Computational Drug Recommendation Approaches toward Safe Polypharmacy

Wen-Hao Chiang, MS¹, Xia Ning, PhD^{2*} ¹Department of Computer & Information Science, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA; ²Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA

Related Work

Computational Methods for DDI and ADR Studies Significant research efforts have focused on detecting DDIs, and can be broadly classified into four categories. Methods of the first category analyze medical literature and/or electronic medical records, and extract mentioned drug pairs¹. Methods in the second category integrate various biochemical and molecular drug/target data to measure drug-drug similarities and score/predict pairwise DDIs. These data include phenotypic and genomic information², and drug side effects³, etc. Methods of the third category leverage healthcare information on social media and online communities to detect DDIs⁴. The fourth category focuses on using numerical models to predict the dose responses to multiple drugs⁵. A recent thread is dedicated to understanding the interaction patterns among high-order DDIs, and how such patterns can relate to induced ADRs⁶.

Recommender Systems Top-*N* recommender systems, which recommend the top-*N* items that are most likely to be preferred by users, have been used in a variety of applications in e-commerce and social networking, etc⁷. Recommender systems have been recently applied to prioritizing healthcare information, due to a tremendous need for personalized healthcare⁸. Current applications along this line include recommending physicians to patients on specific diseases⁹, and recommending drugs for patient symptoms¹⁰, etc. However, to the best of our knowledge, very little research has been done on new prescription recommendation particularly with ADR concerns.

Background

Sparse Linear Method for top-*N* **Recommendation** Sparse Linear Method $(SLIM)^{11}$ is an efficient and state-ofthe-art algorithm for top-*N* recommendation that was initially designed for e-commerce applications. In the drug recommendation problem, given a drug prescription \mathbf{a}_i , SLIM models the score of how likely an additional drug d_j should be co-prescribed with \mathbf{a}_i as a sparse linear aggregation of the drugs in \mathbf{a}_i , that is, $\tilde{a}_{ij} = \mathbf{a}_i \mathbf{w}_j^{\mathsf{T}}$, (1) where \tilde{a}_{ij} is the estimated score of d_j in \mathbf{a}_i , and $\mathbf{w}_j^{\mathsf{T}}$ is a sparse column vector of aggregation coefficients. Note that $a_{ij} = 0$, that is, d_j is not included \mathbf{a}_i originally. Drugs with high scores calculated as above will be recommended to the prescription. Thus, the scores are referred to as recommendation scores, and a prescription composed of \mathbf{a}_i and a recommended drug d_j is referred to as a new prescription with respect to \mathbf{a}_i , denoted as $\mathbf{a}_i \cup \{d_j\}$. The intuition of using SLIM for drug recommendation will be discussed later in Section Joint SLIM and LogR Model: SLR on page 3.

To learn $W = [\mathbf{w}_1^{\mathsf{T}}, \mathbf{w}_2^{\mathsf{T}}, \cdots, \mathbf{w}_n^{\mathsf{T}}]$, SLIM solves the following optimization problem,

$$\min_{W} \quad \text{SLIM}(A; W, \alpha, \lambda) = \frac{1}{2} \|A - AW\|_{F}^{2} + \frac{\alpha}{2} \|W\|_{F}^{2} + \lambda \|W\|_{\ell_{1}}, \quad \text{subject to} \quad W \ge 0, \text{diag}(W) = 0, \quad (2)$$

where $||W||_{\ell_1} = \sum_{i=1}^n \sum_{i=1}^n |w_{ij}|$ is the entry-wise ℓ_1 -norm of W, and $||\cdot||_F$ is the matrix Frobenius norm. In SLIM, W converts a binary A into its estimation \tilde{A} of floating values, which could recover unseen non-zero entries in A.

Logistic Regression for Label Prediction We can formulate the problem of predicting whether a prescription of multiple drugs induces a particular ADR as a binary classification problem, and solve the problem using logistic regression (LogR): $p(y_i|\mathbf{a}_i; \mathbf{x}, c) = (1 + \exp(-y_i(\mathbf{a}_i\mathbf{x}^{\mathsf{T}} + c)))^{-1},$ (3) where \mathbf{x}^{T} and c are the parameters. To learn the parameters, LogR solves the following optimization problem,

$$\min_{\mathbf{x},c} \quad \log \mathbb{R}(\mathbf{y}|A;\mathbf{x},c,\beta,\gamma) = \sum_{i=1}^{m} \log\{1 + \exp[-y_i(\mathbf{a}_i \mathbf{x}^{\mathsf{T}} + c)]\} + \frac{\beta}{2} \|\mathbf{x}\|_2^2 + \gamma \|\mathbf{x}\|_1, \tag{4}$$

where $\mathbf{y} = [y_1; y_2; \cdots; y_m]$, $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$, and $\|\mathbf{x}\|_2^2 = \sum_{i=1}^n x_i^2$.

Training SLR

The optimization problem 2 can be solved through the alternating direction method of multipliers $(ADMM)^{12}$. We introduce a new variable Z and thus the following augmented Lagrangian as the new objective to optimize:

$$\begin{split} \min_{\substack{\boldsymbol{\Theta}=\{W^+,W^-,\\Z^+,Z^-,\mathbf{x},\,c\}}} & L(A^+,A^-,y^+,y^-;\boldsymbol{\Theta},\,\mathbf{u}^+,\,\mathbf{u}^-,\rho^+,\rho^-) = \\ & \mathbf{\Theta}=\{W^+,W^-,\\Z^+,Z^-,\mathbf{x},\,c\} \text{ SLIM}(A^+;W^+,\alpha,\lambda) + \text{ SLIM}(A^-;W^-,\alpha,\lambda) \\ & \omega\{\text{LogR}(\mathbf{y}^+|\tilde{B}^+;\mathbf{x},c,\beta,\gamma) + \text{LogR}(\mathbf{y}^-|\tilde{B}^-;\mathbf{x},c,\beta,\gamma)\} \\ & \mathbf{u}^{+\mathsf{T}}\mathbf{v}^+ + \frac{\rho^+}{2} \|\mathbf{v}^+\|_2^2 + |\mathbf{u}^{-\mathsf{T}}\mathbf{v}^- + \frac{\rho^-}{2} \|\mathbf{v}^-\|_2^2, \\ \text{subject to} \quad \tilde{B}^+ = A^+Z^+, \tilde{B}^- = A^-Z^-, \\ & \mathbf{v}^+ = \text{vec}(W^+) - \text{vec}(Z^+), \mathbf{v}^- = \text{vec}(W^-) - \text{vec}(Z^-), \\ & W^+ = Z^+, W^- = Z^-, W^+ \ge 0, W^- \ge 0, \\ & \text{diag}(W^+) = 0, \text{diag}(W^-) = 0, \end{split}$$

where \mathbf{u}^+ and \mathbf{u}^- are the Lagrange multipliers; ρ^+ , $\rho^- \downarrow 0$ are the penalty parameters, and $vec(\cdot)$ is the vectorization of a matrix. The algorithm to solve the optimization problem 2 is presented in Algorithm 1.

Algorithm 1 Learning SLR

1: function SLR($A, \omega, \alpha, \lambda, \beta, \gamma$) $\rho^+ = 10, \rho^- = 10, \mathbf{u}_{(0)}^+ = \mathbf{0}, \mathbf{u}_{(0)}^- = \mathbf{0}, k = 0$ 2: $Z_{(0)}^+ = W_{(0)}^+, Z_{(0)}^- = W_{(0)}^-$ 3: learn $W^+_{(0)}$ and $W^-_{(0)}$ from SLIM (Equation 2) 4: learn $\mathbf{x}_{(0)}$ and $c_{(0)}$ from LogR (Equation 4) 5: 6: while not converge do 7: $\{ W^+_{(k+1)}, W^-_{(k+1)} \} \coloneqq \underset{W^+, W^-}{\operatorname{argmin}} \ \begin{array}{c} L(W^+_{(k)}, W^-_{(k)}, Z^+_{(k)}, Z^-_{(k)}, \\ \mathbf{x}_{(k)}, c_{(k)}, \mathbf{u}^+_{(k)}, \mathbf{u}^-_{(k)}) \end{array}$ 8: $\{Z^+_{(k+1)}, Z^-_{(k+1)}\} \coloneqq \underset{Z^+, Z^-}{\operatorname{argmin}} \begin{array}{c} L(W^+_{(k+1)}, W^-_{(k+1)}, Z^+_{(k)}, Z^-_{(k)}, \\ \mathbf{x}_{(k)}, \ c_{(k)}, \ \mathbf{u}^+_{(k)}, \ \mathbf{u}^-_{(k)}) \end{array}$ 9: $\{\mathbf{x}_{(k+1)}, c_{(k+1)}\} \coloneqq \underset{\mathbf{x}, c}{\operatorname{argmin}} L(W_{(k+1)}^+, W_{(k+1)}^-, Z_{(k+1)}^+, \\ Z_{(k+1)}^-, \mathbf{x}_{(k)}, c_{(k)}, \mathbf{u}_{(k)}^+, \mathbf{u}_{(k)}^-)\}$ $\begin{aligned} \mathbf{u}^+_{(k+1)} &= \mathbf{u}^+_{(k)} + \rho^+ (\operatorname{vec}(W^+_{(k+1)} - Z^+_{(k+1)}) \\ \mathbf{u}^-_{(k+1)} &= \mathbf{u}^-_{(k)} + \rho^+ (\operatorname{vec}(W^-_{(k+1)} - Z^-_{(k+1)}) \\ k &= k+1 \end{aligned}$ 10: 11: 12: 13: end while return $W^+_{(k+1)}, W^-_{(k+1)}, Z^+_{(k+1)}, Z^-_{(k+1)}, \mathbf{x}_{(k+1)}$ and $c_{(k+1)}$ 14: 15: end function

In Algorithm 1, to solve for W, the problem boils down to a regularized least squares problem. To solve for Z, the problem boils down to a combination of a regularized logistic regression problem and a least squares problem. To solve for \mathbf{x} and c, the problem boils down to a regularized logistic regression problem. All these problems can be solved by gradient descent methods. The algorithm empirically converges.

Examples of Co-Prescribed Drugs with Similar Indications

Table S1 presents some examples of co-prescribed drugs with similar indications.

Additional Experimental Results

Table S1: Examples of Co-Prescribed Drugs with Similar Indications

Co-prescribed drugs	Indications
atorvastatin, lovastatin, rosuvastatin, simvastatin	high cholesterol
citalopram, escitalopram	depression medication
levofloxacin, methylprednisolone, prednisolone	arthritis, blood problems, and immune system disorders
fluoxetine, paroxetine, sertraline	depression and other mental illnesses
alitretinoin, tretinoin	acne and other skin conditions
conjugated estrogens, medroxyprogesterone, progesterone	birth control

Maximum Possible Evaluation Metrics

We present the maximum possible $\max(rec_P)$ and $\max(rec_N)$ values that are used for rec_P and rec_P normalization in Table S2.

NA ^{tst}			A_{*-}^{tst}			A_{*u}^{tst}			A_{*all}				
19	$\mathtt{rec}_{\mathtt{P}}$	$\mathtt{rec}_{\mathtt{N}}$	HM _{rec}	recp	$\mathtt{rec}_{\mathtt{N}}$	HM _{rec}		$\mathtt{rec}_{\mathtt{P}}$	$\mathtt{rec}_{\mathtt{N}}$	HM _{rec}	 $\mathtt{rec}_{\mathtt{P}}$	$\mathtt{rec}_{\mathtt{N}}$	HM _{rec}
5	0.4567	0.0859	0.1436	0.9033	0.2824	0.4324		0.5361	0.0430	0.0804	0.5369	0.0846	0.1469
10	0.6419	0.1648	0.2596	0.9706	0.4693	0.6322		0.6739	0.0772	0.1387	0.6863	0.1517	0.2481
15	0.7440	0.2375	0.3582	0.9854	0.5951	0.7394		0.7704	0.1105	0.1932	0.7782	0.2096	0.3299
20	0.8116	0.3037	0.4412	0.9938	0.6868	0.8079		0.8347	0.1433	0.2444	0.8392	0.2611	0.3982

Table S2: Maximum Possible rec_P and rec_N Values

Parameter Study

Table S3 presents the parameter study on ω and α as in Equation 2 on SLR-sli for top-5 (i.e., N = 5) drug recommendations on A_*^{tst} . We found all 0 or very small values (e.g., 10^{-6}) for all the other parameters λ (parameter on ℓ_1 -norm regularization on SLIM component), β (parameter on ℓ_2 -norm regularization on LogR component) and γ (parameter on ℓ_1 -norm regularization on LogR component) lead to optimal performance. This indicates the very minor effects of these parameters on SLR-sli. Thus, we did not present studies on these parameters.

Table S3: Parameter Study of SLR-sli on A_*^{tst} (N = 5)

		best	recp				best rec _N					best HM _{rec}					
$\omega \setminus \alpha$	1	5	10	50	500	$\omega \alpha$	1	10	20	50	100	$\omega \backslash \alpha$	1	5	10	50	100
0.0005	0.2504	0.2554	0.2575	0.2505	0.2283	0.1000	0.3871	0.3941	0.3949	0.3957	0.3937	0.0010	0.3010	0.3056	0.3080	0.3040	0.2997
0.0050	0.2568	0.2582	0.2599	0.2517	0.2283	0.5000	0.3891	0.3950	0.3961	0.3977	0.3956	0.0050	0.3056	0.3077	0.3098	0.3049	0.2995
0.0100	0.2599	0.2640	0.2654	0.2572	0.2285	0.8000	0.3890	0.3944	0.3951	0.3978	0.3940	0.0100	0.3078	0.3117	0.3136	0.3091	0.3037
0.5000	0.2549	0.2573	0.2567	0.2454	0.2072	1.0000	0.3892	0.3943	0.3959	0.3970	0.3943	0.5000	0.2878	0.2925	0.2898	0.2812	0.2792
1.0000	0.2552	0.2586	0.2577	0.2464	0.2075	5.0000	0.3889	0.3935	0.3937	0.3944	0.3938	1.0000	0.2987	0.2890	0.2961	0.2739	0.2653

The best performance is **bold**.

Recall that ω is the trade-off parameter between SLIM and LogR components in SLR-sli, and α is its parameter on ℓ_2 -norm regularization on SLIM component. Table S3 demonstrates a very similar trend in terms of $\overline{rec_P}$, $\overline{rec_N}$ and HM_{rec}, that is, as ω becomes larger (i.e., the weight on LogR component becomes higher in SLR-sli), all $\overline{rec_P}$, $\overline{rec_N}$ and HM_{rec} values first increase and then decrease. This demonstrates the trade-off between the SLIM component and the LogR component in SLR-sli. Even though, the optimal ω corresponds to a small value (e.g., 0.01). This may indicate that co-prescription pattern learning (via SLIM) is more difficult than ADR label prediction (via LogR). Similarly, as α becomes larger (i.e., the regularization on parameter W of SLIM becomes stronger), all $\overline{rec_P}$, $\overline{rec_N}$ and HM_{rec} also first increase and then decrease. Smaller α will introduce larger values in W compared to larger α , and thus the relatively small optimal α indicates that W captures strong patterns from prescriptions.

Table S4 presents parameter study of η on SLR-sli in A_*^{tst} for the best $\overline{rec_P}$, $\overline{rec_N}$, and HM_{rec} . The parameter η is the frequency threshold for drugs in the SLIM recommendation list (i.e., Step 2 in Section). When higher frequency

threshold is used, fewer drugs in SLIM recommendation list will be replaced, and the performance of SLR-sli in general decreases. This indicates that drug recommendation performance can be improved by considering the frequencies of drugs prescribed.

η	rec _P	$\overline{\texttt{rec}_{\texttt{N}}}$	HM _{rec}
1	0.2581	0.3978	0.3120
5	0.2654	0.3880	0.3136
10	0.2626	0.3681	0.3050
15	0.2555	0.3543	0.2956
20	0.2487	0.3412	0.2866

Table S4: Frequency Threshold Study on SLR-sli in A_*^{tst}

The best performance is marked in **bold**.

Table S5: Top-N Performance of SLR-sli

N	A_{*+}^{tst}			A_{*-}^{tst}			A_{*u}^{tst}			$A_*^{ m tst}$		
19	$\overline{\mathtt{rec}_{\mathtt{P}}}$	$\overline{\texttt{rec}_{\texttt{N}}}$	HM _{rec}	$\overline{\mathtt{rec}_{\mathtt{P}}}$	$\overline{\texttt{rec}_{\mathtt{N}}}$	HM _{rec}	rec _P	$\overline{\texttt{rec}_{\texttt{N}}}$	HM _{rec}	rec _P	$\overline{\texttt{rec}_{\mathtt{N}}}$	HM _{rec}
5	0.2530	0.4131	0.3137	0.2847	0.4407	0.3459	0.2541	0.4005	0.3107	0.2654	0.3836	0.3136
10	0.2956	0.4252	0.3486	0.3636	0.4408	0.3985	0.2914	0.4041	0.3385	0.3055	0.3913	0.3431
15	0.3278	0.4240	0.3697	0.4191	0.4506	0.4342	0.3061	0.3950	0.3448	0.3321	0.3940	0.3604
20	0.3538	0.4250	0.3861	0.4573	0.4631	0.4601	0.3201	0.3847	0.3493	0.3551	0.3965	0.3747

Top-N Performance

Table S5 presents the SLR-sli performance with N = 5, 10, 15, and 20 to-avoid and safe drugs recommended when SLR-sli achieves the best HM_{rec}. As N increases, all the HM_{rec} values increase, demonstrating that more true to-avoid and safe drugs are recommended. This indicates that SLR-sli is able to rank the true to-avoid and safe drugs on top. The maximum possible max(rec_P) and max(rec_N) values that are used for $\overline{rec_P}$ and $\overline{rec_N}$ normalization (Equation 3 and Equation 4) is presented in Table S2.

Co-Prescription Patterns

We present the co-prescription patterns using W^+ and W^- from SLR-sli of the best HM_{rec} performance on A_{**}^{tst} , A_{*-}^{tst} and A_{*u}^{tst} in Table S6, S7 and S8, respectively, and the top-10 largest values in W^+ and W^- are presented.

Table S6: Co-Prescription Patterns from SLR-sli or	A^{ist}_{*+}	
--	----------------	--

	W^+				W^-		
w	d_1	d_2	freq	w	d_1	d_2	freq
0.3437	acetaminophen	hydrocodone	133	0.2033	acetaminophen	hydrocodone	36
0.2236	ethinyl estradiol	etonogestrel	38	0.1918	fluticasone propionate	salmeterol	35
0.2038	fluticasone propionate	salmeterol	44	0.1848	emtricitabine	tenofovir	35
0.1783	hydrochlorothiazide	triamterene	32	0.1748	lamivudine	zidovudine	42
0.1781	ezetimibe	simvastatin	68	0.1700	lopinavir	ritonavir	36
0.1719	sulfamethoxazole	trimethoprim	31	0.1609	exenatide	metformin	40
0.1672	pamidronate	zoledronate	42	0.1535	ethinyl estradiol	norelgestromin	23
0.1587	acetaminophen	oxycodone	80	0.1466	acetylsalicylic acid	clopidogrel	29
0.1471	salbutamol	salmeterol	37	0.1228	ritonavir	tenofovir	36
0.1419	acetylsalicylic acid	ramipril	65	0.1142	atazanavir	ritonavir	25

In this table, "w" is the value of the entry corresponding to the drug pairs in W^+/W^- ; "d₁" and "d₂" are the two drugs in the drug pair, and "freq" is the frequency of the corresponding drug pairs in training data A^+ and A^- . Drugs that are reported in SIDER to induce myopathy on their own are **bold**.

Case Study

Table S7: Co-Prescription Patterns from SLR-sli on A_{*-}^{tst}

	W^+				W^{-}	_	
w	d_1	d_2	freq	w	d_1	d_2	freq
0.5659	ethinyl estradiol	etonogestrel	38	0.4854	acetaminophen	hydrocodone	36
0.5309	acetaminophen	hydrocodone	13	0.4660	ethinyl estradiol	norelgestromin	23
0.4662	hydrochlorothiazide	triamterene	32	0.4625	emtricitabine	tenofovir	35
0.4541	sulfamethoxazole	trimethoprim	31	0.4519	fluticasone propionate	salmeterol	35
0.4430	fluticasone propionate	salmeterol	44	0.4039	lopinavir	ritonavir	36
0.3633	acetaminophen	codeine	27	0.3393	budesonide	formoterol	17
0.3607	amoxicillin	clavulanate	22	0.3324	conjugated estrogens	medroxyprogesterone	17
0.3596	pamidronate	zoledronate	42	0.3311	fluorouracil	leucovorin	18
0.3540	carbidopa	levodopa	17	0.3278	lamivudine	zidovudine	42
0.3345	emtricitabine	tenofovir	22	0.2974	acetylsalicylic acid	clopidogrel	29

In this table, "w" is the value of the entry corresponding to the drug pairs in W^+/W^- ; " d_1 " and " d_2 " are the two drugs in the drug pair, and "freq" is the frequency of the corresponding drug pairs in training data A^+ and A^- . Drugs that are reported in SIDER to induce myopathy on their own are **bold**.

Table S8: Co-Prescription Patterns from SLR-sli on A_{*u}^{tst}

	W^{\perp}	-			W	7-	
w	d_1	d_2	freq	w	d_1	d_2	freq
0.8906	carbidopa	levodopa	17	0.9154	ethinyl estradiol	norelgestromin	23
0.8747	ethinyl estradiol	etonogestrel	38	0.8934	amphetamine	dextroamphetamine	8
0.8348	amoxicillin	clavulanate	22	0.8851	buprenorphine	naloxone	9
0.8080	sulfamethoxazole	trimethoprim	31	0.8750	sulfamethoxazole	trimethoprim	8
0.7979	buprenorphine	naloxone	9	0.8276	emtricitabine	tenofovir	35
0.7973	ethinyl estradiol	norgestimate	10	0.7385	piperacillin	tazobactam	3
0.7755	prazepam	venlafaxine	4	0.7309	lopinavir	ritonavir	36
0.7734	hydrochlorothiazide	triamterene	32	0.7160	fluorouracil	leucovorin	18
0.7400	cyproterone	simvastatin	4	0.7158	acetaminophen	hydrocodone	36
0.7389	amphetamine	dextroamphetamine	6	0.7126	budesonide	formoterol	17

In this table, "w" is the value of the entry corresponding to the drug pairs in W^+/W^- ; "d₁" and "d₂" are the two drugs in the drug pair, and "freq" is the frequency of the corresponding drug pairs in training data A^+ and A^- . Drugs that are reported in SIDER to induce myopathy on their own are **bold**.

Table S9 presents some examples of testing prescriptions and their recommended to-avoid drugs from SLR-sli such that the corresponding new prescriptions (i.e., testing prescriptions and recommended drugs together) are ADR-inducing.

Table S10 presents some examples of testing prescriptions and their recommended safe drugs from SLR-sli such that the corresponding new prescriptions (i.e., testing prescriptions and recommended drugs together) are ADR-free.

References

- [1] Srinivasan V Iyer, Rave Harpaz, Paea LePendu, Anna Bauer-Mehren, and Nigam H Shah. Mining clinical text for signals of adverse drug-drug interactions. *Journal of the American Medical Informatics Association*, pages 353–362, 2014.
- [2] Feixiong Cheng and Zhongming Zhao. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. *Journal of the American Medical Informatics Association*, 21(e2):e278–e286, 2014.
- [3] Nicholas P Tatonetti, JC Denny, SN Murphy, GH Fernald, G Krishnan, V Castro, P Yue, PS Tsau, I Kohane, DM Roden, et al. Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. *Clinical Pharmacology & Therapeutics*, 90(1):133–142, 2011.

- [4] Haodong Yang and Christopher C Yang. Harnessing social media for drug-drug interactions detection. In *Healthcare Informatics (ICHI), 2013 IEEE International Conference on*, pages 22–29. IEEE, 2013.
- [5] Chien-Wei Chiang, Pengyue Zhang, Xueying Wang, Lei Wang, Shijun Zhang, Xia Ning, Li Shen, Sara K Quinney, and Lang Li. Translational high-dimensional drug interaction discovery and validation using health record databases and pharmacokinetics models. *Clinical Pharmacology & Therapeutics*, 103(2):287–295, 2018.
- [6] Xia Ning, Titus Schleyer, Li Shen, and Lang Li. Pattern discovery from directional high-order drug-drug interaction relations. In *Healthcare Informatics (ICHI)*, 2017 IEEE International Conference on, pages 154–162. IEEE, 2017.
- [7] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender systems handbook. In *Recommender systems handbook*, pages 1–35. Springer, 2011.
- [8] Martin Wiesner and Daniel Pfeifer. Health recommender systems: Concepts, requirements, technical basics and challenges. *International Journal of Environmental Research and Public Health*, 11(3):2580–2607, 2014.
- [9] Li Guo, Bo Jin, Cuili Yao, Haoyu Yang, Degen Huang, and Fei Wang. Which doctor to trust: A recommender system for identifying the right doctors. *Journal of medical Internet research*, 18(7), 2016.
- [10] Qian Zhang, Guangquan Zhang, Jie Lu, and Dianshuang Wu. A framework of hybrid recommender system for personalized clinical prescription. In 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pages 189–195, Nov 2015.
- [11] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender systems. In *Data Mining* (*ICDM*), 2011 IEEE 11th International Conference on, pages 497–506. IEEE, 2011.
- [12] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends* (R) *in Machine Learning*, 3(1):1–122, 2011.

Table S9: To-Avoid Drug Recommendation from SLR-sli

subset	testing prescription	recommendation
	calcipotriol, cerivastatin, fenofibrate, gliclazide, rosuvastatin, sulfasalazine	atorvastatin
	acetylsalicylic acid, amlodipine, bisoprolol, felodipine, finasteride, lisinopril	atorvastatin
	acetylsalicylic acid, clopidogrel, cyclosporine, fluvastatin, gabapentin, mycophe-	metoprolol
A_{*+}^{tst}	nolate mofetil, pantoprazole, prednisone	
	carboplatin, cetuximab, fluticasone propionate, folic acid, hydroxocobalamin,	salmeterol
	pemetrexed, salbutamol	
	acetylsalicylic acid, atenolol	simvastatin
	fusidic acid, simvastatin	ramipril
	propofol, valproic acid	lamotrigine
	acetylsalicylic acid, bisoprolol, furosemide, metformin, ramipril	atorvastatin
	acetylsalicylic acid, amlodipine, atorvastatin, isosorbide mononitrate, lisinopril,	atenolol
	olmesartan, omeprazole, quinine	_
A_{*}^{tst}	dicyclomine, gabapentin, lansoprazole, lorazepam, pamidronate, zoledronate, zolpi-	oxycodone
	dem	
	amlodipine, ezetimibe	simvastatin
	irbesartan, metformin	rosuvastatin
	dexamethasone, folic acid	lenalidomide
	clonazepam, phenobarbital	carbamazepine
	acetaminophen, darunavir, dexamethasone, esomeprazole, ondansetron, ritonavir,	emtricitabine
	sulfamethoxazole, tenofovir , trabectedin, trimethoprim	
	acetylsalicylic acid, carvedilol, isosorbide mononitrate, nitroglycerin, ramipril, ra-	simvastatin
Atot	nolazine, trimethoprim	
A_{*u}^{tst}	acetylsalicylic acid, alprazolam, fluoxetine, hydrocodone, phenytoin, rosuvastatin	
	acetylsalicylic acid, amlodipine, esomeprazole, hydrochlorothiazide, potassium	furosemide
	chloride, sorafenib, triamterene	
	dexamethasone, triazolam	atorvastatin
	zuclopenthixol	simvastatin
	mycophenolate mofetil, simvastatin	cyclosporine
	risperidone	haloperidol
	acetylsalicylic acid, buprenorphine, clopidogrel, flucloxacillin, fusidic acid, metron-	atorvastatin
	idazole, pregabalin , ramipril	- 4 4 - 4 •
	acetylsalicylic acid, amlodipine, bisoprolol, felodipine, finasteride, lisinopril	atorvastatin
	acetaminophen, amitriptyline, bupropion, fluoxetine , gabapentin, oxycodone, silde-	nydrocodone
A_*^{tst}	nafil, simvastatin , valdecoxib, venlafaxine	athing lastradial
	acetaminophen, cephalexin, diphenhydramine, etonogestrel, levothyroxine, methi-	ethniyi estradioi
	mazole, metoprolol, nadolol, salbutamol fluoxetine	nonovotine
		paroxetine atorvastatin
	prazepam	
	clarithromycin, simvastatin	amoxicillin
	cyclosporine, methotrexate	mycophenolate mofeti

In this table, "recommendation" represents the recommended drug.Drugs that are reported in SIDER to induce myopathy on their own are **bold**.

subset	testing prescription	recommendation
	abacavir, atazanavir, lamivudine, lopinavir, ritonavir	zidovudine
	cyclophosphamide, doxorubicin, prednisolone, vincristine	dexamethasone
	cyclophosphamide, cytarabine, dexamethasone, doxorubicin, methotrexate,	vincristine
A_{*+}^{tst}	thioguanine	
A_{*+}	busulfan, cyclophosphamide, cyclosporine, methotrexate	prednisolone
	acetylsalicylic acid, dexamethasone	bortezomib
	acetylsalicylic acid, varenicline	simvastatin
	methylprednisolone, prednisolone	azathioprine
	carboplatin, vinorelbine	cetuximab
	darunavir, emtricitabine, etravirine, ritonavir, tenofovir, tipranavir	raltegravir
	cyclophosphamide, cytarabine, doxorubicin, methotrexate, thioguanine, vincristine	dexamethasone
	bortezomib, cisplatin, cyclophosphamide, dexamethasone, etoposide, thalidomide	melphalan
A_{*}^{tst}	bleomycin, cyclophosphamide, doxorubicin, etoposide, procarbazine, vincristine	prednisone
л _{*-}	stavudine, tenofovir	emtricitabine
	sertraline, topiramate	phenytoin
	atorvastatin, solifenacin	amlodipine
	everolimus, prednisolone	mycophenolic acid
	efavirenz, lamivudine, lopinavir, ritonavir, tenofovir, zidovudine	emtricitabine
	carboplatin, diphenhydramine, granisetron, paclitaxel, ranitidine	dexamethasone
	bortezomib, cisplatin, cyclophosphamide, dexamethasone, etoposide, melphalan	doxorubicin
A_{*u}^{tst}	bleomycin, cyclophosphamide, doxorubicin, etoposide, prednisolone, procarbazine	vincristine
∕₁ _{∗u}	emtricitabine, fosamprenavir	ritonavir
	albendazole	dexamethasone
	hydroxychloroquine, risedronate	prednisone'
	calcium	valproic acid
	lopinavir, nevirapine, raltegravir, ritonavir, tenofovir, zidovudine	lamivudine
	cyclophosphamide, cytarabine, doxorubicin, methotrexate, thioguanine, vincristine	dexamethasone
	atazanavir, efavirenz, emtricitabine, lamivudine, tenofovir, zidovudine	stavudine
A_*^{tst}	acetylsalicylic acid, ciprofloxacin, erythromycin, meropenem, metronidazole, te-	clopidogrel
²¹ *	icoplanin, warfarin	
	nevirapine, tenofovir	zidovudine
	estradiol, levothyroxine	progesterone
	rofecoxib, rosiglitazone	glyburide
	amlodipine, olmesartan	acetylsalicylic acid

In this table, "recommendation" represents the recommended drug. Drugs that are reported in SIDER to induce myopathy on their own are **bold**.