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 2

Abstract  1 

The aerosphere is the least understood biome on Earth despite its critical role as a 2 

microbial transport medium. The influence of surface cover on composition of airborne 3 

microbial communities above marine systems is unclear. Here we report evidence for a 4 

dynamic microbial presence at the ocean-atmosphere interface of a major marine 5 

ecosystem, the Great Barrier Reef, and identify that an oceanic or continental trajectory 6 

for aerosols correlates with observed shifts in bacterial and fungal diversity. A putative 7 

airborne source for coral symbionts and pathogens was also demonstrated thus 8 

highlighting biological connectivity between atmosphere and ocean. 9 

 10 

Main text  11 

Airborne microbial transport is central to dispersal outcomes [1] and several studies 12 

have demonstrated diverse microbial biosignatures are recoverable from the 13 

aerosphere. Microbial transport has been shown to occur across inter-continental 14 

distances above terrestrial habitats [2–4]. Variation has been recorded seasonally [5, 6], 15 

with underlying land use [7], and due to stochastic weather events such as dust storms 16 

[8] . Above marine systems abundance of recoverable microorganisms decreases 17 

exponentially with distance from land [9] and relatively little is known about potential 18 

biogeography of airborne microorganisms above the oceans. Some studies have shown 19 

that aerosolization of marine microorganisms to the aerosphere is an important 20 

process, e.g. [10], but the reverse deposition of airborne taxa to the ocean is poorly 21 

understood. This deposition is, however, a potential source of marine pathogens [11] 22 

and symbionts which are crucial to the health of coral reefs [12]. Here we test the 23 

hypothesis that persistent microbial inputs to the ocean-atmosphere interface of the 24 
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 3

Great Barrier Reef ecosystem vary according to surface cover during transit of the air-1 

mass and that an atmospheric source of putative coral-associated microbial taxa occurs.  2 

The Great Barrier Reef  is an ideal model system for research on bio-aerosols 3 

because incoming air mass during the average residence time for microorganisms in air 4 

[13] arises from two distinct sources: a terrestrial continental source in Australia 5 

transported across east and northeast dust paths and an oceanic source in the Coral Sea 6 

(Fig. 1a). Our study took advantage of a persistent flat-calm sea state during September-7 

October 2016 that minimised interference from microorganisms that are aerosolised by 8 

marine spray in heavier sea states at the Great Barrier Reef [14]. We recovered massive 9 

bulk-phase air samples 25m above sea level using a high-volume liquid impinger 10 

apparatus (Coriolis μ, Bertin Technologies, France) [15] during a voyage of the RV 11 

Investigator to circumnavigate the reef and recovered approximately 3,000m3 air 12 

during daily from which environmental DNA was recovered (n = 53) [15] 13 

(Supplementary Information, Supplementary Methods). We used the National Oceanic 14 

and Atmospheric Administration (NOAA) HYSPLIT-WEB model 15 

(https://ready.arl.noaa.gov/HYSPLIT.php) to identify back trajectories of air mass 16 

during the average residence time for microbial cells in air [13] and this could be 17 

delineated very clearly into those with recent transit over continental or oceanic 18 

surfaces (Fig. 1a). The concurrent concentration of atmospheric radon gas measured in 19 

real time was higher from back trajectories originating over continental Australia 20 

compared with those that originated from the ocean (Mann-Whitney U Test, P = 0.003) 21 

thus further verifying the binning of air mass into a continental or oceanic origin. High-22 

throughput sequencing of the bacterial 16S rRNA gene and fungal Internal Transcribed 23 

Spacer region loci were performed as previously described [15] and phylogenetic 24 

analysis of amplicon sequence variants (ASVs) were used to estimate diversity [16] 25 
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(Supplementary Information, Supplementary Methods). Sequencing of control samples 1 

revealed very low recovery of putative contaminant microbial signatures, a total of only 2 

17 out of 1403 bacterial and 5 out of 3775 fungal sequences were statistically classified 3 

as putative contaminants (Supplementary Information, Supplementary Methods). With 4 

few exceptions all samples were sequenced to asymptote thus allowing meaningful 5 

ecological inference from these data (Supplementary Information Fig. 1a).  6 

All air samples supported ultra-low biomass as inferred indirectly from DNA 7 

yield (mean recovery 0.23 ng/m3, SD 0.21 ng/m3) with no significant difference 8 

between sample groups (Mann-Whitney U Test, P = 0.37). Terrestrial or oceanic transit 9 

significantly determined bacterial community structure at the ocean-atmosphere 10 

interface above the great Barrier Reef (P = 0.001). In terms of overall taxa richness, 11 

bacteria displayed similar richness in terrestrial and ocean-derived samples whereas 12 

fungi were markedly more speciose in continent-derived samples (Supplementary 13 

Information, Fig. S1b).  14 

We interrogated the phylogenetic diversity of terrestrial and marine-sourced air 15 

by generating heatmaps of distribution for the 100 most abundant taxa. This analysis 16 

captured 98.4% bacterial and 66.9% fungal overall diversity in the libraries. Clear 17 

taxonomic differences in bacterial (Fig. 1b) and fungal (Fig. 1c) assemblages between 18 

ocean and continent-derived air mass occurred.  The robust nature of these data was 19 

further highlighted by the lack of recoverable taxa in experimental controls 20 

(Supplementary Information, Fig. S2) and this is particularly important for 21 

interrogation of low biomass environments such as the aerosphere. Overall the number 22 

of shared bacterial taxa was high amongst samples derived from ocean (87.9%) and 23 

terrestrial (89.6%) sources. Fungi displayed fewer shared taxa between ocean (64.9%) 24 

and continental (69.1%) sources. Nonetheless a high number of taxa specific to either 25 
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ocean (538 bacteria, 1,335 fungi) or continental (395 bacteria, 1,810 fungi) aerosols 1 

were recorded (Figs. 1b, 1c). We screened bacterial taxa from our sequence libraries at 2 

genus level to known coral-associated taxa including symbionts and pathogens 3 

(Supplementary Information, Supplementary Methods) [17]. The ocean derived air 4 

mass supported 8.4% putative coral associates whilst for continental sources this value 5 

was lower at 2.9% (Supplementary Information, Table S1). There were few fungal 6 

sequences with which to make comparisons but at the genus level there were 8.7% of 7 

ocean samples and 6.2% continental taxa that have been recorded as coral associates 8 

(Supplementary Information, Table S2). The most differentially abundant ASV from our 9 

study (Ralstonia sp.) showed high similarity to a previously identified coral 10 

endosymbiont (Supplementary Information, Table S3).  11 

Shifts in relative abundance of bacteria mainly occurred within the Phylum 12 

Proteobacteria and followed a temporal pattern during the voyage where the dominant 13 

genus Alistipes was gradually replaced by Bradyrhizobium and Ralstonia, and then in 14 

turn by Acinetobacter (Fig. 2a, Supplementary Information, Fig.  S3). All have been 15 

recovered as isolates or environmental rRNA gene sequences from both marine and 16 

terrestrial sources, thus making any attempt at source tracking challenging. For the 17 

Fungi terrestrial air sources supported higher diversity than marine sources and this 18 

reflected the large number of taxa associated with terrestrial habitats. A striking 19 

observation was that 56% of recovered genera supported yeast-like taxa, and this 20 

provides support for a marine origin of aerosols since oceanic waters are thought to 21 

support elevated abundance of yeasts over filamentous fungi [18].  Shifts in diversity 22 

were less pronounced overall for the Fungi (Fig. 2b, Supplementary Information, Fig. 23 

S4), and were partially obscured by the high diversity relative to Bacteria at the genus 24 

level. Major shifts in relative abundance occurred for Aureobasidium, Cladosporium, 25 
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Coprinopsis, Rhodosporidiobolus and Rhodotorula, and all of these genera have known 1 

terrestrial and marine records, although it should be noted that terrestrial fungal spores 2 

have been recorded in many marine microbial diversity assessments but are unlikely to 3 

be active components of an ocean surface water microbiome.  4 

We further interrogated the phylogenetic diversity of terrestrial and marine-5 

sourced air using Net Relatedness Index (NRI) analysis to estimate the level of 6 

phylogenetic structuring and putative recruitment from local and regional pools [15].  7 

The NRI analysis revealed that bacterial assemblages from both continental and marine 8 

origin displayed positive NRI values with effect sizes indicative of non-random 9 

assembly. Communities  were thus phylogenetically highly structured, which is possibly 10 

due to environmental filtering of traits during transit over the different surface covers 11 

(Supplementary Information Fig. S5). The fungi from continental sources displayed a 12 

similar though more variable trend of phylogenetic structuring although in ocean-13 

derived samples this clustering was relatively weak indicating they were more 14 

randomly assembled (Supplementary Information Fig. S5). When considered in tandem 15 

with our low diversity estimates for fungi in ocean derived samples these findings 16 

suggest that fungi are severely depleted in marine aerosols. Community phylogenetics 17 

and all our analyses support the hypothesis that long-range transport of microbial taxa 18 

in air results in selection during transit over different surface covers [15, 19, 20]. 19 

Overall our findings demonstrate that the aerosphere provides connectivity 20 

between the Great Barrier Reef marine ecosystem and exogenous microbial input from 21 

terrestrial and marine sources. This may be important to coral symbioses and  also to 22 

pathogen input via persistent airborne deposition.  Our study provided a unique insight 23 

on variability of airborne microbial inputs to the largest coral reef ecosystem on Earth.   24 

 25 
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Data availability 1 

All sequence data generated by this study has been submitted to the EMBL European 2 
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 15 

Figure Legends 16 

Figure 1. (a) HYSPLIT back trajectory analysis for modelled transit routes (3 d 17 

residence time [12]) with colours representing air mass origin over continent 18 

(green) or ocean (red) surface; (b) distribution and relative abundance for the 19 

1,000 most abundant bacterial amplicon sequence variants (ASVs), Continent n = 20 

8, Ocean n = 19; (c) distribution and relative abundance for the 1,000 most 21 

abundant fungal ASVs, Continent n = 8, Ocean n = 17.  22 

 23 

Figure 2. (a) Distribution and relative abundance of the 100 most abundant bacterial 24 

amplicon sequence variants (ASVs) with genus identified, Continent n = 8, Ocean 25 
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n = 19; (b) Distribution and relative abundance of the 100 most abundant fungal 1 

ASVs with genus identified, Continent n = 8, Ocean n = 17. 2 
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