2.4 Binary dimensions: Mood and behavior

In order to ensure we have hourly information for logs and that logs are prospective (as opposed

to logged weeks after the fact, potentially rendering memory unreliable), we filter for logs for

which we have time information on when the logging session started and ended. We remove

a very small fraction (< 0.1%) of logs where the session lasts more than an hour, since this

renders time information unreliable. To ensure logs are prospective, we remove logs where the

person enters a date for the log which is not the same day as the session start.

For each dimension of mood and behavior, we must define a way of converting the categor-

ical data that users log (e.g., tapping “calm” or “happy” on the app screen) to a numerical value

on which we can perform quantitative analysis. To define this value for each mood dimension,
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we pair each mood with an opposing mood: for example, happy with sad, or calm with stressed.

The value for a given log is 1 if the person logs the first mood and 0 if they log the opposite

mood: for example, 1 if the person logs happy, and 0 if they log sad. (We examine all mood

dimensions except for PMS, because it is obviously menstrual-cycle-specific, and high/low en-

ergy, because it is redundant with the energized/exhausted dimension we analyze). Thus, the

average value of the happy/sad mood dimension can be interpreted as the “fraction of happy/sad

logs which are happy”. We define mood dimensions in this way to control for the fact that a per-

son’s probability of logging fluctuates considerably over time of day and point in the menstrual

cycle. For example, simply examining whether a person logs a mood, without normalizing in

some way, would show large spikes in all emotions near the menstrual cycle start, due simply

to the fact that many women use the app primarily to track menstrual cycle starts and thus are

more likely to log other features then as well3.

We now describe how we map from categorical log data to numerical values for each of

the three behavior dimensions: sleep, sex, and exercise. For sleep, the app offers users four

logging categories: 0-3 hours, 3-6 hours, 6-9 hours, and more than 9 hours. We define the

value of the sleep dimension as 1 if the person logged sleeping 6-9 hours or more than 9 hours,

and 0 otherwise. For the sex and exercise behavior dimensions, we use logs of any type as

a normalizer: that is, the sex and exercise dimensions are 1 on a day if a person logged that

behavior on that day, and 0 if they logged only something other than that behavior. (For the sex

dimension, we include only protected, unprotected, and withdrawal sex, and do not include the

“high sex drive” feature which the app also allows women to log.) To ensure that people are
3Pairing emotions with their opposites is consistent with previous conceptualizations of emotion (34,35) which

have regarded them as opposites. However, because previous investigations (7) have noted that opposite emotions
may fluctuate somewhat independently of each other, we verify that our primary conclusions remain unchanged
when we instead normalize using all loggable symptoms on the screen on which a mood appears – in essence,
computing the probability that a person logged a given mood given that they looked at the screen on which it
was an option to log. Our primary conclusions remain unchanged under this parameterization: the observed cycle
trajectories remain consistent (with positive moods declining, and negative moods increasing, prior to period start),
and the menstrual and daily cycles remain most prominent.
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tracking the relevant data, we analyze only people who log the behavior at least once. We do

not analyze the time at which behaviors are logged, since a person may log at 9 PM that they

slept, had sex, or exercised that day, but it does not necessarily indicate they had slept, had sex,

or exercised at 9 PM.

1.2.5 Continuous dimensions: vital signs

For the three vital sign dimensions — basal body temperature (BBT), resting heart rate (RHR),

and weight — our dataset does not contain the time at which the log was entered, so we apply

no time filtering and do not analyze daily cycles. For RHR, we have less than a year of reliable

data, and so we do not analyze seasonal cycles. We apply basic quality control filters to each

vital sign to ensure data is reliable (since, in contrast to the binary mood and behavior logs,

for vital signs people can enter implausible values). For weight, we filter out weights less

than 50 or greater than 500 pounds; filter out people whose weight fluctuates by more than 50

pounds (since this indicates people who may be trying to lose weight, who may have different

cyclic patterns, and may also indicate people who log unreliably) and filter out people with

fewer than 5 logs. For RHR, which is automatically measured by a heart rate monitor, we filter

out people with logs on fewer than 50 days and people whose RHR fluctuates by more than

50 BPM (all RHR observations are in a biologically plausible range, so we do not filter for a

maximum or minimum value). For BBT data, we filter out BBTs below 90 degrees or greater

than 110 degrees, people with fewer than 50 logs, and people with fewer than 5 unique values

of BBT (since BBT is somewhat difficult to measure, and we observe that some people log only

implausibly constant values of BBT). A small fraction of people have multiple readings on a

single day; we average these together so that there is only a single observation for each person

on each day.
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1.3 Decomposition into four cycles

We separate the overall signal into daily, weekly, seasonal, and menstrual cycles as follows.

Because we are interested in within-individual variation, we first remove individual means,

following previous literature (7,8): that is, for each individual and each dimension, we subtract

the individual’s mean for that dimension, so each each individual has zero mean. We then run a

linear regression of the observations x:

xyphwm ⇠ N (↵ + �y + �p + �h + ⌘w + m, �
2)

where y indexes year, p indexes day relative to period, h indexes hour, w indexes weekday,

m indexes month, and all are encoded as categorical variables (with a distinct coefficient for

each value). y ranges from 2015 to 2017; p ranges from -20 to 20; h ranges from 0 to 23; w is

the seven days of the week; and m ranges from 1 to 12. In all four-cycle decomposition plots

(e.g., Figure 2b), we extract the relevant coefficients and zero-mean them; the “Baseline” label

on the plot indicates a coefficient of zero4. Errorbars are 95% confidence intervals. We plot

only estimates for day relative to period from -14 to 14 because the average menstrual cycle is

roughly 28-29 days long5. One advantage of our large dataset is that it allows us to precisely

estimate day-specific coefficients for the menstrual cycle, rather than making potentially false

parametric assumptions about how mood, behavior, and vital signs will change over the course

of the cycle (11).

We define the amplitude of a cycle as the difference between the maximum and minimum
4Similarly, when we plot the daily signal in Figure 2a, we subtract off the mean signal across days, so the

average signal value is zero; we label this as “Baseline” on the plot. To plot the red line in Figure 2a — the
counterfactual world where menstrual cycle effects are observed rather than averaged out — we add the inferred
menstrual cycle effect, as plotted in Figure 2b, to the observed signal (black line) in Figure 2a.

5Day -14 is not equivalent to day 14, since many women have cycles longer or shorter than the typical length of
28-29 days, so we would not necessarily expect the regression coefficients for day -14 and day 14 to be equivalent;
some discontinuities at the graph boundaries are expected.
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coefficient values for the cycle. We compute confidence intervals on this amplitude (Figure 2c)

by bootstrapping replicate datasets, recomputing regressions and amplitudes for each replicate,

and computing the 95% confidence interval of the bootstrapped amplitudes.

1.4 Computation of near-period effects

For each dimension, we define the near-period effect by determining the week-long interval

(beginning up to two weeks before period start) in which the dimension’s mean value (as mea-

sured by the regression coefficients shown in Figures S1, S2, and S3) differs most dramatically

from its overall mean (Table S4). Essentially, this captures the interval in which the cycle curve

reaches its most significant peak or trough. All dimensions display their most pronounced

peaks or troughs near period start, justifying our examination of a near-period effect; however,

the exact timing of this peak or trough varies by dimension, as previous authors have also ob-

served (16), justifying our use of a specific weeklong period for each dimension. For example,

for sexual activity, the near-period interval begins at day -1 and ends at day 6 (where 0 denotes

the period start date), and for BBT the near-period week begins at day -8 and ends at day -1.

After defining the near-period interval for each dimension, we define the near-period effect

as the dimension’s average value during the near-period interval minus the dimension’s average

value not during the interval. (As with the four-cycle analyses, we subtract each individual’s

mean prior to taking the averages). This is equivalent to performing a linear regression

xp ⇠ N (↵ + �p, �
2)

where p indicates that an observation occurs during the near-period interval. (We note that

simply computing the amplitude of the near-period peak or trough, while intuitive for the popu-

lation as a whole, would not allow us to perform a multiple regression, and thus to determine the
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effects of multiple covariates like age or country.) To compute country-specific period effects,

we perform the regression:

xpc ⇠ N (↵ + �p + �c + �pc, �
2)

where c denotes country, and the interaction term �pc allows period effects to differ by

country. To confirm that our country-specific effects are robust to inclusion of other covariates

(for example, age) we also fit models

xpca ⇠ N (↵ + �p + �c + �pc + ⌘a + pa, �
2)

where a denotes age group, and pa allows for age-specific period effects. Besides age, the

additional covariates we include are behavior controls (if the person has ever logged consuming

alcohol; logged consuming cigarettes; logged exercise; logged taking hormonal birth control;

logged taking a birth control pill; or logged using an IUD); and app usage controls (number of

symptom categories used; start year; and total symptoms logged). The goal of this analysis is to

ensure that our country-specific estimates are not driven by other country-specific differences.

For each fitted model, we compute the country-specific period effect for each country c by

setting the country for all people to c (keeping their other covariates the same) and computing

the difference between their model-predicted value during the near-period interval and not dur-

ing the near-period interval. This can be interpreted as the model’s predicted near-period effect

for each country if the distribution of all non-country covariates were that of the population as

a whole6.
6For computational tractability, given the large number of countries in the dataset, we compute this quantity

on a random sample of 100,000 users; our confidence intervals (which are very small) are thus conservative.
We compute 95% confidence intervals by resampling the entire dataset using bootstrapping, repeating the period
effects estimation procedure on each bootstrapped replicate, and computing the 95% confidence interval of the
bootstrapped period effects.
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Our computations for age-specific period effects are analogous. In both cases, we find

that inclusion of other covariates does not significantly change our age- or country-specific

estimates. Our country-specific period effects are robust to inclusion of other covariates (Figure

S7); similarly, we infer the same age trends regardless of what other covariates we include

(Figure S8).

1.5 Robustness checks

1.5.1 Alternate four-cycle decomposition methods

We compare our linear regression four-cycle decomposition (as described in Section 1.3) to two

other cycle decomposition methods: taking the means for each cycle separately, and fitting a

mixed model.

• Means by group. Rather than fitting a linear regression, we fit a simpler model where,

after subtracting the means for each individual, we simply compute the means for each

day relative to period, hour, weekday, and month. This does not allow us to control for

year or account for correlations between cycles (for example, if people tend to log when

they are on their period only if it is a Sunday) but yields similar results to linear regression.

• Mixed model. We fit a mixed model which includes the same fixed effects as in the linear

regression but, rather than removing the individual mean, we fit a random-effects intercept

term for each individual. The motivation is that, while simply removing individual means

is interpretable, scalable to large datasets, and used in previous studies (7), it can also

potentially lead to misleading estimates of cyclic effects by incorrectly attributing cyclic

variation to between-individual variation. For example, if each individual logs for only a

week, removing individual means may attenuate seasonal cycle estimates. We use a linear

mixed model even though some of the dimensions are binary because we want the fixed

10



effects coefficients to be interpretable and comparable to our estimates from the other

two methods. We downsample the data for each dimension to a maximum of 100,000

individuals (randomly selected) for computational tractability.

Both methods yield very similar results to linear regression. The mixed model yields slightly

larger estimates of cycle estimates (the estimated menstrual cycle amplitudes are 27% larger on

average across all dimensions) so our estimates of cycle effects should be regarded as conser-

vative. However, our main conclusions remain similar under the two alternative specifications:

in particular, menstrual cycle amplitudes remain generally larger than those of the other three

cycles. We therefore favor the linear regression model for its simplicity and because it scales to

the entire dataset7.

1.5.2 Alternate parameterization of seasonal cycles

Because there are multiple ways of parameterizing seasonal cycles, we assess how our results

vary under two alternate regression parameterizations: 1) replacing the month-of-year indicator

variable m with a week-of-year indicator variable and 2) replacing the year indicator variable

�y with a linear time trend. Our results remain similar under these alternate parameterizations.

Replacing month-of-year with week-of-year slightly increases the amplitude of the seasonal cy-

cle, as expected, due both to noise and to greater sensitivity to transient events like Christmas,

but estimates for the seasonal cycle are similar and estimates for other cycles are nearly identi-

cal; we favor the month-of-year parameterization because it allows us to more robustly estimate

the seasonal cycle for small subgroups of the population in our substratification robustness anal-
7The only case in which the models yield somewhat different results is for seasonal cycles in weight, for

which the mixed model and linear regression model estimate qualitatively similar trends but the mixed model
estimates a considerably larger amplitude (0.65 versus 0.24 lbs for the linear regression model). This discrepancy
occurs because there is substantial change in the average weight of the population over time, likely caused by the
expansion in the population using the app, and the mixed model attributes this to seasonal variation. Our estimates
of seasonal changes in weight thus ought be regarded as conservative, and it is possible the true amplitude of the
seasonal cycle effect is somewhat larger.
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ysis (Figure S5). Replacing the year indicator variable �y with a linear time trend also produces

generally similar results.

1.5.3 Alternate parameterization of menstrual cycles

There are multiple ways of parameterizing the menstrual cycle; we explore three alternative

parameterizations in addition to our primary parameterization (ranging from -20 – the nearest

cycle start is 20 days in the future – to 20 – the nearest cycle start is 20 days in the past):

• Day relative to last cycle start: for every date on which a person logged, we compute

the date of the last cycle start on or before the log date and take the difference in days. To

ensure we have reliable information for cycle day, in this analysis we discard logs with

more than 40 days since last cycle start.

• Day relative to next cycle start: for every date on which a person logged, we compute

the date of the next cycle start on or after the log date and take the difference in days. We

discard logs with more than 40 days until the next cycle start.

• Fraction of the way through cycle: because average cycle length varies across individ-

uals, for each individual and each log, we compute the log’s cycle day (as in our primary

parameterization) and divide by the individual’s average cycle length. For example, if the

log occurred on cycle day 9, and the person’s average cycle was 30 days long, the fraction

of the way through the cycle f would be 9
30 = 0.3. We analyze logs with �0.5  f  0.5.

Our estimated menstrual cycle amplitudes remain stable under these three alternate parame-

terizations of the menstrual cycle, confirming that our conclusions are robust to our parameteri-

zation of the menstrual cycle. Specifically, in all cases our estimated menstrual cycle amplitude

is within 20% of our original estimate, and the average difference between the original and

alternate parameterizations is 4.8%.
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1.5.4 Substratification robustness checks

The population using the app is likely non-representative; we therefore verify that the menstrual

cycle remains prominent when we substratify the dataset by demographics (age group, coun-

try, and latitude), app usage variables (number of categories logged and number of symptoms

logged), and whether individuals logged in at least twelve unique months and were included in

the main analysis, to ensure that this filtering (Section 1.2) does not change conclusions (Figure

S5). For each subgroup, we compute the amplitude of the menstrual, daily, weekly, and sea-

sonal cycles for that subgroup alone. Unsurprisingly, we observe some variation in the cycle

amplitudes across subgroups (variation across subgroups is, after all, the phenomenon that our

age subgroup analysis highlights). However, importantly, the overall ordering of amplitudes

remains largely stable across subgroups for each dimension and, in particular, the prominence

of the menstrual cycle does not appear to be driven by any particular subgroup. This indicates

that our central finding of the prominence of the menstrual cycle is unlikely to be driven by a

non-representative subgroup.

1.6 Reproducing previously known results

Here we describe our procedures for replicating previously known findings. The purpose of this

analysis is to verify that our dataset is sufficiently reliable to reproduce previous results.

1.6.1 Menstrual cycle lengths

The means and standard deviations of menstrual cycle lengths in our dataset match previous

findings in Chiazze et al, 1968 (36) (Figure S9). Following those authors, we filter for cycles

between 15 and 45 days in length and stratify by age group. Both the mean and standard

deviations for each age group closely match the previous estimates; our data also recapitulates
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the slight decrease in means and standard deviations by age.

1.6.2 Country-specific patterns

We compare our dataset’s country-specific measures of happiness and weight to previous country-

specific measures of happiness and weight. Our source for previous country-specific happiness

data is the Gallup World Poll, which has been used in a previous study of happiness (37). Fol-

lowing those authors, we use Gallup’s measures of real-time positive/negative experiences (as

measured by experiences on the day before the survey) and overall life evaluation. We exam-

ine the correlations between Gallup’s measures and our dataset’s fraction of happy/sad logs

which are happy across the 79 countries with Gallup data and at least 1,000 happy/sad logs

from 100 unique individuals in our dataset. All correlations are statistically significant and have

the expected sign: the correlation with Gallup’s real-time positive experience index is r = 0.51

(p < 0.001); with Gallup’s real-time negative experience index is r = �0.38 (p < 0.001); and

with Gallup’s overall life evaluation is r = 0.47 (p < 0.001).

For weight, we compare the average weight of individuals in our dataset who provide weight

data to previous country-specific measures of weight and obesity. We study the 38 countries for

which we have weight/obesity data from an external dataset and at least 1,000 weight logs

from 100 individuals in our dataset. The average weight of individuals in each country (in our

dataset) is significantly correlated with 2016 WHO estimates of the fraction of women over 18

who are overweight (38) (BMI > 25) (r = 0.53, p < 0.001), the fraction of women over 18

who are obese (39) (BMI > 30) (r = 0.59, p < 0.001), and the average weight of adults in that

country (40) (r = 0.51, p = 0.001).

14



1.6.3 Previously known cycles

In addition to the dimensions of mood, behavior, and vital signs considered in our primary

analysis, we investigate whether our dataset displays expected seasonal, weekly, and menstrual

cycles for additional dimensions (Figure S10). (We do not investigate additional dimensions

in daily cycles because the dimensions for which we have the most reliable time information

— mood symptoms — are included in our primary analysis.) As with all our analyses which

include seasonal cycles, we filter for individuals in the Northern hemisphere.

For menstrual cycles, we examine the four physical pain symptoms the Clue app allows

people to log – cramps, headache, ovulation pain, and tender breasts – since these are some

of the best-studied and most commonly logged menstrual symptoms. Consistent with prior

research, we observe in our dataset that cramps (41, 42), breast pain (43), and headache (42)

are more commonly reported by individuals near period start. In contrast, individuals in our

dataset are most likely to report ovulation pain at about day -14 (i.e., 14 days before the start

of their next period), consistent with prior findings of “Mittelschmerz” pain occurring near

ovulation (44). (Ovulation pain also shows a slightly smaller peak at day 14 in our dataset —

equivalent to day -14 for women with cycles near the typical length of 28 days.)

For weekly cycles, we examine patterns in alcohol consumption. Previous findings indicate

that alcohol consumption increases on the weekend (45, 46); consistent with this, we observe

that individuals are more likely to report attending parties with alcohol on the weekends, with

logs of hangovers peaking on Sundays.

For seasonal cycles, we investigate allergies, cold/flu symptoms, and vacationing. Seasonal

allergies have been previously found to peak in spring and summer because of higher pollen

counts (47–49). Incidence of flu peaks in the winter (50,51). Vacation is more commonly taken

during the summer months and near the winter holidays (52). Our dataset displays patterns

consistent with all these prior findings.
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1.7 Generalizability of findings

Since women who use menstrual cycle tracking apps likely differ from the general population,

it is natural to ask how our findings generalize. While a population of millions of women

is arguably large enough to be worth studying in and of itself even if it is somewhat non-

representative, three lines of evidence support the generalizability of our findings.

1. Menstrual tracking apps are increasingly widely used (24), offering a data source which is

plausibly more representative than those used in previous studies of the menstrual cycle,

which have used small and non-representative populations (20).

2. Previous studies of the dataset have found that it replicates known biology — for example,

menstrual cycle lengths (14) and premenstrual symptoms (15), (16). Our present analysis

similarly produces numerous findings consistent with previous studies: a late-night shift

towards negative mood (7) (53); estimates of menstrual BBT, RHR, and weight cycle

amplitudes (23) (32,54,55); decreases in exercise on the weekends and during the winter

(56, 57); and decreases in sexual activity immediately after the period begins and during

the weekdays (58). In addition to our main analysis, we replicate a number of other

previous results on our dataset (Section 1.6). These replications suggest that our dataset

is sufficiently reliable to reproduce previous results.

3. Our results remain stable and the menstrual cycle remains prominent when we substratify

the dataset by demographics and app usage variables (Section 1.5, Figure S5), indicat-

ing that our results are unlikely to be driven, for example, by very young women or by

women who use the app more frequently because they have particularly severe menstrual

symptoms.
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1.8 Reliability of self-reported data

Two lines of evidence increase our faith that the data is reliably logged. First, a review of more

than a hundred menstrual cycle tracking apps rated the Clue app as the best on the basis of

accuracy, comprehensiveness, and functionality (13), increasing the likelihood that its data is

reliable. Second, we apply several quality control filters (Section 1.2) to ensure the accuracy

of logged data: for mood and behavior dimensions, we filter for logs that are prospectively

recorded (logged on the same day on which they occur), since prospective logging is more

reliable (7). For vital sign dimensions, we filter for individuals who log frequently and re-

move biologically implausible values. For mood dimensions, one concern is that because the

app interface renders the menstrual cycle more salient, it primes people to report subjective

period-related mood changes. This is an unavoidable concern in studies of menstrual mood

changes; further, if menstrual cycle apps are priming large fractions of the female population

to experience negative mood near their periods, that is itself a phenomenon worth studying.

The more objectively recorded behavior and vital sign dimensions should be unaffected by this

phenomenon.



2 Supplementary Tables and Figures

Long term loggers
Mean Median 5th percentile 95th percentile

Age 22.5 19.9 14.0 38.7
Days using app 541 538 348 727
Total logs entered 263 109 25 1004

All people using app
Mean Median 5th percentile 95th percentile

Age 21.2 18.5 13.4 37.2
Days using app 221 166 1 629
Total logs entered 105 36 3 411

Table S1: Summary statistics for long-term loggers (top), whom we use in our primary analyses,
and all people using the app (bottom), whom we analyze as a robustness check. Age is computed
using only people for whom age data is available. “Days using app” indicates the number of
days between the first date a person entered a log on the app and the last date they entered a log
on the app.



Category Specific features % of logs

emotion PMS, happy, sad, sensitive 11%
period heavy, light, medium, spotting 10%
energy energized, exhausted, high energy, low energy 9%
sleep 0-3 hrs, 3-6 hrs, 6-9 hrs, 9 hrs 8%
pain cramps, headache, ovulation pain, tender breasts 8%
skin acne, dry, good, oily 6%
mental calm, distracted, focused, stressed 6%
motivation motivated, productive, unmotivated, unproductive 6%
craving carbs, chocolate, salty, sweet 6%
social conflict, sociable, supportive, withdrawn 5%
digestion bloated, gassy, great digestion, nauseated 4%
hair bad, dry, good, oily 4%
poop constipated, diarrhea, great, normal 3%
collection method menstrual cup, pad, panty liner, tampon 3%
sex high sex drive, protected, unprotected, withdrawal 2%
pill birth control double, late, missed, taken 2%
fluid atypical, creamy, egg white, sticky 2%
vital signs BBT, heart rate, weight 1%
exercise biking, running, swimming, yoga 1%
medication antibiotic, antihistamine, cold/flu medication, pain < 1%
ailment allergy, cold/flu ailment, fever, injury < 1%
party big night party, cigarettes, drinks party, hangover < 1%
appointment date, doctor, ob/gyn, vacation < 1%
test ovulation negative, ovulation positive, pregnancy negative, pregnancy positive < 1%
iud inserted, removed, thread checked < 1%
ring birth control removed, removed late, replaced, replaced late < 1%
injection birth control administered < 1%
patch birth control removed, removed late, replaced, replaced late < 1%

Table S2: All features logged in the dataset. Features are organized into categories by Clue: for
example, “PMS”, “happy”, “sad”, and “sensitive” features are all emotion features. Categories
are sorted by how frequently they are logged in the dataset.



Category Dimension Mean
(LTLs)

Mean
(overall)

nobs
(LTLs)

nobs (overall) npeople
(LTLs)

npeople
(overall)

Vital sign RHR (BPM) 65.3 65.3 1,485,816 1,849,409 8,939 13,070
Vital sign Weight (LB) 135.2 134.7 1,243,469 3,074,289 47,540 184,808
Vital sign BBT (deg F) 97.6 97.6 540,463 974,982 3,533 9,033
Mood happy vs sensitive 58.8% 58.8% 10,075,794 32,408,134 415,690 2,779,666
Mood happy vs sad 75.4% 75.7% 7,858,798 25,178,082 401,418 2,597,554
Mood calm vs stressed 62.2% 62.1% 4,666,414 13,475,101 244,810 1,318,281
Mood motivated vs unmotivated 51.0% 50.7% 4,529,869 12,996,012 245,866 1,287,296
Mood social vs withdrawn 63.0% 64.0% 4,486,865 13,245,834 212,010 1,186,117
Mood productive vs unproductive 53.7% 49.7% 4,171,684 11,661,326 235,765 1,220,912
Mood focused vs distracted 49.2% 47.5% 3,972,562 11,772,608 236,967 1,267,988
Mood energized vs exhausted 36.2% 38.6% 2,878,582 9,653,503 327,058 1,903,751
Mood supportive vs conflict 64.2% 61.7% 2,094,079 6,533,528 179,270 958,396
Behavior had sex 13.4% 17.2% 17,691,362 38,767,857 249,356 1,196,621
Behavior exercised 13.0% 17.5% 11,643,466 25,722,601 163,175 778,307
Behavior slept > 6 hours 69.3% 67.7% 10,626,280 33,994,360 403,175 2,748,894
All combined - - - 87,965,503 241,307,626 499,330 3,322,769

Table S3: The fifteen dimensions included in the cycles analysis. The “mean” columns provide
the average value of the dimension: for example, 58.8% of happy/sensitive logs are happy.
nobs provides the number of observations for that dimension and npeople provides the number
of people who logged that dimension. We report statistics for both long-term loggers (LTLs),
whom we use in our primary analysis, and the overall dataset, which we also analyze as a
robustness check.



Category Dimension Start day End day

Behavior exercised 0 7
Behavior had sex -1 6
Behavior slept > 6 hours -10 -3
Mood happy versus sad -5 2
Mood happy versus sensitive -5 2
Mood energized versus exhausted -5 2
Mood calm versus stressed -6 1
Mood focused versus distracted -5 2
Mood motivated versus unmotivated -5 2
Mood productive versus unproductive -5 2
Mood social versus withdrawn -5 2
Mood supportive versus conflict -7 0
Vital sign BBT (deg F) -8 -1
Vital sign RHR (BPM) -7 0
Vital sign Weight (LB) -4 3

Table S4: Start and end days for the near-period interval for each dimension. Time intervals
exclude the end day. Day 0 is the day of period start.



Figure S1: Four cycle plots for all mood dimensions as inferred by linear regression (Methods
Section 1.3). � indicates the amplitude of each cycle (the difference between the maximum and
minimum values).



Figure S2: Four cycle plots for all behavior dimensions. No hourly information is available, so
the daily cycle is omitted.



Figure S3: Four cycle plots for all vital sign dimensions: basal body temperature (BBT), weight,
and resting heart rate (RHR). No hourly information is available, so the daily cycle is omitted.
For RHR, the seasonal cycle is omitted because there is less than a year of data.



Figure S4: An alternate visualization of the four simultaneous cycles; this plot contains the
same data as the four cycle plots above. Each subplot represents one dimension. Each concen-
tric circle represents one cycle: from the outside progressing inward, the circles represent the
menstrual, daily, weekly, and seasonal cycles. Cycles progress clockwise around the circles.
The vertical black line denotes the start of the period for the menstrual cycle, midnight for the
daily cycle, the middle of the weekend for the weekly cycle, and the start of the year for the
seasonal cycle. More intense color changes indicate cycles with larger amplitudes, with red in-
dicating positive changes, blue indicating negative changes, and white indicating zero change.
Cycles lacking data for a dimension are shown in white.



Figure S5: The menstrual cycle remains prominent across subsets of the population. Each set
of subplots shows how cycle amplitudes for one dimension of mood, behavior, or vital signs
vary over subsets of the population. The vertical axis plots the cycle amplitude; the horizontal
indicates the subset of the population. For each dimension, the first two subplots subset by
app usage patterns; the next three subplots subset by demographics; the final subplot subsets
by whether individuals logged in at least twelve unique months and were included in the main
analysis, to ensure that filtering does not change conclusions. While cycle amplitudes fluctuate
across subsets of the population (as expected) the vertical ordering of the lines remains generally
stable and, for dimensions in which the menstrual cycle is prominent, its prominence is not
driven by a single subgroup. To avoid noisy estimates, only subsets which have at least 1,000
observations and 100 individuals are shown.



Figure S6: Maps of near-period effects for all cycle dimensions illustrate that effects remain
largely directionally consistent across countries. Color bins are equally sized, with the central
white bin centered on no change from baseline. Countries with fewer than 1,000 observations
and 100 individuals for a dimension are shown in grey; for BBT and RHR, fewer countries have
sufficient data but effects remain consistent.



Figure S7: Near-period effects by country are robust to inclusion of other covariates. Each point
represents one country (filtering for countries with at least 1,000 observations). The horizontal
axis plots the estimated near-period effect using the simplest regression specification, with only
country as a covariate; the vertical axis plots the estimated near-period effect using all other
regression specifications (legend). Estimates are very similar, lying near the black diagonal line
which indicates equality; minimum correlation is reported in the title of each plot.



Figure S8: Near-period effects (vertical axis) by age group (horizontal axis); age trends are
robust to inclusion of country, behavior, and app usage covariates. Different regression specifi-
cations are shown as different colored lines (legend), and in most cases the lines are too closely
overlapping to be seen. All age groups have at least 1,000 observations and 100 individuals.



Figure S9: The mean and standard deviation of the menstrual cycle length distribution in our
dataset is similar to that in Chiazze et al, 1968. Following their analysis, we filter for cycles
between 15 and 45 days in length and stratify by age groups. Errorbars denote the standard
deviation for menstrual cycles for each age group. Both the means and standard deviations are
similar for each age group.

Figure S10: The dataset recapitulates previously known menstrual, seasonal, and weekly cycles.
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