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ABSTRACT 

Predicting the functional or pathogenic regulatory variants in the human non-coding 

genome facilitates the interpretation of disease causation. While numerous prediction 

methods are available, their performance is inconsistent or restricted to specific tasks, 

which raises the demand of developing comprehensive integration for those methods. 

Here, we compile whole genome base-wise aggregations, regBase, that incorporate 

largest prediction scores. Building on different assumptions of causality, we train three 

composite models to score functional, pathogenic and cancer driver non-coding 

regulatory variants respectively. We demonstrate the superior and stable performance 

of our models using independent benchmarks and show great success to fine-map 

causal regulatory variants. We believe that regBase database together with three 

composite models will be useful in different areas of human genetic studies, such as 

annotation-based casual variant fine-mapping, pathogenic variant discovery as well as 

cancer driver mutation identification. regBase is freely available at 

https://github.com/mulinlab/regBase. 

 

INTRODUCTION 

Accurate prediction and prioritization of non-coding regulatory variants are crucial 

issues in the human genetic studies. Genome-wide association studies (GWASs) have 

produced numerous single-nucleotide variants (SNVs) that are associated with 

hundreds of medical traits and diseases, and the majority of the associations are 

suggested to be mediated by non-coding regulatory codes (1-3). Whole genome 

sequencing technologies are frequently incorporated into the relevance investigation of 

non-coding variants in Mendelian disease (4,5), and existing evidence also suggests 

that non-coding regulatory variants can modulate disease risk by affecting pathogenic 

coding variant penetrance (6). Given the high volume of disease-causal candidate 
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variants in the regulatory region as well as the expensive downstream functional 

validations, computationally predicting non-coding regulatory variants has become 

important and long-standing scientific issue. 

In the last few years, a large number of computational methods had been proposed to 

annotate and predict functional non-coding variants. Building on different predictive 

assumptions, abundant annotation datasets as well as complementary statistical models, 

these algorithms have achieved great successes to prioritize functional, pathogenic and 

cancer-relevant non-coding regulatory variants (7-10). However, the state-of-the-art 

benchmarks showed poor concordance among the prediction scores of several existing 

methods (11-13). To comprehensively evaluate the regulatory potential or pathogenesis 

of certain SNV outside the protein-coding region, researchers now have to collect and 

compare scores from different resources, even need to download huge pre-computed 

files or manually calculate prediction scores. The overwhelming growth of new 

prediction tools further complicates such retrieval processes. In addition, the 

incomplete understanding and the functional complexity of regulatory DNA impede the 

development of single but versatile model that is able to accurately predict causal 

regulatory variants affecting different biological processes. For example, recent 

commonly adopted algorithms that integrate evolutionary constraint, epigenomics, and 

sequence features, such as CADD (14,15), GWAVA (16), FunSeq2 (17) and fitCons 

(18), usually achieved limited predictive power for expression-modulating variants 

from in vivo saturation mutagenesis of an enhancer (19), or allele imbalanced variants 

influence critical molecular traits in the transcriptional regulation, like chromatin 

accessibility (20). Furthermore, compared with the functional regulatory variants 

prioritization, it is more challenging to predict pathogenic regulatory variants that 

underlie the development of Mendelian disorders or cancers (5,21). The insufficient 

accumulation of known pathogenic regulatory variants largely inhibits the 

characterization of their key discriminative features that is different from disease-free 

regulatory mutations.  
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In this work, we comprehensively integrate non-coding variant prediction scores from 

23 tools for base-wise annotation of human genome, called regBase. As such, regBase 

provides first-time convenience to prioritize functional regulatory SNVs and assist the 

fine mapping of causal regulatory SNVs without queries from numerus resources. 

Inspired by the evident significance of ensemble prediction for pathogenic/deleterious 

nonsynonymous substitution, we systematically construct three composite models to 

score functional, pathogenic and cancer driver non-coding regulatory SNVs. We 

illustrate the discriminatory abilities and applicable scenarios of the proposed models 

by independent datasets and case study. regBase and associated models are freely 

available for download at https://github.com/mulinlab/regBase. 

 

MATERIALS AND METHODS 

Collecting, processing and integrating functional scores for non-coding regulatory 

variants 

We downloaded base-wise precomputed scores for almost all possible substitutions of 

single nucleotide variant (SNV) in the human reference genome from 13 existing tools, 

including CADD (14,15), CDTS (22), CScape (23), DANN (24), Eigen (25), 

FATHMM-MKL (26), FATHMM-XF (27), FIRE (28), fitCons (18), FunSeq2 (17), 

GenoCanyon (29), LINSIGHT (30) and ReMM (31). We called this aggregated 

resource as regBase. For tool score recorded by interval-level value, such as CDTS, 

fitCons and LINSIGHT, we transformed continuous position into base-wise position 

and assigned the same score. Since some tools only support functional annotations for 

1000 Genomes Project variants (32) or are inefficient to compute variant scores, we 

collected or generated functional scores of additional 10 tools for only biallelic variants 

from 1000 Genomes Project phase 3, including Basset (33), CATO (20), DanQ (34), 

DeepSEA (35), deltaSVM (36), FunSeq (37), GWAS3D (38), GWAVA_TSS (16), 

RSVP (39) and SuRFR (40) (see Table 1 and Supplementary Table S1 for details). We 
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extracted 1000 Genomes Project biallelic variants from 13 base-wise precomputed 

scores and merged together with above 10 scores to generate a database that contains 

23 tools for all biallelic variants, called regBase Common. Missing score values were 

replaced with “.” and genomic position of all variants were based on GRCh37/hg19. 

We also ranked all scores in each set and normalized them by PHRED-scaled score (-

10*log10(rank/total)). The integrated database is tab delimited and indexed by Tabix 

(41). 

 

Correlation analysis 

Three benchmark datasets were incorporated to evaluate the prediction consistency of 

existing tools including 1) the Human Gene Mutation Database (HGMD) functional 

regulatory variants used by GWAVA (42); 2) the ClinVar (201812 release) regulatory 

variants (43) with “CLNSIG=Pathogenic or CLNSIG=Benign” and only obtaining non-

coding attributes by VEP (44) (not including splicing-altered consequences); 3) 

expression-modulating variants identified by massively parallel reporter assay (MPRA) 

with more than 1.5 log2 fold expression level change between alleles (45). Pearson 

correlation test and hierarchical clustering were used to evaluate the relationships of 

integrated tools upon these non-coding regulatory variant datasets, in which variants 

with missing value for any tools will be excluded. 

 

Construction of training dataset  

We designed three training datasets to predict different categories of functional non-

coding regulatory variants as follows:  

regBase_REG dataset: functional regulatory variants regardless of functional direction 

and pathogenicity. We used our previously compiled functional regulatory variants 

dataset in PRVCS (11), which integrates four different resources including (i) the 
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HGMD public dataset used by GWAVA; (ii) the ClinVar pathogenic variants in the 

non-coding region compiled by GWAVA; (iii) validated regulatory variants from the 

OregAnno database (46); (iv) fine-mapped disease-causal regulatory SNPs for 39 

immune and non-immune diseases (47). Negative controls were sampled from allele 

frequency matched non-coding variants in the independent linkage disequilibrium (LD) 

with positive variants from 1000 Genomes Project. 

regBase_PAT dataset: pathogenic regulatory variants. We incorporated ClinVar 

(201812 release) pathogenic regulatory mutations with “CLNSIG=Pathogenic” and 

only kept the mutations in the non-coding region by VEP annotations (not including 

splicing-altered consequences). We also included regulatory Mendelian mutations in 

the non-coding region from Genomiser (31) and merged with ClinVar data. For 

negative dataset, we randomly drew benign mutations with “CLNSIG=Benign” from 

ClinVar, and used the same strategy to retain non-coding mutations.  

regBase_CAN dataset: cancer recurrent regulatory somatic mutations. For positive set, 

we downloaded COSMIC v84 non-coding mutations and selected ones having 

recurrence rate >= 10. For negative set, we sampled private non-coding somatic 

mutations with recurrence = 1 and PhyloP = 0 (48). 

 

Gradient Tree Boosting model 

We made use of Gradient Tree Boosting (GTB) algorithm in our predictive model. In 

general, GTB is a special form of Gradient Boosting Machine, which makes prediction 

by combining the results of multiple weak learners, typically decision tree. We used 

XGBoost classifier as the implementation of GTB algorithm. XGBoost is a scalable 

end-to-end tree boosting system and has achieved the state-of-art performance in a large 

amount of tasks (49). Its sparsity-aware split finding makes it suitable for the task as 

missing value was commonly appeared in our datasets. We performed grid search based 

on 10-fold cross validation on training set in order to tune the hyper-parameters. While 
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tuning training datasets with the unbalanced positive and negative samples, we adjusted 

the weight of positive samples according to the ratio of two classes. Receiver operating 

characteristic (ROC) curve and area under the receiver operating characteristics curve 

(AUC) were used to evaluate the performance of model during grid search.  

 

Construction of independent testing datasets  

We assembled six independent testing datasets that were not used to train almost all of 

existing tools and our combined models, including 1) Brown_eQTL dataset: 11 

tissue/cell type-specific eQTLs fine-mapping data that was profiled by Brown and 

colleagues (50). To further acquire more significant eQTL SNPs, we applied log10BF 

cutoff values of 10% FDR for each tissue/cell type; 2) GTEx_eQTL dataset: GTEx V6 

44 tissues-specific eQTLs within CAVIAR (51) 95% fine-mapped credible set from 

UCSC (52); 3) MPRA_eQTL dataset: significant expression modulating variants 

(log2FC > 1.5) by MPRA in lymphoblastoid cell lines (45); 4) GWAS_5E-8 dataset: 

GWAS disease-associated variants with P-value < 5E-8 from GWAS Catalog v1.0.1 

(53); 5) GWAS_1E-5 dataset: GWAS disease-associated variants with P-value < 1E-5 

from GWAS Catalog v1.0.1 (53); 6) Somatic_eQTL dataset: recurrent somatic 

mutations from COSMIC V84 with recurrence >= 2 within significant flanking 

intervals per somatic eGene (54). We also generated corresponding controls for above 

datasets using different sampling strategies. For Brown_eQTL and GTEx_eQTL 

dataset, we randomly sampled allele frequency matched non-coding variants in the 

10Kb transcription start site (TSS) regions of randomly selected genes. For GWAS_5E-

8 and GWAS_1E-5 dataset, we sampled allele frequency matched non-coding variants 

in the independent LD with positive variants from 1000 Genomes Project. For 

MPRA_eQTL dataset, we used nonexpression-modulating variants (log2FC <0.005) by 

MPRA in lymphoblastoid cell lines. For Somatic_eQTL dataset, we sampled private 

non-coding somatic mutations from COSMIC V84 with recurrence = 1 and PhyloP = 
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0. We also excluded all positive and negative samples that have been incorporated in 

our training datasets. 

 

Evaluation schemes 

We compared our composite models with integrated tools and two existing ensemble 

methods (PRVCS (11) and IW-Scoring (12)) using above six independent testing 

datasets. Positive predictive values (PPV), negative predictive values (NPV), false 

positive rate (FPR), false negative rate (FNR), sensitivity, specificity, accuracy, 

precision, recall, F1 score and Matthews correlation coefficient (MCC) were calculated 

according to Maximal Youden's index during the measurement of ROC and AUC. We 

also calculated the correlation between true labels and prediction scores for each 

evaluation using Pearson correlation test. 

 

Causal variants prioritization for 5p15.33 TERT region  

We collected significant trait/disease associated SNPs from GWAS catalog (P-value < 

5E-8) and GWAS fine-mapping results from literatures at the 5p15.33 TERT region 

(Human GRCh37, chr5:1.22-1.37mb). We used LocusZoom (55) to visualize these 

disease-associated and fine-mapped SNPs on 1000 Genomes EUR population. To 

investigate the performance of regBase composite methods for causal variant 

prioritization, we extracted and normalized the raw scores of all tools in the 5p15.33 

TERT region to generate regional PHRED-scaled scores. We further evaluated the sum 

or distribution of PHRED scores for all collected fine-mapped SNPs across different 

tools. Since some tools contain equal scores at this region and this will reduce the 

discrimination of true causal variants, we removed tools that obtain more than 25% 

equal scores in the evaluation. 
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RESULTS 

Base-wise aggregation of non-coding regulatory variant prediction scores 

We processed and compiled an integrative resource for prediction scores from 23 

different tools on functional annotation of non-coding variants, including Basset (33), 

CADD (14,15), CATO (20), CDTS (22), CScape (23), DANN (24), DanQ (34), 

DeepSEA (35), deltaSVM (36), Eigen (25), FATHMM-MKL (26), FATHMM-XF (27), 

FIRE (28), fitCons (18), FunSeq (37), FunSeq2 (17), GenoCanyon (29), GWAS3D (38), 

GWAVA (16), LINSIGHT (30), ReMM (31), RSVP (39) and SuRFR (40) 

(Supplementary Table S1). Since some tools only support annotations for 1000 

Genomes Project variants (32), or take long runtime to compute functional scores, we 

first built a database, called regBase Common, which contains functional scores from 

23 tools for 38,248,779 in the 1000 Genomes Project phase 3. Among these integrated 

datasets, 13 tools provide precomputed scores for almost all possible substitutions of 

SNV in the human reference genome. Therefore, we also constructed a complete base-

wise aggregation of non-coding variant functional scores for 8,575,894,770 

substitutions of SNV, called regBase (Supplementary Table S2). We summarized the 

missing values in our integrated resources, and found that most of tools had less than 

2% missing values across the whole genome. However, CATO (65.88%), SuRFR 

(33.91%) and CDTS (9.64%) exhibited relatively high or moderate missing rates in the 

regBase Common, and CDTS (13.02%) showed moderate missing rate in the regBase 

(Supplementary Table S3 and S4). To facilitate the efficient retrieve and comparison of 

functional scores of different alleles across tools, we indexed the whole dataset and 

used a PHRED-scaled method to normalize the raw score of each tool. The regBase and 

regBase Common can be downloaded from https://github.com/mulinlab/regBase. 

 

Correlation analysis of existing algorithms 
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Existing non-coding variants prediction algorithms dealt with different predictive 

objectives and assumptions, which could lead to inconsistent prediction on various 

application scenarios. To comprehensively evaluate the predictive concordance among 

our collected scores, we prepared three benchmark datasets that incorporate different 

pathogenicity/regulatory causality assumptions of non-coding regulatory variants 

(Supplementary Table S5): 1) functional regulatory variants from the public Human 

Gene Mutation Database (HGMD) (42) used by GWAVA; 2) pathogenic and benign 

regulatory variants from the ClinVar database (43); 3) experimentally validated 

expression quantitative trait loci (eQTL) variants from a massively parallel reporter 

assay (MPRA) (45). Pearson correlation analysis of regBase Common integrated 

functional scores showed both shared and distinct patterns on these benchmark datasets 

(Figure 1A). Algorithms trained on similar positive/negative data and features had 

relatively high pairwise correlations, like DeepSEA and DanQ (Pearson correlation 

coefficients R > 0.7), or CADD and DANN (R > 0.6), or FunSeq and FunSeq2 (R > 

0.5). However, the majority of tools exhibited weak pairwise correlations (R < 0.4) in 

these regulatory variant datasets, which could be explained by the different training 

data and features, as well as the various learning models used. Among these tested non-

coding regulatory variant datasets, we found the overall pairwise correlation for MPRA 

dataset was generally higher than those from other two datasets, implying that current 

tools may obtain better concordance in eQTL-associated regulatory variant prediction. 

Since some tested variants were not incorporated or obtained missing values in the 

regBase Common database, we also performed correlation analysis on 13 complete 

scores in the regBase database and found similar correlation patterns (Supplementary 

Figure S1). 

To visualize underlying relationships among these tools, we clustered the functional 

scores according to three above regulatory/pathogenic variant datasets. We found these 

tools could be generally partitioned into two major subsets, in which each member at 

the first subset barely associated with other tools within or outside this subset, while 
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members at the second subset were usually correlated with each other (Figure 1B). This 

result indicates that some tools may capture the unique and important features that is 

able to distinguish regulatory variants from neutral ones. For example, deltaSVM and 

CATO learn classification models based on SNV disrupting DNase I hypersensitive site 

(DHS), and RSVP identifies many informative predictors from gene expression 

annotations. Interestingly, besides the tools that use exactly same training data or 

features, we found several tool pairs consistently clustered together in all three results, 

such as deltaSVM and CATO both utilize variants at DHS as training data. FATHMM-

XF co-occured with CScape in the clustering, probably due to their use of similar 

negative samples and functional annotation features. (Figure 1B and Supplementary 

Figure S1). To summarize together, our results indicate that the existing non-

coding variant functional scoring tools will produce inconsistent predictions across 

pathogenic/regulatory and neutral variants, and may capture various attributes of 

functional regulatory codes, suggesting the necessity and importance of systematic 

integration. 

 

Composite predictions of functional, pathogenic and cancer driver non-coding 

regulatory variant 

Few ensemble prediction models for non-coding regulatory variants were proposed 

previously. These models only integrated limited number of tools and achieved 

mediocre performance on pathogenic regulatory variant prediction, especially for 

predicting somatic regulatory mutation associated with the development of cancer. 

Given the functional complexity and insufficient accumulation of causal regulatory 

variants, it is difficult to establish a well-rounded model that can predict all types of 

regulatory variants in the current stage. We hence partitioned the non-coding regulatory 

variant prediction task into three categories, including 1) predicting variant regulatory 

potential regardless of its functional direction and pathogenicity; 2) predicting disease-
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causal regulatory variant; 3) predicting cancer driver regulatory mutation. 

Correspondingly, we constructed three independent training datasets (Supplementary 

Table S6), including 1) functional regulatory variants dataset from our previous PRVCS 

(11) (regBase_REG); 2) pathogenic regulatory variants dataset from ClinVar and 

Genomiser (regBase_PAT); 3) highly recurrent regulatory somatic mutations dataset 

from COSMIC (regBase_CAN). For each positive set, we sampled constrained control 

set based on the best of our knowledge to alleviate biases (see Methods for details). 

Owing to the potential complementarity and uniqueness of existing non-coding 

regulatory variant prediction algorithms, we hypothesized that combining functional 

scores from multiple tools would boost the prediction performance for each 

aforementioned regulatory variant category. Using the compiled golden standards and 

regBase scores, we trained three composite models by Gradient Tree Boosting (GTB). 

We adapted XGBoost classifier as the implementation of GTB algorithm (49), because 

sparsity-aware split finding of XGBoost make it suitable for the task as missing value 

are commonly appeared in our regBase features. As all training variants of 

regBase_REG came from 1000 Genomes Project, we were able to train additional 

model using regBase Common features (regBase_REG_Common). We tuned the 

model hyper-parameters by 10-fold cross-validation and evaluated the model 

performance by receiver operating characteristic (ROC) curve and area under the curve 

(AUC).  

The new composite models significantly improved the prediction performance of the 

best single tool by 5% to 22% (Figure 2). Specifically, for functional non-coding 

regulatory variant prediction, regBase_REG_Common model received average AUC 

of 0.93 (Figure 2A) and regBase_REG model got 0.89 (Figure 2B). GenoCanyon is 

always the best single tool with AUC of 0.84 in these two models compared to an 

average score less than 0.75 achieved by the majority of tools, which implies that 

integrating more tools with weak but complementary ability could increase the 

performance of ensemble prediction model. For pathogenic non-coding regulatory 
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variant prediction, regBase_PAT model reached an average AUC of 0.90 (Figure 2C) 

that exceeds the best tool ReMM by 6% (AUC of 0.84). Remarkably, Tools without 

training on any ClinVar data, like Eigen, LINSIGHT and CADD, can achieve a 

comparable performance (AUC > 0.8) with ReMM on predicting disease-causal 

regulatory variants. This may highlight that evolutionary information and unbiased 

leaning strategy frequently used in these tools, could be very useful to discriminate 

mutation pathogenicity or deleteriousness from neutral signals. For the prediction of 

cancer driver non-coding regulatory mutation, our regBase_CAN model got an 

unexpectedly high average AUC of 0.91 (Figure 2D) that outperformed the best tool 

FIRE by 22% (AUC of 0.69). We found most existing algorithms were not specially 

designed to prioritize somatic regulatory variants except for FunSeq2 and CScape in 

the regBase database. The preliminary understanding of regulatory codes in the cancer 

genome and the limited number of cancer driver non-coding variants could be keypoints 

that inhibited the development of effective prediction model. However, by compositing 

the effect of existing regulatory variant scoring scheme, we provided an alternative 

strategy to prioritize non-coding regulatory mutation with cancer driver potential. 

 

Benchmarks on independent non-coding regulatory variant datasets 

To systematically evaluate our four composite models, we constructed six independent 

benchmark datasets across different functional categories of non-coding regulatory 

variants (Supplementary Table S7), including two fine-mapped eQTL datasets 

(Brown_eQTL (50), GTEx_eQTL (52)), one experimental validated eQTL dataset 

(MPRA_eQTL (45)), two disease-associated variants datasets (GWAS_5E-8, 

GWAS_1E-5 (53)) and one somatic eQTL dataset (Somatic_eQTL (54)). We also 

sampled corresponding control testing dataset and removed variants that appeared in 

our training datasets. These independent datasets were not used to train almost all of 

integrated algorithms in the regBase database, which could provide an unbiased 

opportunity to comprehensively compare our models with existing tools.  
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In general, our composite models can achieve an AUC score around 0.8 for most of the 

above testing sets. Among them, regBase_REG_Common model was the best one to 

predict fine-mapped eQTLs (AUC of 0.88 for Brown_eQTL, AUC of 0.89 for 

GTEx_eQTL) and GWAS disease-associated SNVs (AUC of 0.88 for GWAS_5E-8, 

AUC of 0.83 for GWAS_1E-5) (Figure 3A), while the performance regBase_REG is 

similar but falls slightly behind (Figure 3B). This is consistent with the cross-validation 

results in model training step. For predicting expression-modulating variants identified 

by MPRA, the best composite model regBase_REG got relatively smaller AUC of 0.62, 

implying the integration of existing tools may have limited ability to distinguish 

sequence effect of transcriptional regulatory elements regardless of their chromatin 

context (Figure 3C). Regarding to the prediction of cancer relevant somatic eQTLs, 

regBase_CAN model received an AUC of 0.94 which largely outperformed other 

models, further indicating the combination of weak classifiers could generate stronger 

learner using Gradient Tree Boosting strategy (Figure 3D). Nevertheless, regBase_PAT 

model exhibited poor performance when predicting GWAS disease-associated variants. 

Compared with common germline variants that conferring hereditary disease 

predisposition, the pathogenic SNVs used to train regBase_PAT model are mostly rare 

variants to cause Mendelian disorders and obtain very distinct attributes. Therefore, 

other independent pathogenic dataset is needed to evaluate the actual performance of 

regBase_PAT model. 

To figure out whether the combined models are better than individual tools or not, we 

evaluated the performance of 23 regBase Common integrated scores on five non-cancer 

testing sets, and 13 regBase integrated scores on somatic eQTL dataset. Results showed 

that our composite models outperformed individual tools on most of evaluations. First, 

regBase_REG_Common model was top ranked for Brown_eQTL (Figure 4A and 

Supplementary Table S8), GTEx_eQTL (Figure 4B and Supplementary Table S9), 

GWAS_5E-8 (Figure 4C and Supplementary Table S10) and GWAS_1E-5 (Figure 4D 

and Supplementary Table S11). It is worth noting that GenoCanyon, FIRE, LINSIGHT 
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and Eigen_PC were well performed on predicting germline cis-eQTLs, while 

GenoCanyon, FunSeq2 and SuRFR were suitable to classify disease-associated 

regularity variants. In addition, regBase_CAN model was the best one for 

Somatic_eQTL dataset, with an AUC of 0.94 which greatly surpassed the second-best 

tool Eigen_PC (AUC of 0.86) (Figure 4E and Supplementary Table S12). Moreover, 

when predicting effective MPRA alleles, tools learned by deep learning or unsupervised 

model, such as DeepSEA, GenoCanyon, Eigen_PC and Basset, obtained a higher AUC 

than our regBase_REG model (Figure 4F and Supplementary Table S13), probably due 

to the fact that deep learning and unsupervised methods could capture unknown features 

that explain the in-vitro activity of regulatory allele. We also evaluated the performance 

of our newly trained models with existing ensemble methods including IW-Scoring (12) 

and our previous PRVCS (11). We found that regBase_REG_Common model obtained 

superior capability in five out of six benchmarks, except that PRVCS and IW-Scoring 

slightly outperformed regBase_REG model at MPRA_eQTL dataset (Supplementary 

Figure S2A-F and Supplementary Table S14). Taken together, these independent 

evaluations further demonstrated the effectiveness of our composite models and 

illuminated that non-coding regulatory variants prediction results could be increasingly 

applicable in the future genetic studies.  

 

regBase composite models facilitate the identification of causal non-coding 

regulatory variant from complex GWAS loci  

Exploiting the true disease-causal variants is a challenging task in the GWAS study, 

especially for extremely high LD variants that locate in the non-coding genomic region. 

Statistical fine-mapping analysis usually ends with credible set of likely casual variants 

in which highly linked SNPs achieve similar posterior probabilities of causality, 

requiring further investigation of the true causal variants by other computational 

strategies, such as functional annotation (56). By visualizing regional PHRED-scaled 

score spectrum of composite models across 5p15.33 TERT region, we found several 
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PHRED score peaks of regBase_REG, regBase_REG_Common and regBase_CAN 

generally colocalize with significant disease-associated variants identified by existing 

GWASs, especially in the TERT promoter region (Figure 5A and Supplementary Table 

S15). To evaluate the ability of our composite models for causal variant prioritization, 

we collected 22 unique SNPs in the 5p15.33 TERT region that confer risk of multiple 

cancers from ten GWAS fine-mapping results (Supplementary Table S16). Previous 

results showed there are many independent causal SNPs around the TERT genomic 

region, and many of them can alter promoter or enhancer activities (57). We revealed 

that our regBase_CAN and regBase_REG_Common models acquired relatively higher 

regional PHRED scores than other methods (tools with no more than 25% equal scores 

were selected) for collected fine-mapped SNPs (Figure 5B and Supplementary Table 

S17). Moreover, compared with relatively higher correlation among these 22 fine-

mapped SNVs (Supplementary Figure S3), our top ranked variants (regional PHRED 

score > 10) of regBase_CAN or regBase_REG_Common showed very low LD with 

each other (Figure 5C), which indicates that our composite models could distinguish 

true signal from difficult credible set. For example, among all 22 prioritized fine-

mapped SNPs by regBase_REG_Common model, rs2853669 obtained the largest 

PHRED score in the whole 5p15.33 TERT region (Figure 5C). This SNP was 

previously validated to disrupt TERT promoter and confer cancer risk by extensive 

functional experiments (58-60), further suggesting our composite model could 

efficiently narrow down the potentially causal variants for following functional 

validations. 

 

DISCUSSION 

Evolved methods had been developed to predict and prioritize functional non-coding 

regulatory variants, yet systematical integration of existing predicted scores for all 

possible substitutions of human SNV was largely deficient. Comparing with a 
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commonly used lightweight resource dbNSFP on functional prediction and annotation 

for human nonsynonymous and splice-site SNVs (61), we compile a comprehensive 

resource that includes 23 different tools to predict functional non-coding regulatory 

variants at the whole genome scale. To maximize the power and completeness for 

different types of non-coding regulatory variant prediction, we introduce three 

independent ensemble models to score functional, pathogenic or cancer driver 

regulatory variants respectively. We demonstrate that our composite strategies 

significantly increase the prediction accuracy and can greatly assist the casual non-

coding regulatory variant discovery. 

According to the benchmarks of several independent datasets, we found stable and 

reasonable performance of existing tools to predict variant regulatory potential 

regardless of its pathogenicity, such as predicting the probability of SNV to be a cis-

eQTL. This merit could be attributed to the fact that current models are generally 

learned from annotation features that delineate regulatory signals around SNV locus, 

including chromatin accessibility, histone modifications and transcription factor 

binding. However, when evaluating the expression-modulating variants identified by in 

vitro reporter assay (62), no methods can achieve satisfactory performance. Since 

effective alleles in the MPRA are only weakly correlated with the associated eQTL 

effects (45,63), it may imply that surrounding sequence and local chromatin state could 

change the effect size of casual allele. In addition, recent CRISPR screening and GWAS 

fine mapping study have uncovered that some regulatory alleles locating in the 

unmarked regulatory elements are not associating with the conventional histone 

modifications or chromatin accessibility (64,65), which highlights the importance to 

exploit the missing but distinct prediction features. Besides, rational classification of 

pathogenic non-coding regulatory variant will extend the scopes of genetic diagnosis 

and precision medicine. Increasing studies have reported that pathogenic non-coding 

regulatory variant can influence the penetrance and causality of certain diseases (6), or 

alter the drug sensitivities (66,67). However, using ClinVar or COSMIC non-coding 
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regulatory SNVs (not including splicing-altered SNVs) as golden standards (43,68), 

previous and our evaluations on pathogenic classification of regulatory variants showed 

limited performance (8,11). To this end, by leveraging the complementarity and 

uniqueness of existing methods, we trained regBase_PAT and regBase_CAN models 

to score the probability of variants being pathogenic or cancer driver in the gene 

regulation, and found significant improvements in both cross validation and 

independent benchmark. As the continual discoveries of non-coding disease-casual 

regulatory variants and more associated features, we believe that pathogenic prediction 

of non-coding regulatory variants will play a critical role in the clinical consensus 

interpretation of whole genome DNA sequence.  

Highly context-dependent gene regulation can determine the cellular function of 

regulatory variants, and many recent methods are able to interpret regulatory variant in 

tissue/cell type-specific and disease-specific conditions (7,69). Since very few context-

specific dataset could be used to benchmark the performance of tissue/cell type-specific 

predictions, researchers usually apply indirect solutions to evaluate the algorithms, such 

as the enrichment of tissue/cell type-specific epigenetic signals and cis-regulatory 

elements (70). Such imperfections and under calibrated performance could inhibit the 

broader applications of context-specific methods, especially for accurately predicting 

pathogenic regulatory variant on particular conditions. Despite the importance of 

systematic integration and evaluation of tissue/cell type-specific methods, regBase 

particularly aggregates and operates context-free prediction scores from existing tools. 

Our regBase aggregated scores together with three ensemble models provide a versatile 

tool that prioritizes organismal level non-coding regulatory variants in a context-free 

manner, greatly facilitating the interpretation of human non-coding genome in the era 

of precision medicine.  
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The regBase models are implemented in Python. Integrated datasets, source codes, 

collected training/testing sets, analysis scripts for the results of this manuscript are 

available at https://github.com/mulinlab/regBase. 
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Figure Legends 

Figure 1. Correlation analysis of prediction score among 23 regBase Common 

integrated tools. (A) Pearson correlation of 23 regBase Common integrated functional 

scores on three known functional/pathogenic regulatory variant datasets. Positive 

correlations are displayed in blue and negative correlations in red color. Color intensity 

and the size of the square are proportional to the correlation coefficients. Non-

significant P-value (>0.05) is marked with a cross. (B) Hierarchical clustering of 

regBase Common integrated tools on three known functional/pathogenic regulatory 

variant datasets. HGMD, the Human Gene Mutation Database functional regulatory 

variants dataset; ClinVar, the ClinVar pathogenic and benign regulatory variants 

dataset; MPRA, the expression-modulating variants dataset identified by massively 

parallel reporter assay. 

Figure 2. Receiver operating characteristic (ROC) curve and area under the 

receiver operating characteristics curve (AUC) for different prediction models 

using 10-fold cross validation. (A) ROC and AUC of 23 integrated tools and 10-fold 

cross validation result for regBase_REG_Common model. (B) ROC and AUC of 13 

integrated tools and 10-fold cross validation result for regBase_REG model. (C) ROC 

and AUC of 13 integrated tools and 10-fold cross validation result for regBase_PAT 

model. (D) ROC and AUC of 13 integrated tools and 10-fold cross validation result for 

regBase_CAN model. 

Figure 3. Area-under-curve scores distribution for six independent benchmarks. 

(A) regBase_REG_Common model. (B) regBase_REG model. (C) regBase_PAT 

model. (D) regBase_CAN model. Brown_eQTL, 11 tissue/cell type-specific eQTLs 

fine-mapping data that was profiled by Brown and colleagues; GTEx_eQTL, 44 tissues-

specific eQTLs within fine-mapped credible set from GTEx V6; MPRA_eQTL, 

significant expression modulating variants by MPRA in lymphoblastoid cell lines; 

GWAS_5E-8, GWAS disease-associated variants with P-value < 5E-8 from GWAS 
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Catalog; GWAS_1E-5, GWAS disease-associated variants with P-value < 1E-5 from 

GWAS Catalog; Somatic_eQTL, recurrent somatic mutations within significant 

flanking intervals per somatic eGene. 

Figure 4. Evaluation result of individual prediction tools on six independent 

testing datasets. (A) Performance on Brown_eQTL dataset. (B) Performance on 

GTEx_eQTL dataset. (C) Performance on GWAS_5E-8 dataset. (D) Performance on 

GWAS_1E-5 dataset. (E) Performance on Somatic_eQTL dataset. (F) Performance on 

MPRA_eQTL dataset. AUPR, area under the precision recal curve; AUROC, area 

under the receiver operating characteristics curve; bubble size is proportional to Pearson 

correlation coefficients between predicted and true labels for each evaluation. 

Figure 5. Non-coding regulatory variants prioritization at 5p15.33 TERT region. 

(A) GWAS significant SNPs and regional PHRED-scaled score distribution of our four 

composite models across 5p15.33 TERT region. LocusZoom plot is generated using 

the most significant SNP rs10069690 as lead and the EUR LD structure. (B) 

Comparison of regional PHRED scores among our composite models and all integrated 

methods for 22 fine-mapping SNPs at 5p15.33 TERT gene. Tools that obtain more than 

25% equal scores in the evaluation are excluded. (C) LocusZoom plots for regional 

PHRED-scaled score of 22 fine-mapping SNPs. The top prioritized SNP rs2853669 in 

regBase_REG_Common model and the top prioritized SNP rs13172201 in 

regBase_CAN models are selected as leads.  
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