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Abstract 11 

Decision confidence reflects our ability to evaluate the quality of decisions and guides 12 

subsequent behaviors. Experiments on confidence reports have almost exclusively focused on 13 

two-alternative decision-making. In this realm, the leading theory is that confidence reflects 14 

the probability that a decision is correct (the posterior probability of the chosen option). There 15 

is, however, another possibility, namely that people are less confident if the best two options 16 

are closer to each other in posterior probability, regardless of how probable they are in 17 

absolute terms. This possibility has not previously been considered because in two-alternative 18 

decisions, it reduces to the leading theory. Here, we test this alternative theory in a three-19 

alternative visual categorization task. We found that confidence reports are best explained by 20 

the difference between the posterior probabilities of the best and the next-best options, rather 21 

than by the posterior probability of the chosen (best) option alone, or by the overall 22 

uncertainty (entropy) of the posterior distribution. Our results upend the leading notion of 23 

decision confidence and instead suggest that confidence reflects the observer’s subjective 24 

probability that they made the best possible decision. 25 

 26 

 27 
  28 
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Introduction 29 

Confidence refers to the “sense of knowing” that comes with a decision. Confidence 30 

affects the planning of subsequent actions after a decision1, 2, learning3, and cooperation in 31 

group decision making4. Failures in utilizing confidence information have been linked to 32 

psychiatric disorders5.  33 

While human observers can report their self-assessment of the quality of their decisions6, 7, 34 
8, 9, 10, 11, 12, the computations underlying confidence reports are still insufficiently understood. 35 

The leading theory of confidence suggested that confidence reflects the probability that a 36 

decision is correct7, 8, 13, 14, 15, 16, 17. We refer to this idea as the “Bayesian confidence 37 

hypothesis” meaning that the decision-maker uses the posterior probability of the chosen 38 

category (i.e. the probability that decision is correct) for their confidence reports. In 39 

neurophysiological studies, a brain region or a neural process is considered to represent 40 

confidence if its responses correlate with the probability that a decision is correct18, 19, 20. 41 

Behavioral studies testing whether human confidence reports follow Bayesian confidence 42 

hypothesis have shown mixed results: While some studies found resemblances between 43 

Bayesian confidence and empirical data e.g. 18, 19, 21, 22, others have suggested that confidence 44 

reports deviate from the Bayesian confidence hypothesis e.g. 23, 24, 25.  45 

Even though the Bayesian confidence hypothesis is the leading theory of confidence, there 46 

is currently no evidence to rule out the possibility that confidence is affected by unchosen 47 

options. Specifically, people could be less confident if the next-best option is very close to the 48 

best option. In other words, confidence could depend on the difference between the posterior 49 

probabilities of the best and the next-best options, rather than on the absolute value of the 50 

posterior of the best option. This idea has not been tested because previous studies of decision 51 

confidence have predominantly used two-alternative decision tasks; in such tasks, the 52 

alternative hypothesis is equivalent to the Bayesian confidence hypothesis, because the 53 

difference between the two posterior probabilities in a two-alternative task is a monotonic 54 

function of the highest posterior probability. Thus, to dissociate these two models of 55 

confidence, we need more than two alternatives. Therefore, we use a three-alternative 56 

decision task. To preview our main result, we find that the difference-based model accounts 57 
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well for the data, whereas the model corresponding to the Bayesian confidence hypothesis and 58 

a third, entropy-based model do not. 59 

 60 

Results 61 

To investigate the computations underlying confidence reports in the presence of multiple 62 

alternatives, we designed a three-alternative categorization task. On each trial, participants 63 

viewed a large number of exemplar dots from each of the three categories (color-coded), 64 

along with one target dot in a different color (Figure 1A). Each category corresponded to an 65 

uncorrelated, circularly symmetric Gaussian distribution in the plane. We asked participants 66 

to regard the stimulus as a bird’s eye view of three groups of people. People within a group 67 

wear shirts of the same color, and the target dot represents a person from one of the three 68 

groups. Participants made two responses: the category of the target, and their confidence in 69 

their decision on a four-point Likert scale. 70 

To manipulate participants’ beliefs (posterior probability distribution), we used different 71 

configurations of the category distributions and varied the position of the target dot within 72 

each configuration (Figure 1B and 1C). This design allowed us to test quantitative models of 73 

how the posterior distribution gives rise to confidence reports (see an illustration of this idea 74 

in Supplementary Figure 1).  75 

 76 

Model 77 

Generative model. Each category is equally probable. We assume that the observer makes 78 

a noisy measurement x of the position s of the target dot. We model the noise as obeying a 79 

circularly symmetric Gaussian distribution centered at the target dot.  80 

Decision model. We now consider a Bayesian observer. We assume that the observer 81 

knows that each category is equally probable, and knows the distribution associated with each 82 

category (group) based on the exemplar dots. Given a measurement x, the posterior 83 

probability of category C is then  84 

 85 
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p C x( ) = p x s( ) p s C( )
p x s( ) p s C( )

C=1

3

∑
. (1) 86 

 87 

We further assume that due to decision noise or inference noise, the observer might not 88 

maintain the exact posterior distribution, p(C|x), but instead a noisy version of it. This type of 89 

decision noise is consistent with the notion that a portion of variability in behavior is due to 90 

“late noise” at the level of decision variable26, 27, 28. We modeled decision noise by drawing a 91 

noisy posterior distribution from a Dirichlet distribution around the true posterior (Figure 2A-92 

B; See details in Methods). In our case, the true posterior, which we denote by p, consists of 93 

the three posterior probabilities from Eq.(1): p=(p(C=1|x), p(C=2|x), p(C=3|x)). The 94 

magnitude of the decision noise, the amount of variation around p, is (inversely) controlled by 95 

a concentration parameter α>0. When α→∞, the variation vanishes and the posterior is 96 

noiseless. In general, the “noisy posterior”, which we denote as a vector 
  
pnoisy , satisfies 97 

  
pnoisy ~ Dirichlet αp( )   98 

We assume that when reporting the category of the target, the observer chooses the 99 

category C with the highest pnoisy(C|x). Unless otherwise specified, from now on we will refer 100 

to the noisy posterior distribution as simply the posterior distribution. 101 

We introduce three models of confidence reports: the Max model, the Entropy model and 102 

the Difference model. Each of these models contains two steps: a) mapping the posterior 103 

distribution (pnoisy) to a real-valued confidence variable; b) applying three criteria to this 104 

confidence variable to divide its space into four regions, which then map in increasing order 105 

to the four confidence ratings. The second step accounts for every possible monotonic 106 

mapping from the confidence variable to the four-point confidence rating. The three models 107 

differ in the first step.  108 

The Max model corresponds to the Bayesian confidence hypothesis. In this model, the 109 

confidence variable is the probability that the chosen category is correct, or in other words, it 110 

is the highest of the three posterior probabilities (Figure 2C). In this model, the observer is 111 
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least confident when the posterior distribution is uniform. Importantly, confidence is never 112 

influenced by the posterior probabilities of the categories that were not chosen.  113 

In the Difference model, the confidence variable is the difference between the highest and 114 

second-highest posterior probabilities. In this model, confidence is low if the evidence for the 115 

next-best option is strong, and the observer is least confident whenever the two most probable 116 

categories are equally probable. One interpretation of this model is that confidence reflects the 117 

observer’s subjective probability that they made the best possible choice, regardless of the 118 

actual posterior probability of that choice. An alternative interpretation is that decision-119 

making consists of an iterative process in which the observer reduces a multiple-choice task to 120 

simpler (binary) choices (see Discussion). 121 

In the Entropy model, the confidence variable is the negative of the uncertainty conveyed 122 

by the entire posterior distribution, quantified by its negative entropy. High confidence is 123 

associated with low entropy, and vice versa. Like in the Max model, the observer is least 124 

confident when the posterior distribution is uniform. Unlike in the Max model, however, the 125 

posterior probabilities of the non-chosen categories affect confidence. See the details of the 126 

models in Methods.  127 

Note that all three models are Bayesian in a way that they compute the posterior 128 

probability distribution, and categorize the target dot by choosing the category with the 129 

highest posterior. The three models differ in how the confidence variable is read out from the 130 

posterior distribution. Only the Max model corresponds to the Bayesian confidence 131 

hypothesis. Only the Max model assumes that the posterior of the unchosen categories does 132 

not affect confidence. Importantly, in our three-alternative task, these models generate 133 

qualitatively different mappings from the posterior distribution to the confidence variable 134 

(Figure 2C). In a standard two-alternative task, however, the models would have been 135 

indistinguishable, because the probability of the non-chosen category would be determined by 136 

the probability of the chosen category. 137 

We fitted the free parameters to the data of each individual subject using maximum-138 

likelihood estimation, where the data on a given trial consist of a decision-confidence pair. 139 

Thus, we accounted for the joint distribution of decisions and confidence ratings24, 25, 29 (see 140 

Methods). We compared models using the Akaike Information Criterion (AIC; Akaike, 1998). 141 

A model recovery analysis suggests that if the true model is among our tested models, our 142 
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model comparison procedure is able to identify the correct model (see Methods and 143 

Supplementary Figure 3). 144 

 145 

Experiment 1 146 

In Experiment 1, the centers of the three category distributions were aligned vertically 147 

(Figure 1B). There were four conditions: In the first two conditions, the centers were evenly 148 

spaced horizontally. In the last two conditions, the center of the central distribution was closer 149 

to the center of either the left or the right distribution. The vertical position of the target dot 150 

was sampled from a normal distribution, and the horizontal position of the target dot was 151 

sampled uniformly between the center of the leftmost and right-most classes plus an extension 152 

to the left and the right (see Methods).  153 

We plotted the psychometric curves (mean confidence rating as a function of the 154 

horizontal position of the target dot) by averaging confidence reports across trials using a 155 

sliding window (Figure 3). Mean confidence rating varied as a function of the horizontal 156 

position of the target. In the first two conditions (Figure 3), where the three distributions were 157 

evenly spaced, the psychometric curves showed two dips, with the lowest confidence attained 158 

at two positions symmetric around 0°.  159 

We simulated the predicted psychometric curves using the best-fitting parameters of each 160 

model (Figure 3B). The fits of the Max and the Difference models resembled the data, but the 161 

best fit of the Entropy model showed a dip at the center in the first condition.  162 

In the third and fourth conditions, in which the three distributions were unevenly spaced, 163 

mean confidence was lowest around the centers of the two distributions that were closest to 164 

each other. Only the Difference model exhibited this pattern, while the Max and the Entropy 165 

models deviated more clearly from the data. 166 

The models not only make predictions for confidence ratings, but also for the category 167 

decisions (Supplementary Figure 2). Participants categorized the target dot based on its 168 

location, and when the target dot was close to the boundary between two categories (the 169 

location where two categories have equal likelihood), they assigned the target to those two 170 

categories with nearly equal probabilities. In general, this pattern is consistent with an 171 

observer who chooses the category associated with the highest posterior probability. The 172 
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Entropy model fits worst, even though all three models used the same rule for the category 173 

decision; this is because the confidence data also need to be accounted for. 174 

Using the Akaike Information Criterion for model comparison (Figure 4A and 175 

Supplementary Table 1), we found that the Difference model outperformed the Max model 176 

by a group-averaged AIC score of 27.3 ± 7.0 (mean ± s.e.m.) and the Entropy model by 149 ± 177 

25 (mean ± s.e.m.).  178 

We further tested reduced versions of each of the three confidence models by removing 179 

either the sensory noise or the decision noise from the model. The Difference model 180 

outperformed the Max model and the Entropy model regardless of these manipulations 181 

(Supplementary Figure 4 and Supplementary Table 1). The sensory noise played a minor 182 

role in this task compared to the decision noise. For example, removing the sensory noise 183 

from the Difference model increased the AIC by 9.9 ± 3.2, while removing the inference 184 

noise increased the AIC by 57.3 ± 6.5. Using the Bayesian information criterion30 for model 185 

comparison led to the same conclusions (Supplementary Figure 5). 186 

 187 

Experiment 2 188 

In Experiment 2, we aimed to test whether the findings in Experiment 1 could be 189 

generalized to other stimulus configurations, where the centers of the categories varied in a 190 

two-dimensional space. We tested four conditions in which the centers of the three groups 191 

varied along both horizontal and vertical axis (Figure 1C). We sampled the target dot 192 

positions uniformly within a circular area centered on the screen. In addition, the distribution 193 

of the categories used in Experiment 2 allowed us to probe confidence reports in a wider 194 

range of posterior distributions (Supplementary Figure 1B). For example, we can probe the 195 

confidence report when the target dot had the same distance to all three categories in 196 

Experiment 2, but not in Experiment 1. 197 

The “psychometric curve” now is a heat map in two dimensions (Figure 5). The fits to 198 

these psychometric curves showed different patterns among the three models: When the three 199 

groups formed an equilateral triangle (Figure 5, the first and second columns), the confidence 200 

(as a function of target location) estimated by the Entropy model exhibited contours that were 201 

more convex than that in the data. In the last two conditions (Figure 5, the third and fourth 202 

columns), compared to the other two models, the Difference model showed stronger 203 
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resemblance to the data, as the model exhibited an extended low confidence region at the side 204 

where two categories were positioned closely. The results of model comparisons were 205 

consistent with Experiment 1. The Difference model outperformed the Max model by a 206 

group-averaged AIC score of 45.9 ± 8.5 (mean ± s.e.m.) and the Entropy model by 152 ± 25 207 

(mean ± s.e.m.) (Figure 4B and Supplementary Table 1). The model with both sensory and 208 

inference noise explained the data the best, and the inference noise had a stronger influence 209 

on the model fit than the sensory noise (Supplementary Figure 4B, Supplementary Figure 210 

5B and Supplementary Table 1).  211 

 212 

Experiment 3 213 

So far, we found that the Difference model fits the data better than the Max and the 214 

Entropy. However, whether participants report the probability that a decision is correct (the 215 

Max model) might depend on the experimental design. In Experiment 1 and 2, participants 216 

received no feedback on their category decision. Thus, the probability of being correct in the 217 

task could be difficult to learn. To investigate this issue, in Experiment 3, using the same four 218 

stimulus configurations as those in Experiment 1 (Figure 1B), we randomly chose one of the 219 

three groups as the true target category in each trial, and sampled the target position from the 220 

distribution of the true category. Feedback was presented at the end of each trial, informing 221 

participants of the true category. 222 

The results of model comparison were consistent with Experiment 1. The Difference 223 

model outperformed the Max model by a group-averaged AIC score of 10.3 ± 2.9 (mean ± 224 

s.e.m.) and the Entropy model by 93 ± 18 (mean ± s.e.m.) (Supplementary Figure 6 and 225 

Supplementary Table 1). The model with both sensory and inference noise explained the 226 

data the best, and the inference noise had a stronger influence on the model fit than the 227 

sensory noise (Supplementary Figure 4C and 5C). 228 

 229 

Discussion 230 

To distinguish the leading model of perceptual confidence (the Bayesian confidence 231 

hypothesis) from a new alternative model in which confidence is affected by the posterior 232 

probabilities of unchosen options, we studied human confidence reports in a three-alternative 233 
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perceptual decision task. We found that confidence is best described by the Difference model, 234 

in which confidence reflects the difference between the strength of observers’ belief (posterior 235 

probability) of the top two options in a decision. The Max model (which corresponds to the 236 

Bayesian confidence hypothesis) and the Entropy model (in which confidence is derived from 237 

the entropy of the posterior distribution) fell short in accounting for the data. Our results were 238 

robust under changes of stimulus configurations (Experiment 1 and 2), and when trial-by-trial 239 

feedback was provided (Experiment 3). Our results demonstrate that the posterior 240 

probabilities of the unchosen categories impact confidence in decision-making.  241 

Decision tasks with multiple alternatives not only allow us to dissociate different 242 

computational models of confidence, they are also ecologically important. In the real world, 243 

human and other animals often face decisions with multiple alternatives, such as identifying 244 

the color of a traffic light, recognizing a person, categorizing a species of an animal, online 245 

shopping, or making a medical diagnosis. 246 

Our models can be generalized to categorical choice with more than three alternatives. 247 

Specifically, the Difference model predicts that besides the posterior probabilities of the top 248 

two options, the posterior of the other options does not matter as long as they add up to the 249 

same total. A special type of categorical choice is when the world state variable is continuous 250 

(e.g. in an orientation estimation task) but gets discretized for the purpose of the experiment. 251 

Consider the specific case that the posterior distribution is Gaussian. An observer following 252 

the Difference model would compute the difference between the posteriors of the two discrete 253 

options closest to the peak. This serves as a very coarse approximation to the curvature of the 254 

posterior distribution at its peak, which, for Gaussians, is monotonically related to its inverse 255 

variance, consistent with an earlier model in which confidence is based on the precision 256 

parameter of the posterior29. Outside the realm of Gaussian and similar distributions, the 257 

Difference model and van den Berg et al.’s model (2017) might be distinguishable. For 258 

example, when the posterior distribution is bimodal, with the modes slightly different in 259 

height, the variance of the posterior is dominated by the separation between the modes, 260 

whereas the Difference model will use the difference in height for confidence reports. 261 

Although many behavioral studies have emphasized similarities between human 262 

confidence reports and predictions of Bayesian models e.g. 18, 19, 21, 22, the Bayesian 263 

confidence hypothesis has been questioned before8, 13, 14, 15, 16. In addition to the probability of 264 
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being correct, confidence is influenced by various factors such as reaction time31, post-265 

decision processing32, 33, 34, 35, and the magnitude of positive evidence36, 37, 38, 39. Two model 266 

comparison studies have shown deviations from Bayesian confidence hypothesis in two-267 

alternative decision tasks24, 25. However, in one study24, the experimental design did not allow 268 

the authors to strongly distinguish the model that was based on Bayesian confidence 269 

hypothesis from those that were not. Moreover, in both studies24, 25, the alternative models 270 

were based on heuristic decision rules without a broader theoretical interpretation. Here, we 271 

have identified a type of deviation from the Bayesian predictions that is not only of a 272 

qualitatively different nature, but that also raises new theoretical questions.  273 

Specifically, the Difference model is currently a descriptive model. We have two 274 

suggestions to interpret it as an outcome of approximate inference. First, the Difference model 275 

might be an approximation to a model in which confidence depends on the probability that an 276 

observer made the best possible decision. Specifically, the observer is “aware” that their 277 

decision is based on the noisy posterior pnoisy rather than the true posterior p. Thus, it is 278 

possible that the chosen category is not the category with the highest probability in the true 279 

posterior. Confidence would be derived from the probability that the chosen category has the 280 

highest probability in the true posterior distribution. The observer achieves this computation 281 

using the evidence for the next-best option: The stronger the evidence for the next-best option, 282 

the more likely that the chosen category is not the top choice in the true posterior, thus leading 283 

to lower confidence. Recent work has shown that subjective confidence guides information 284 

seeking during decision-making40. Under the Difference model, during information seeking, 285 

the observer’s goal is to make sure that the best option is better than the alternative options. 286 

Low confidence would encourage the observer to collect more information in order to 287 

strengthen the belief that the best option is better than the next-best option.  288 

Second, the finding that confidence is best described by the relative strength of the 289 

evidence of the top two options might be related to other findings in multiple-alternative 290 

decision-making. For example, in one experiment, observers watched columns of bricks build 291 

up on the screen, and reported which column had the highest accumulation rate41. A heuristic 292 

model in which the observer makes a decision when the height of the tallest column exceeds 293 

the height of the next-tallest column by a fixed threshold captured the overall pattern of 294 

people’s behavior. In a study on self-directed learning in a three-alternative categorization 295 
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task, observers had to learn the category distributions by sampling from the feature space and 296 

receiving feedback. Instead of choosing the most informative samples, human observers chose 297 

ones for which the likelihood of two categories were similar, namely those located at 298 

boundaries between pairs of two categories42. This literature allows us to speculate that 299 

observers might decompose a multiple-alternative decision into several simpler (perhaps 300 

binary) choices. This notion is reminiscent of the concept in prospect theory that before a 301 

phase of evaluation, extremely unlikely outcomes might be first discarded in an “editing” 302 

phase43. Hence, an alternative interpretation of our results is that confidence reports deviate 303 

from the Bayesian confidence hypothesis (the Max model) because the observer estimates the 304 

probability of correct in a way that ignores the options that are discarded before final 305 

evaluation. In the Difference model, the least favorite option is not completely discarded 306 

because it decreases the posterior probabilities of the other two options (and thus their 307 

difference) by contributing to the normalization pool44, 45. Therefore, we consider an extreme 308 

version of editing, the Ratio model, in which the least-favorite option does not even 309 

participate in normalization, and thus confidence solely depends on the likelihood ratio 310 

between the top two options. The Difference model and the Ratio model are not 311 

distinguishable in Experiment 1 and 2 (Supplementary Figure 7). In Experiment 3, the 312 

Difference model was very similar to the Ratio model in group-averaged AIC (3.8 ± 1.4 in 313 

favor of the Difference model). Testing variable numbers of categories within an experiment 314 

might help to differentiate between these two models.  315 

We found that compared to the sensory noise, the noise associated with the computation 316 

of posterior probability plays a more important role in our task.  This is consistent with the 317 

findings of a recent study26. The relative unimportance of sensory noise could be partly due to 318 

our experimental designs, which used stimuli with strong signal strength (saturated color and 319 

unlimited duration). Different from our study, Drugowitsch et al. (2016) devised an evidence 320 

accumulation task and further distinguished two types of decision noises: First, the inference 321 

noise that was added (and thus increased) with each new stimulus sample. Second, the 322 

selection noise that was injected only once at the final response. Because our experiment only 323 

had one stimulus in each trial, these two sources of variability were indistinguishable.  324 

Do our results generalize beyond perceptual decision-making? In a two-alternative value-325 

based decision task, observers reported confidence in a way that was similar to that in 326 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/583963doi: bioRxiv preprint 

https://doi.org/10.1101/583963
http://creativecommons.org/licenses/by-nc-nd/4.0/


perceptual decision tasks10: When observers were asked to choose the good with the higher 327 

value, confidence increased with the posterior probability that a decision is correct, which in 328 

turn increased with the difference in value between the two goods. In addition, choice 329 

accuracy was higher in high-confidence trials then in low-confidence trials, reflecting 330 

observers’ ability to evaluate their own performance. It is unknown how observers compute 331 

confidence when there are more than two goods. In three-alternative value-based tasks, the 332 

Difference model would predict that, confidence is determined by the difference between the 333 

probability that the chosen item is the most valuable and the probability that the next-best 334 

item is the most valuable. 335 

How does the present study advance our understanding of the neural basis of confidence? 336 

Most neurophysiological studies of confidence have considered the neural activity that 337 

correlates with the probability of being correct as the neural representation of confidence (but 338 

see 48). Neural responses in parietal cortex19, orbitofrontal cortex18 and pulvinar20 have been 339 

associated with that representation of confidence.. These studies all used two-alternative 340 

decision tasks. Multiple-alternative decision tasks have been used in neurophysiological 341 

studies on non-human primates but not with the objective of studying confidence45, 49, 50, 51. By 342 

utilizing multiple-alternative tasks, neural studies could dissociate the neural correlates of 343 

probability correct from that of the “difference” confidence variable in the Difference model, 344 

which according to our results might be the basis of human subjective confidence. A 345 

potentially important difference between human and non-human animal studies is that in the 346 

latter, confidence is not explicitly reported but operationalized through some aspect of 347 

behavior, such as the probability of choosing a “safe” (opt-out) option19, 20, 46, 47, 48, or the time 348 

spent on waiting for reward18. Thus, one should be careful when directly comparing these 349 

implicit reports with explicit confidence reports in human studies. 350 

 351 

Methods 352 

Setup 353 

Participants sat in a dimly lit room with the chin rest positioned 45 cm from the monitor. 354 

The stimuli and the experiment were controlled by customized programs written in Javascript. 355 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/583963doi: bioRxiv preprint 

https://doi.org/10.1101/583963
http://creativecommons.org/licenses/by-nc-nd/4.0/


The monitor had a resolution of 3840 by 2160 pixels and a refresh rate of 30 Hz. The 356 

spectrum and the luminance of the monitor were measured with a spectroradiometer. 357 

 358 

Participants 359 

Thirteen participants took part in Experiment 1. Eleven participants took part in 360 

Experiment 2. Eleven participants took part in Experiment 3. All participants had normal or 361 

corrected-to-normal vision. The experiments were conducted with the written consent of each 362 

participant. The University Committee on Activities involving Human Subjects at New York 363 

University approved the experimental protocols.  364 

 365 

Stimulus 366 

On each trial, three categories of exemplar dots (375 dots per category) were presented 367 

along with one target dot, a black dot (Figure 1A). The dots within a category were 368 

distributed as an uncorrelated, circularly symmetric Gaussian distribution with a standard 369 

deviation of 2° (degree visual angle) along both horizontal and vertical directions. Exemplar 370 

dots from the different categories were coded with different colors. The three colors were 371 

randomly chosen on each trial, and were equally spaced in Commission Internationale de 372 

l’Eclairage (CIE) L*a*b* color space. The three colors were at a fixed lightness of L*=70 and 373 

were equidistant from the gray point (a*=0, and b*=0). 374 

In Experiment 1 and 3, the centers of the three categories were aligned vertically to the 375 

center of the screen, and were located at different horizontal positions (Figure 1B). In four 376 

configurations, the horizontal positions of the centers of the three categories were (-3°, 0°, 3°), 377 

(-4°, 0°, 4°), (-3°, -2°, 3°), and (-3°, 2°, 3°), from the center of the screen respectively. In 378 

Experiment 2, the centers of the three categories varied on a 2-dimensional space (Figure 379 

1C). In four configurations, the horizontal positions of the centers of the three categories were 380 

(-2°, 0°, 2°), (-1.59°, 0°, 1.59°), (-2°, -2°, 2°), and (-2°, 2°, 2°), from the center of the screen, 381 

respectively. The vertical positions of the centers were (1.16°, -2.31°, 1.16°), (0.94°, -1.84°, 382 

0.94°), (1.16°, 0°, 1.16°), (1.16°, 0°, 1.16°) from the center of the screen respectively. 383 

 384 

Procedures 385 
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We told participants that the three groups of exemplar dots represented a bird’s eye view 386 

of three groups of people. The three groups contained equal numbers of people. The black dot 387 

(the target) is a person from one of the three groups, but we do not know the color of her/his 388 

T-shirt. We asked participants to categorize the target to one of the three groups based on the 389 

(position) information conveyed by the dots, and report their confidence on a four-point 390 

Likert scale. 391 

Each trial started with the onset of the stimulus and three rectangular buttons positioned at 392 

the bottom of the screen (Figure 1A). On each trial, participants first categorized the target to 393 

one of the three groups (based on the position information conveyed by the dots) by using the 394 

mouse to click on one of the three buttons. After participants reported their decision, the three 395 

buttons were replaced by four buttons (labeled as “very unconfident”, “somewhat 396 

unconfident”, “somewhat confident”, and “very confident”) for participants to report their 397 

confidence on the decision they made. The stimuli were presented throughout each trial. 398 

Reaction time (for both decision and confidence reports) was unlimited. After participants 399 

reported their confidence, all the exemplar dots and the rectangular buttons disappeared from 400 

the screen, and the next trial started after a 600 ms inter-trial-interval. 401 

In Experiment 1, the vertical position of the target dot was sampled from a normal 402 

distribution (2° std), and the horizontal position of the target dot was sampled uniformly 403 

between the center of the leftmost and rightmost categories plus a 0.2° extension to the left 404 

and the right. In Experiment 2, the target dot was uniformly sampled from a circular area 405 

(2.6° radius) positioned at the center of the screen. No feedback was provided in Experiment 406 

1 and Experiment 2.  407 

In Experiment 3, in each trial, we randomly chose one of the three categories with equal 408 

probability as the true category. We then positioned the target dot by sampling from the 409 

distribution of the true category. A feedback regarding the true category was provided at the 410 

end of each trial: After participants reported their confidence, all exemplar dots disappeared 411 

except that the exemplar dots from the true category remained on the screen for an extra 500 412 

ms. In each experiment, participants completed one 1-hr session (84 trials per configuration in 413 

Experiment 1 and 120 trials per configuration in Experiment 2 and 3). All the trials in one 414 

session were separated into 8 blocks with equal number of trials. Different configurations 415 

were randomized and interleaved within each block. 416 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/583963doi: bioRxiv preprint 

https://doi.org/10.1101/583963
http://creativecommons.org/licenses/by-nc-nd/4.0/


 417 

Models 418 

Generative model. The target belongs to category C ∈{1, 2, 3}. The two-dimensional 419 

position s of a target in category C is drawn from a two-dimensional Gaussian p(s|C) = N(s; 420 

mC, σs
2I), where mC is the center of category C, σs

2 is the variance of the stimulus distribution, 421 

and I is the 2-dimensional identity matrix. We assume that the observer make a noisy sensory 422 

measurement x of the target position. We model the sensory noisy using a Gaussian 423 

distribution centered at s with covariance matrix σ2I. Thus, the distribution of x given 424 

category C is p(x|C) = N(x; mC, (σs
2+σ2)I). 425 

Inference on a given trial. We assume that the observer knows the mean and standard 426 

deviation of each category based on the exemplar dots, and that the observer assumes that the 427 

three categories have equal probabilities. The posterior probability of category C given the 428 

measurement x is then p(C|x) ∝ p(x|C) = N(x; mC, (σs
2+σ2)I). Instead of the true posterior 429 

p(C|x), the observer makes the decisions based on pnoisy(C|x), a noisy version of the posterior 430 

probability. We obtain a noisy posterior pnoisy(C|x) by drawing from a Dirichlet distribution. 431 

The Dirichlet distribution is a generalization of the beta distribution. Just like the beta 432 

distribution is a continuous distribution over the probability parameter of a Bernoulli random 433 

variable, the Dirichlet distribution is a distribution over a vector that represents the 434 

probabilities of any number of categories.  The Dirichlet distribution is parameterized as 435 

   

p(pnoisy | p;α ) = 1
B(αp)

pni
α pi−1

i=1

3

∏

B(αp) =
Γ(α pi )

i=1

3

∏

Γ( (α pi )
i=1

3

∑ )
 436 

p is a vector consists of the three posterior probabilities, p=(p(C=1|x), p(C=2|x), 437 

p(C=3|x)). pnoisy is a vector consists of the three posterior probabilities perturbed by the 438 

decision noise, pnoisy =(pnoisy(C=1|x), pnoisy(C=2|x), pnoisy(C=3|x)). The mean of pnoisy(C|x) is 439 

p(C|x). The concentration parameter α inversely determines the magnitude of the decision 440 
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noise. To make a category decision, the observer chooses the category that maximizes the 441 

posterior probability:
   
Ĉ = argmax

C
pnoisy C | x( ) .  442 

We considered three models of confidence reports. We first specify in each model an 443 

internal continuous confidence variable c*. In the Max (maximum a posteriori) model, c* is 444 

the posterior probability of the chosen category: 
   
c* = pnoisy C = Ĉ | x( ) . In the Difference 445 

model, c* is a difference: 
   
c* = pnoisy C = Ĉ | x( )− pnoisy C = Ĉ2 | x( ) , where   Ĉ2  is the category 446 

with the second-highest posterior probability. In the Entropy model, c* is the negative entropy 447 

of the posterior distribution: 
   
c*= pnoisy C x( )log pnoisy C x( )

C=1

3

∑ . 448 

In each model, the continuous confidence variable c* is converted to a four-point 449 

confidence report c by imposing three confidence criteria b1, b2 and b3. For example, c=3 450 

when b2<c*<b3. We also included a lapse rate λ in each model; on a lapse trial, the observer 451 

presses a random button for both the decision and the confidence report. In addition to the 452 

models that included both sensory and decision noise, we took a factorial approach and tested 453 

various combinations of confidence model and sources of variability 52, 53, 54. For each 454 

confidence model, we tested two reduced models by removing either the sensory noise (by 455 

setting σ=0) or the decision noise (by setting pnoisy(C|x) = p(C|x)) from the model. 456 

Response probabilities. So far, we have described the mapping from a measurement x to a 457 

decision   Ĉ  and a confidence report c. The measurement, however, is internal to the observer 458 
and unknown to the experimenter. Therefore, to obtain model predictions for a given 459 

parameter combination (σ, α, b1, b2, b3, λ), we perform a Monte Carlo simulation. For every 460 

true target position s that occurs in the experiment, we simulated a large number (10,000) of 461 

measurements x. For each of these measurements, we compute the posterior p(C|x), add 462 

decision noise to obtain pnoisy(C|x), and finally obtain a category decision   Ĉ  and a confidence 463 
report c. Across all simulated measurements, we obtain a joint distribution 464 

   
p Ĉ,c s;σ ,α ,b1,b2 ,b3,λ( )  that represents the response probabilities of the observer. 465 

Model fitting and model comparison. We denote the parameters (σ, α, b1, b2, b3, λ) 466 

collectively by θ. We fit each model to individual-subject data by maximizing the log 467 
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likelihood of θ, log L(θ)=log p(data|θ). We assume that the trials are conditionally 468 

independent. We denote the target position, category response, and four-point confidence 469 

report on the ith trial by si,   Ĉi , and ci, respectively. Then, the log likelihood becomes 470 

 
   
log L θ( ) = log p Ĉi ,ci si ,θ( )

i
∏ = log

i
∑ p Ĉi ,ci si ,θ( ) , 471 

where 
   
p Ĉi ,ci si ,θ( )  is obtained from the Monte Carlo simulation described above. We 472 

optimized the parameters using a new method called Bayesian Adaptive Direct Search 55. We 473 

used AIC and BIC for model comparison. To report the AIC (or BIC) index, we computed the 474 

AIC (or BIC) for each individual and then averaged the AIC across participants. 475 

 476 

Parameterization 477 

The full version of the three confidence models (Max, Difference and Entropy models 478 

reported in Figure 4) have the same set of free parameters including the magnitude of sensory 479 

noise (σ), the magnitude (concentration parameter) of decision noise (α), three boundaries for 480 

converting continuous confidence variable to button press (b1, b2, b3) and a lapse rate λ. 481 

For each of the three confidence models, we tested two versions of the reduced models 482 

(reported in Supplementary Figure 4 and Supplementary Figure 5). In one version, we 483 

kept the sensory noise (σ) in the model while removing the decision noise (α). In the other 484 

version we kept the decision noise (α) in the model while removing the sensory noise (σ).  485 

 486 

Model Recovery 487 

To evaluate our ability to distinguish the three models, we performed a model recovery 488 

analysis. Based on the design of Experiment 1, we synthesized 10 datasets for each of the 489 

confidence models. To ensure that the synthesized data resemble our experimental data, we 490 

synthesized the data using the group-averaged best-fitting parameter values obtained in 491 

Experiment 1. We then fit each of the 30 datasets (3 generating models with 10 datasets each) 492 

with the 3 models. Supplementary Figure 3 illustrates the results averaged over 10 datasets for 493 

each of the generating model. 494 

 495 

Data visualization  496 
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For Experiment 1 and 3, we used a sliding window to visualize the psychometric curves, 497 

defined as the confidence ratings as a function of horizontal location of the target dot. The 498 

sliding window had a width of 0.6°. We moved the window horizontally (in a step of 0.1°) 499 

from the left to the right of the screen center. At each step, we computed mean confidence 500 

rating by averaging the confidence reports c of all the trials fell within the window (based on 501 

the horizontal target location of each trial). We first applied this procedure to individual data, 502 

and then averaged the individual psychometric curves across subjects (the black curves in 503 

Figure 3B and Supplementary Figure 6B). For Experiment 1, we visualized the data ranging 504 

from -3.5° to +3.5° from the screen center. For Experiment 3, we visualized the data ranging 505 

from -5° to +5° from the center. These ranges were chosen so that each steps along the black 506 

curves in Figure 3B and Supplementary Figure 6B contained at least 5 trials per subject on 507 

average. To visualize the model fit, we sampled a series of target dot locations along the 508 

horizontal axis (in a step of 0.1°), and we used the best-fitting parameters to compute the 509 

confidence rating predicted by the models for each target location. We then used the same 510 

procedure (a sliding window) to compute the mean confidence rating predicted by the models 511 

(the blue curves in Figure 3B and Supplementary Figure 6B).  512 

For Experiment 2, the “psychometric curve” became a heat map in a two-dimensional 513 

space (Figure 5). We tiled the two-dimensional space with non-overlapped hexagonal spatial 514 

windows (with a radius of 0.25°) positioned from -3° to +3° (Figure 5A) along both 515 

horizontal and vertical axis. To compute the mean confidence rating for each hexagonal 516 

window, we averaged the confidence ratings across all the trials fell within that window for 517 

each participant. If the number of trials was zero among all the participants for a window, that 518 

window was left as white in Figure 5A. To visualize the model fit, we used the best-fitting 519 

parameters and computed the confidence rating predicted by the models for an array of target 520 

locations (a grid tiling the two-dimensional space with a step of 0.1° along both horizontal 521 

and vertical axis). The predicted confidence rating was then averaged within each hexagonal 522 

window. 523 

  524 
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 529 
 530 

Figure 1. (A) Experimental procedure. Each trial started with the presentation of the stimulus 531 

including exemplar dots in three different colors representing the distribution of each of the 532 

three categories and one target dot, the black dot. Observers first reported their decisions in 533 

the categorization task and then reported their confidence by using the rectangular buttons 534 

presented at the bottom of the screen. (B) and (C) Schematic representation of the distribution 535 

of the categories. The circles are centered at the mean location of each category. The width of 536 

the circles corresponds to 2.5 times the standard deviation of the category distribution. (B) 537 

The four conditions tested in Experiment 1 and 3. (C) The four conditions tested in 538 

Experiment 2. The exemplar dots in (A) are based on the distribution depicted in the top panel 539 

in (B). 540 

  541 

time
Which group does the black dot belong to?

How confident are you in your decision?

somewhat
low

very
low

somewhat
high

very
high

A
Experiment 1 and 3 Experiment 2
B C

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2019. ; https://doi.org/10.1101/583963doi: bioRxiv preprint 

https://doi.org/10.1101/583963
http://creativecommons.org/licenses/by-nc-nd/4.0/


 542 

Figure 2. (A) Generative model. Target position is represented by s. Two sources of 543 

variability are considered in the model: First, observers have access to noisy measurement x, a 544 

Gaussian distribution centered at s with a standard deviation σ. Second, given the same 545 

measurement x, the posterior distribution varies across trials due to decision noise, modeled 546 

by Dirichlet distribution, of which spread (represented by the shade of the ternary plot) is 547 

controlled by a parameter α (see Methods). On each trial, a decision   Ĉ  and a confidence c are 548 
read out from the posterior distribution of that trial. (B) We use ternary plots to represent all 549 

possible posterior distributions. For example, a point at the center represents a uniform 550 

posterior distribution; at the corners of the ternary plot, the posterior probability of one 551 

category is one while the posterior for the other two categories are zeros. (C) The bar graphs 552 

illustrate how confidence is read out from posterior probabilities in each model. The color of 553 

each ternary plot represents the confidence as a function of posterior distribution for each 554 

model. The color is scaled for each ternary plot (independently) to take the whole range of the 555 

color bar.  556 
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 558 

Figure 3. Experiment 1. (A) The distribution of the reference dots in each condition. (B) Mean 559 

confidence rating as a function of target position for each of the four conditions. The black 560 

curves represent group mean ± 1 s.e.m. Blue curves represent the model fit averaged across 561 

individuals. 562 
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 564 

Figure 4. Model comparisons using ΔAIC : AIC of each model compared with the Difference 565 

model. The bars represent ΔAIC  averaged across participants. The error bars represent ± 1 566 

s.e.m across participants. (A) Experiment 1. (B) Experiment 2.  567 
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 569 
Figure 5. Experiment 2. (A) The mean confidence rating as a function of target positions. (B) 570 

Model fit averaged across individuals. The red crosses in each panel represent the center of 571 

each of the three categories.  572 
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Supplementary Information 

Supplementary Tables 

Supplementary Table 1. The ΔAIC  of each model, computed as the AIC of each model 

minus the AIC of the Difference model with both decision and sensory noise. ΔAIC  is 

computed for individual participant. The top number in each cell is the ΔAIC  averaged 

across participants. The numbers in the parenthesis represent one standard error of mean 

across participants.  

  

 Inference + sensory noise Inference noise only Sensory noise only 
 Diff Max Ent Diff Max Ent Diff Max Ent 

Exp 1  27.3 
(7.0) 

149.4 
(24) 

9.9 
(3.1) 

34.4 
(7.2) 

147.7 
(24) 

57.3 
(6.5) 

98.7 
(12) 

317.1 
(31) 

Exp 2 45.9 
(8.5) 

151.9 
(25) 

13.6 
(5.5) 

57.8 
(10) 

154.8 
(23) 

85.5 
(12) 

108.5 
(14) 

201.1 
(27) 

Exp 3 10.3 
(2.9) 

93.2 
(18) 

9.27 
(2.7) 

17.9 
(3.7) 

91.5 
(18) 

85.5 
(8.9) 

139.2 
(13) 

327.7 
(24) 
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Supplementary Figures 

 
Supplementary Figure 1. Illustration of how observers’ belief, posterior distribution, 

about the target category could change as a function of the target dot position. For 

illustration purpose, we considered a simplified case in which there is no sensory noise 

and no decision noise, so the posterior distribution only depends the target dot position 

and the distribution of each category. (A) Experiment 1 and 3: The four panels 

correspond to the four conditions depicted in Figure 1B. The gray lines and the arrows 

indicate the trajectory of the posterior distribution on the ternary plot as a target dot move 

from the left-end to the right-end of the screen. (B) Experiment 2: The four panels 

correspond to the four conditions depicted in Figure 1C. In the experiment, the target dot 

was uniformly sampled within a circle at the center of the screen with a radius of 2.6° 

(see Methods and S1 Experimental procedures). All possible target dot locations within 

the circle correspond to a range of posterior probabilities indicated by the gray region in 

each panel.  
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Supplementary Figure 2. Experiment 1. (A) Distribution of the reference dots in each 

condition. (B) The red (green, blue) lines represent the probability that the observers 

categorize the target dot to the red (green, blue) category as a function of the target dot 

location. Solid lines represent the group mean ±  1 s.e.m. The dashed lines represent the 

model fit averaged across individuals. In both (A) and (B), the gray vertical lines 

represent the boundary between two categories, the location where two categories have 

the same likelihood. 
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Supplementary Figure 3. Model recovery analysis. The colors represent ΔAIC  of each 

fitted model, computed as the AIC of each fitted model minus the AIC of the fitted model 

using the true model. 
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Supplementary Figure 4. Model comparison using AIC for both the full models (with 

both sensory and decision noise in the model; the top row) and the reduced models (with 

only the decision noise or only the sensory noise in the model; the middle and the bottom 

rows). (A) Experiment 1 (B) Experiment 2 and (C) Experiment 3. The bars represent 

ΔAIC  (AIC of each model compared with the full Difference model) averaged across 

participants. The error bars represent ± 1 s.e.m across participants. 
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Supplementary Figure 5. Model comparison using BIC for both the full models (with 

both sensory and decision noise in the model; the top row) and the reduced models (with 

only the decision noise or only the sensory noise in the model; the middle and the bottom 

rows). (A) Experiment 1 (B) Experiment 2 and (C) Experiment 3. The bars represent 

ΔBIC  (BIC of each model compared with the full Difference model) averaged across 

participants. The error bars represent ± 1 s.e.m across participants. 
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Supplementary Figure 6. Experiment 3. (A) The distribution of the reference dots in each 

condition. (B) Mean confidence rating as a function of target position for each of the four 

conditions. The black curves represent group mean ±  1 s.e.m. Blue curves represent the 

model fit averaged across individuals. (C) Model comparisons using ΔAIC : AIC of each 

model compared with the Difference model. The bars represent ΔAIC  averaged across 

participants. The error bars represent ± 1 s.e.m across participants. 
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 1 
Supplementary Figure 7. Model comparison between the full Difference model and the full 2 

Ratio model using AIC (A) Experiment 1 (B) Experiment 2 and (C) Experiment 3. The bars 3 

represent ΔAIC  (AIC of each model compared with the full Difference model) averaged 4 

across participants. The error bars represent ± 1 s.e.m across participants. 5 
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