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Bullet Points (4 of max 75 words): 

• H3K36me2 provides a chromatin landscape favorable for H3K27ac and CTCF enrichment 

which drives 3D genome reorganization 

• CTCF, H3K27ac and gene expression changes cluster within a subset of insulated 

domains implicating 3D chromosome organization as a key factor in the NSD2-mediated 

phenotype  

• NSD2 High cells co-opt global alterations in chromatin modifications to drive oncogenic 

transcriptional programs 

• Alterations in chromatin modifiers in disease states enables dissection of the functional 

interplay between chromatin and 3D chromosome structure  
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Abstract 

CTCF and cohesin play a key role in organizing chromatin into TAD structures. Disruption of a 

single CTCF binding site is sufficient to change chromosomal interactions leading to spreading of 

active chromatin marks and altered gene regulation. However, the extent to which alterations in 

chromatin modifications can disrupt 3D chromosome organization leading to changes in gene 

regulation is not known. In multiple myeloma a 4;14 translocation induces overexpression of the 

histone methyltransferase, NSD2 resulting in expansion of H3K36me2 and shrinkage of 

antagonistic H3K27me3 domains. Using isogenic cell lines producing high and low levels of 

NSD2, we demonstrate significant enrichment in H3K27ac and CTCF binding in expanded 

H3K36me2 domains. Alterations in H3K27ac and CTCF cluster together with gene expression 

changes in a subset of insulated domains, implicating 3D chromosome organization in driving the 

altered transcriptional program of NSD2 overexpressing cells. These findings have implications 

for other diseases involving altered chromatin modifiers. 
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Introduction 

The 3D organization of chromosomes enables cells to balance the biophysical constraints of the 

crowded nucleus with the functional dynamics of gene regulation. Chromosomes are divided into 

large domains that physically separate into two nuclear compartments (A and B) of active and 

inactive chromatin, respectively (Lieberman-Aiden et al., 2009). Loci within each compartment 

interact more frequently with other loci from the same compartment irrespective of whether these 

regions are proximal on the linear chromosome. Compartments can be further subdivided into 

1MB sized highly self-interacting ‘topologically associated domains’ (TADs), which are separated 

from each other by insulating boundaries enriched for the architectural proteins, CTCF and 

cohesin. (Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012).  Since TADs are largely 

conserved between cell types and across different species they are considered the basic 

organizational unit of eukaryotic genomes. They play an important role in gene expression by 

limiting the influence of enhancers to genes located within the same TAD (Dowen et al., 2014; Ji 

et al., 2016; Sun et al., 2019) . 

 

CTCF and cohesin are major contributors in shaping architecture within TADs and depletion of 

either factor leads to loss of TAD structure (Nora et al., 2017; Rao et al., 2017; Schwarzer et al., 

2017). Depletion of cohesin also leads to strengthening of compartments, suggesting that 

compartments and TADs are formed by two different mechanisms and that TAD structures 

antagonize compartmentalization by mixing regions of disparate chromatin status (Rao et al., 

2017; Schwarzer et al., 2017). The best-accepted model to explain TAD formation and 

maintenance, involves a loop-extrusion mechanism whereby cohesin rings create loops by 

actively extruding DNA until the complex finds two CTCF binding sites in convergent orientation 

(Fudenberg et al., 2016). In this way cohesin forms chromatin loops as a result of its ability to hold 

together two double-strand DNA helices via its ring structure (Fudenberg et al., 2016; Nasmyth, 

2001; Nuebler et al., 2018; Sanborn et al., 2015; Tang et al., 2015). Indeed, genome-wide 
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analyses revealed that loops are preferentially formed between convergently orientated CTCF 

binding sites (Rao et al., 2014; Vietri Rudan et al., 2015) and divergent sites delineate boundary 

regions (Gomez-Marin et al., 2015). These sites are thought to serve as a block to the movement 

of cohesin on chromatin.  

 

A number of labs have demonstrated that disruption of a single CTCF binding site is sufficient to 

alter chromosomal interactions leading to the spreading of active chromatin and altered gene 

regulation (Guo et al., 2011; Narendra et al., 2015; Sanborn et al., 2015; Xiang et al., 2011). 

However, it is not known if the reverse is true and whether alterations in chromatin modifications 

themselves can impact chromosome organization at the level of A and B compartments, TAD 

structure, CTCF binding and enhancer-promoter contacts in a manner that corresponds to 

changes in gene regulation.  

 

An alteration in the balance of the antagonistic marks H3K36me2 and H3K27me3 is a hallmark 

of many different cancers. Translocation between the immunoglobulin heavy chain locus, IGH on 

chromosome 14 with the NSD2 locus (also known as MMSET or WHSC1) on chromosome 4, 

leads to NSD2 overexpression in 15-20% of multiple myeloma (MM) patients that have a poor 

survival rate and do not respond well to cytotoxic chemotherapy (Huang et al., 2013; Keats et al., 

2006; Kuo et al., 2011; Lauring et al., 2008). NSD2 is a histone methyl transferase (HMT) that is 

responsible for deposition of the H3K36 mono- and di-methyl mark. In a wild-type setting, 

H3K36me2 accumulates on active gene bodies and acts as a signature of transcriptional activity. 

However, when NSD2 is overexpressed as a result of the 4;14 translocation, H3K36me2 spreads 

outside of active gene bodies into intergenic regions. Expansion of H3K36me2 domains results 

in contraction of H3K27me3 domains, altering gene expression programs in the absence of driver 

mutations in a manner that is poorly understood (Popovic et al., 2014).  
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Of note, similar changes in chromatin are detected in other cancers such as B and T acute 

lymphoblastic leukemia (B- and T-ALL) and a number of advanced stage solid tumors, including 

prostate, colon and skin cancers (Hudlebusch et al., 2011a; Hudlebusch et al., 2011b). In some 

cases, increased H3K36me2 results from an E1099K mutation in NSD2 that affects the catalytic 

domain of this enzyme (Oyer et al., 2014). In addition, a mutation in H3.3 in which the lysine at 

position 27 is mutated to a methionine (H3K27M) results in a similar H3K36me2 versus 

H3K27me3 imbalance by impacting the action of EZH2 in two pediatric brain cancers, diffuse 

intrinsic pontine glioblastoma (DIPG) and supratentorial glioblastoma multiforme (GBMs) 

(Stafford et al., 2018; Sturm et al., 2012; Wu et al., 2012). DIPG and GBM are the most aggressive 

primary malignant brain tumors in adults and children and the median survival of this group of 

patients is approximately 1 year. Given the poor prognosis of patients suffering from these 

different cancers, it is important to gain a better understanding of the mechanisms underlying 

changes in gene expression in diseases with an H3K36me2 versus H3K27me3 imbalance. 

 

In multiple myeloma, alterations in gene expression have been shown to be dependent on the 

histone methyl-transferase activity of NSD2 (Martinez-Garcia et al., 2011). Although the impact 

of NSD2 overexpression on chromatin modifications has been well documented, there has been 

no in-depth analysis into the mechanisms underlying the changes in gene expression that occur 

downstream of the expansion and reduction of active H3K36me2 and repressive H3K27me3 

domains. Using isogenically matched multiple myeloma patient derived cell lines that differ only 

in the levels of NSD2 they express, we demonstrate that spreading of H3K36me2 from active 

gene bodies into intergenic regions is accompanied by changes in H3K27ac marks (a feature of 

regulatory elements) as well as an alteration in the genome wide profile of CTCF binding. Both 

changes are linked to significant alterations in gene expression and oncogene activation. 

Expansion of H3K36me2 domains also drives compartment switching and alterations in intra-TAD 

interactions, while altered boundary insulation scores overlap differential CTCF and Rad21 
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binding. Importantly, analysis of Hi-C and CTCF HiChIP data demonstrates that changes in 

CTCF, H3K27ac together with alterations in transcriptional output, cluster within a subset of 

insulated regions in NSD2 high expressing cells. These results reveal a bidirectional relationship 

between 2D and 3D chromatin organization in gene regulation and demonstrate that cells can co-

opt altered chromatin domains to drive oncogenic transcriptional programs that are regulated 

within insulated boundaries. 

 

Results 

NSD2 overexpression leads to alterations in H3K27ac  

NSD2 overexpression leads to spreading of H3K36me2 from active gene bodies into intergenic 

regions leading to a more open chromatin conformation (Kuo et al., 2011). Alterations in gene 

expression have previously been shown to be dependent on the histone methyl-transferase 

activity of NSD2, highlighting the importance of deposition and expansion of H3K36me2 domains 

in the activation of oncogenic transcriptional pathways (Martinez-Garcia et al., 2011). However, it 

is not known how intergenic spreading of H3K36me2 alters gene regulation and whether 3D 

organization of the genome plays a role.  

 

In order to address this question, we used two isogenic cell lines generated from a patient derived 

KMS11 t(4;14) multiple myeloma cell line: NTKO (non-translocated knockout) and TKO 

(translocated knockout) cells, which have the endogenous allele or the translocated NSD2 allele, 

respectively inactivated (Figure 1A) (Lauring et al., 2008). Importantly, NTKO and TKO cells differ 

solely in the level of NSD2 they express and henceforth are referred to as NSD2 High and Low 

cells. The paired cell lines provide us with an opportunity to analyze the impact of NSD2 

overexpression independent of other confounding genetic or epigenetic alterations. In this respect 

they are more useful than patient-based samples which do not have appropriate controls. Using 

RNA-seq we observed that NSD2 High expression leads to the deregulation of many genes (1650 
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up and 303 downregulated genes) (Figure 1B) and principal component analysis (PCA) revealed 

that NSD2 High and Low replicates separated into distinct clusters (Figure S1A), a finding that is 

consistent with previous studies (Kuo et al., 2011; Popovic et al., 2014). Genes associated with 

multiple myeloma and KRAS pathways were enriched as shown by Gene Set Enrichment 

Analysis (GSEA, (Subramanian et al., 2005) Figure S1B). 

 

Since the vast majority of regulatory elements are located within intergenic regions, we asked 

whether spreading of H3K36me2 into these locations could impact their activation status. To test 

this idea, we analyzed H3K27ac, a feature of both enhancers and promoters. H3K27ac ChIP-seq 

revealed that a total of 2597 peaks were significantly affected by NSD2 overexpression and PCA 

revealed that NSD2 High and Low replicates clustered separately (Figure S2A). Specifically, we 

identified 1896 increased and 701 decreased peaks in NSD2 High versus low cells (Figure 1C 

and 1D). Increased and decreased peaks were predominantly located in intergenic and intronic 

regions suggesting that enhancer activity could be affected (Figure 1E). This pattern was much 

more pronounced for increased peaks.  

 

Previous studies have reported changes in the activity of super-enhancers in multiple myeloma 

(Fulciniti et al., 2018; Loven et al., 2013). The term super enhancer is used to describe clusters 

of enhancers with high levels of activating histone marks including H3K27ac (Whyte et al., 2013). 

Super-enhancers are occupied by lineage specific master regulator transcription factors (TFs) 

known to control cell identity (Hnisz et al., 2013; Whyte et al., 2013). Furthermore, super-

enhancers are generated at oncogenes and other loci that are important in tumorigenesis (Hnisz 

et al., 2013; Whyte et al., 2013). To separate super-enhancers from typical enhancers we used 

‘ROSE’ (rank ordering of super-enhancers (Whyte et al., 2013)). With this approach, we identified 

260 and 278 super-enhancers in NSD2 low and high cells, respectively (Hnisz et al., 2013; Loven 

et al., 2013) (Figure S2B). Differential super-enhancers were identified from the merged group 
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based on alterations in H3K27ac enrichment using an FDR cutoff of 0.1. With this strategy, we 

identified about a third of super-enhancers (91) with significantly altered H3K27ac signal in NSD2 

High cells, 51 with increased and 40 with decreased signal (Figure 1F).  

 

Changes in H3K27ac are associated with changes in gene regulation 

To determine which transcription factors (TFs) could bind gained and lost super-enhancers in 

NSD2 High versus Low cells, we analyzed motifs using ATAC-seq. We identified 119 ATAC-seq 

peaks in the 51 gained super-enhancers and 102 ATAC-seq peaks in the 40 super-enhancers 

that were lost (Figure 1F). TRAP (transcription factor affinity prediction) was used to identify which 

motifs were present in the ATAC-seq peaks (Thomas-Chollier et al., 2011). Some of the motifs 

were shared between gained and lost super-enhancers (CTCF, RUNX1 etc), while others were 

identified in only one category. The expression of some of the genes that encode these TFs goes 

up or down as denoted respectively by a red or blue asterisk in Figure 1G. Most of the motifs in 

super-enhancers were also found in individual gained and lost H3K27ac peaks, with the exception 

of the CTCF motif (Figure S2C). This is consistent with recent studies showing that super-

enhancers are enriched with CTCF more frequently than typical enhancers (Gong et al., 2018; 

Huang et al., 2018).  

 

To examine the connections between alterations in H3K27ac and gene regulation we separated 

H3K27ac peaks into those located at promoters, non-promoter sites (intragenic and intergenic 

combined) and super-enhancers. GREAT (Genomic Regions Enrichment of Annotations Tool; 

(McLean et al., 2010)) was used to associate peaks at distal sites and super-enhancers with gene 

expression changes, using an arbitrary cutoff of 250kb, based on findings from a previous study 

showing that the mean distance from enhancer to promoter is around 196kb (Jin et al., 2013). 

H3K27ac peaks at all three sites were significantly correlated with gene expression changes 

(Figure 1H), with the strongest effect seen at promoters, possibly because the latter are easiest 
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to connect to target genes. Together these data indicate that overexpression of NSD2 leads to 

significant changes in H3K27ac linked to deregulation of gene expression. 

 

Changes in CTCF binding profile are linked to alterations in gene expression 

Nuclear architecture is a powerful regulator of gene expression. In particular, precise 

transcriptional control is exerted by restricting the influence of enhancers to target genes within 

TADs whose boundaries are enriched for the insulating protein, CTCF. Given that marks 

associated with regulatory elements are significantly altered in a manner that corresponds to 

changes in gene expression in NSD2 overexpressing cells, we next asked whether alterations in 

histone modifications could lead to changes in chromosome organization. For this analysis, we 

started with a CTCF ChIP-seq and identified a surprising difference in the CTCF binding profile: 

2197 and 295 CTCF peaks were increased and decreased, respectively in the NSD2 High cells 

(Figure 2A and B). These separated into distinct clusters by PCA analysis (Figure S2D). 

Increased CTCF peaks were predominantly located in intergenic and intragenic regions, as 

compared with decreased and stable CTCF peaks (Figure 2C). Moreover, CTCF peaks that were 

enriched or depleted at promoters and distal sites were significantly correlated with gene 

expression changes (Figure 2D), with the strongest effect seen at promoters. This finding is 

consistent with previous studies showing that loss of CTCF at promoters leads to downregulation 

of genes (Nora et al., 2017). 

 

New CTCF and H3K27ac peaks are located within expanded H3K36me2 domains 

To better understand the links between NSD2 overexpression and the altered genomic profiles of 

H3K27ac and CTCF, we analyzed the chromatin landscape surrounding the 1000 most enriched 

new H3K27ac and CTCF peaks in the NSD2 High cells. Importantly, new H3K27ac and CTCF 

peaks were found to be located in newly enriched H3K36me2 regions while H3K27me3 remained 

unchanged at these locations (Figure 2E). Thus, increases in H3K27ac peaks were found to be 
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independent of H3K27me3 changes. New H3K27ac and CTCF peaks were also associated with 

a gain in overlapping ATAC-seq peaks. This data suggests that spreading of H3K36me2 provides 

a more accessible chromatin landscape favorable for CTCF and H3K27ac enrichment. As shown 

in Figure 2F these changes are linked to the activation of oncogenes involved in multiple myeloma 

including SYK (Koerber et al., 2015; Lin et al., 2017; Liu and Mamorska-Dyga, 2017; Lorenz et 

al., 2016; Qin et al., 2017), MET (Baljevic et al., 2017; Phillip et al., 2009; Zaman et al., 2015) and 

SH3GL3 (Chen et al., 2016) in NSD2 overexpressing cells (Figure 2F). Of note, few changes 

were observed for the 1000 most stable and decreased H3K27ac and CTCF peaks (Figure S3). 

 

The vast majority of chromosomal loops involve cohesin. These can be separated into two main 

categories: loops that are CTCF dependent and CTCF independent cell type specific, dynamic 

loops that form between enhancers and promoters and involve cell type specific TFs (Snetkova 

and Skok, 2018). To investigate whether new H3K27ac and CTCF peaks had the potential to be 

involved in looping in the NSD2 High cells we performed ChIP-seq for Rad21 (a component of 

the cohesin complex). Interestingly, increased Rad21 signal was associated with both newly 

enriched H3K27ac and CTCF sites in the NSD2 overexpressing cells. However, gained CTCF 

and H3K27ac peaks did not overlap with each other (Figure 2E), suggesting that loops involving 

new regulatory elements associated with enriched H3K27ac were generated in a CTCF 

independent manner.  

 

NSD2 overexpression drives A/B compartment switching 

Given the finding that there are significant changes in CTCF or H3K27ac peaks overlapping 

Rad21 alterations in NSD2 High cells, we next asked whether 3D organization was altered. To 

determine this, we performed Hi-C in duplicate using the Arima Kit and processed the data using 

Hi-C bench (Lazaris et al., 2017). The number of valid read pairs was consistent between 

replicates (~120 million to ~180 million (Figure S4A)) and the PCA showed that NSD2 High 
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versus Low replicates separated as expected (Figure S4B). A/B compartment status was 

analyzed in merged NSD2 Low and High replicates using the Eigen vector (principal component 

1, PC1, see STAR Method for details) (Lieberman-Aiden et al., 2009). We observed significant 

compartment alterations in NSD2 High cells, as exemplified by the changes visualized on 

chromosome 7 in Figure 3A. Overall, the number of A and B compartments was lower in NSD2 

High versus Low cells and we detected 324 regions that had switched from A to B and 491 regions 

that switched from B to A (Figure 3B, C and D). Although there were more regions switching from 

B to A, these regions were smaller and the portion of the genome was comparable to the regions 

switching from A to B (Figure S4C, D and E). Compartment switching from B to A overlapped 

with expanded H3K36me2 domains and a reduction in H3K27me3, while the reverse was true for 

switching from compartment A to B (Figure 3D and E).  

 

Changes in TAD boundaries and intra-TAD interactions  

Both Hi-C replicates from each condition harbored similar number of TADs with similar sizes 

(Figure S4F and G) and they were merged for TAD analysis to determine the impact of NSD2 

overexpression on 3D genome organization. Using Hi-C bench, we assigned a mean boundary 

score to each replicate using a resolution of 40kb (Lazaris et al., 2017) to determine if there were 

changes in TAD boundaries (see STAR Method for details). NSD2 overexpression was 

associated with a significant (FDR < 0.05) increase in insulation at TAD boundaries (red, 61) and 

much fewer boundaries that were weakened (blue, 5) (Figure 4A). These changes were 

synonymous with changes in CTCF and Rad21 binding (Figure 4B) and consistent with the 

finding that the majority of CTCF alterations were associated with increased rather than 

decreased binding (Figure 2A and B). In addition, we found that NSD2 High cells were 

predominantly associated with significant gains (red, 229) and fewer decreases in intra-TAD 

interactions (blue, 30) (Figure 4C). Increased intra-TAD interactions were linked to expanded 
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H3K36me2 domains and a reduction in H3K27me3, while decreases in intra-TAD interactions 

were linked to a reduction in H3K36me2 (Figure 4D).  

  

As mentioned above, NSD2 overexpression was associated with a significant strengthening of 

TAD boundaries concordant with increases in CTCF and Rad21 binding (Figure 4B). These 

boundary changes were also associated with transcriptional activation. As an example we 

highlight activation of FZD8 (log2 fold-change = 3.16, FDR = 8.18E-34), a gene that is involved 

in the WNT signaling pathway (Spaan et al., 2018) (Figure 4E). FZD8 is located at a CTCF 

enriched boundary that makes a new contact with a downstream region that gains a CTCF/Rad21 

site (blue stripe in Figure 4E) in NSD2 High cells. This is demonstrated by an increase in 

boundary score (arrows in Figure 4E and F) and the formation of a new Hi-C loop (circle in Figure 

4F). Consistent with the data in Figure 2D, the whole domain overlaps a region that is enriched 

for H3K36me2 and within the new loop there are increases in H3K27ac marks. 

 

Previous studies have proposed that FGF13 expression enables cells to cope more effectively 

with RAS-mediated stress and oncogene-mediated excessive protein synthesis, which is known 

to occur in multiple myeloma in the form of antibody production (Bublik et al., 2017). In Figure 

S5A and B we show that activation of FGF13 occurs at a region with an altered TAD boundary 

and increased intra-TAD interactions. This region harbors newly formed H3K27ac peaks, 

enriched chromatin accessibility and overlaps a domain that is enriched for H3K36me2 that 

undergoes B to A compartment switching. Increased CTCF and Rad21 binding are at the edges 

of increased Hi-C loops, suggesting that newly formed insulated neighborhoods could facilitate 

the interaction between FGF13 and regulatory elements.  

 

We also found preexisting CTCF independent contacts between H3K27ac enriched regions that 

fall within a loop that has enriched CTCF binding. As an example, we highlight the KRAS 
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oncogene (yellow strip Figure S5C and D) that plays an important role in driving the multiple 

myeloma phenotype (Walker et al., 2012; Xu et al., 2017). As shown in Figure S5B, upregulation 

of KRAS (log2 fold change = 0.86, FDR=1.38E-06) coincides with a preexisting loop between 

KRAS and a super enhancer whose activity is enriched in NSD2 high cells (see arrow and blue 

stripe Figure S5C and arrows and circle in S5D). The figure also highlights an increase in intra-

TAD activity. The above examples indicate that significant changes in H3K27ac, CTCF and 

transcriptional output are frequently clustered together.  

 

NSD2 overexpression drives clustered chromatin and transcriptional changes in insulated 

domains 

To investigate the connections between alterations in gene expression, CTCF and H3K27ac from 

a global perspective, we focused our analysis on TADs and CTCF-mediated loops. To identify 

CTCF-mediated loops, we performed CTCF HiChIP in NSD2 High and Low cells (Mumbach et 

al., 2016). Statistical analysis of HiChIP data was carried out using FitHiChIP ((Bhattacharyya et 

al., 2018), see STAR Method for details). CTCF-mediated interactions were considered significant 

using an FDR <0.01.  

 

To determine whether significant changes in CTCF, H3K27Ac and gene expression in NSD2 High 

were localized together, we focused on common TADs and common CTCF-mediated loops (see 

details in STAR Methods). This allowed us to reliably compare between the NSD2 high versus 

Low condition. The number of significant changes in CTCF, H3K27Ac and gene expression in 

these common domains is shown in (Figure S6A and B). In general, we found that TADs and 

CTCF loops had a median size of 600kb and 210kb, respectively (Figure S6C).   

 

As shown in the scheme in Figure 5A, we selectively analyzed TADs and CTCF-mediated loops 

containing at least one CTCF and H3K27Ac peak as well as at least one transcriptionally active 
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gene in either the NSD2 Low or High condition. Without any filtering we found that up or down 

regulation of the three variables was positively correlated in both TADs and CTCF-mediated loops 

as shown by the red and blue dots, where each dot represents a single TAD or CTCF-mediated 

loop (Figure S7A and B). Positively correlated features are shown by pairwise and three-way 

log2 fold change comparisons in the 2D and 3D plots, respectively. We also included in our 

analysis a pairwise and three-way comparison of intra-TAD interaction and PC1 changes (see 

methods for details) to examine compartment differences within insulated regions that contained 

alterations in CTCF, H3K27Ac and transcriptional output (Figure S7A). Again, we found that 

alterations in intra-TAD interactions and compartment switching were concordant within TADs 

with alterations in CTCF, H3K27Ac and transcriptional output.  

 

We next redid the pairwise and three-way comparisons restricting our analyses to only the 

significant changes in CTCF, H3K27Ac and transcriptional output within TADs and CTCF-

mediated loops and found an improved correlation (Figure 5B and C). We also confirmed that 

high PC1 mean difference values are associated to regions switching from B to A using the Homer 

algorithm. This analysis showed that 83% of TADs with B to A switching regions (orange dots) 

overlap with active features in the 3D graph in common TADs with differential changes in CTCF, 

H3K27ac as well as RNA (25% of the total positively correlated active TADs) (Figure 5B). 

Together these analyses indicate that changes in CTCF, H3K27ac and transcriptional output are 

positively correlated and cluster within insulated domains.  

 

Concordant and discordant transcriptional and chromatin changes cluster within a subset 

of common TADs and CTCF HiChIP loops 

To further determine the relationship between significant gene expression changes, H3K27ac and 

CTCF, we separated common TADs and CTCF-mediated loops into concordant and discordant 

changes (i.e. positively correlated and negatively correlated, respectively) (Figure 6A). As shown 
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in this figure, the vast majority of changes were concordant. We define concordant and discordant 

TADs and CTCF loops according to the average log2fc of CTCF, H3K27ac and transcription. As 

a result, a discordant loop with a positive change in CTCF and expression and overall negative 

change in H3K27ac could include enhancers that are strongly downregulated as well as those 

that are upregulated. Thus, even though the overall H3K27ac change is negative we cannot 

exclude the possibility that there will not be a newly active enhancer present in the domain. 

Furthermore, enriched binding of CTCF could have an insulating effect by interfering with the 

contact between an enhancer and its target gene resulting in transcriptional repression. For these 

reasons we included both concordant and discordant changes into our analysis. 

 

Significant changes in gene expression in the concordant and discordant TADs and CTCF-

mediated loops were further subdivided into two groups: (i) those that overlapped with significant 

changes in CTCF and H3K27ac and (ii) those that overlapped with significant changes in either 

CTCF or H3K27ac (Figure 6B). A total of 819 differentially regulated genes were captured in this 

analysis, which amounted to 70% of the 1179 differentially expressed genes found in common 

TADs or CTCF-mediated loops, which is more than expected by random chance (19%). Thus, 

significant concordant and discordant transcriptional changes cluster with CTCF and/or H3K27ac 

changes within a subset of common TADs (49%) and CTCF HiChIP loops (22% as shown by a 

hypergeometric test (p-value = 9.5 e-395).  

 

Within the TADs and loops that harbor significant changes in CTCF, H3K27Ac and transcriptional 

output we detected several newly activated oncogenes associated with multiple myeloma related 

pathways. These include the protein tyrosine phosphatase gene, PTPN13 (Sardina et al., 2014; 

Zhou et al., 2009), FGF13 (Mahtouk et al., 2010) and ETV5 (Chang-Yew Leow et al., 2013; 

Croonquist et al., 2003). The PTPN13 gene, which regulates cell growth (Zhuang et al., 2017), 

differentiation (Sardina et al., 2014), mitotic cycle, and oncogenic transformation is located within 
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a CTCF-mediated loop which harbors significant changes in CTCF and H3K27Ac (Figure 6C),  

and it is found within a region that undergoes B to A compartment switching. ETV5, a gene 

involved in the KRAS pathway (Hollenhorst et al., 2011; Zhang et al., 2017), is another example 

of gene activation that occurs in a CTCF-mediated loop and a TAD that harbors significant 

changes in CTCF, H3K27Ac (Figure 6C). As with PTPN13, the insulated region contains new 

H3K27ac and CTCF peaks, overlaps a region that has switched from compartment B to A, and in 

addition has increased intra-TAD interactions (Figure 6C).  

 

Activation of SYK involves increased promoter contacts within a CTCF-mediated loop 

SYK is another example of an oncogene that is activated within a CTCF-mediated loop that has 

significant increases in H3K27ac and CTCF peaks. To investigate whether upregulation of this 

gene in NSD2 High cells involves alterations in promoter contacts we performed high resolution 

4C-seq from a viewpoint (bait) located on a CTCF site 27Kb downstream of the SYK promoter. 

We identified significantly increased interactions with upstream and downstream regions (FDR < 

0.05; marked by the small ovals on the 4C plot in Figure 7A). All of these sites correspond to 

enriched CTCF or H3K27ac peaks that overlap with enriched cohesin peaks in the NSD2 High 

cells (Figure 7B). The interactions identified by 4C-seq can also be visualized by Hi-C (arrows 

and circles in Figure 7C) or by HiChIP (Figure 7B, loop in “CTCF HiChIP interactions” track). 

Interestingly, the change in interactions seen in Figure 7A overlap with a region that changes 

from compartment B to A and has increased intra-TAD interactions. As in other examples, these 

changes all occur in a domain where H3K36me2 is enriched in the NSD2 High cells. Taken 

together our data indicate that gene expression changes and activation of oncogenes in NSD2 

overexpressing cells are found in a subset of insulated regions with accompanying alterations in 

H3K27ac and CTCF peaks. These data are consistent with the widely accepted idea that the vast 

majority of enhancers exert their effects on target genes within the same insulated neighborhood. 

Consistent with this model, we find that alterations in H3K27ac (which reflect the activation status 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587931doi: bioRxiv preprint 

https://doi.org/10.1101/587931


18 
 

of enhancers) and/or CTCF (which mediate changes in interactions and boundaries), occur 

together with changes in the transcriptional output of genes in the same insulated domain.  

 

Discussion 

Many labs have shown that deletion of individual CTCF sites can disrupt chromosome interactions 

allowing the spreading of active chromatin and altering gene regulation (Guo et al., 2011; 

Narendra et al., 2015; Xiang et al., 2011). However, it is not known whether alterations in 

chromatin can affect CTCF binding, 3D genome organization and gene expression. To address 

this question we examined the effect of NSD2 overexpression in t(4;14) multiple myeloma. The 

activation of oncogenic transcriptional pathways in this context has been shown to rely on the 

histone methyl transferase activity of NSD2 and deposition of H3K36me2 (Martinez-Garcia et al., 

2011). Here we show that NSD2 overexpressing cells can co-opt global changes in chromatin 

modifications to drive a disease specific transcriptional program that is regulated within insulated 

boundaries. 

 

Expansion of H3K36me2 outside of active gene bodies provides a favorable environment for 

enrichment of H3K27ac and binding of CTCF. Hi-C and HiChIP analyses reveal that changes in 

H3K27ac, CTCF and transcriptional activity occur in a predominantly concordant manner in 

common TADs (72%) and CTCF loops (82%). Furthermore, intra-TAD interactions and B to A 

compartment changes are positively correlated with changes in H3K27ac, CTCF and 

transcriptional activity in TADs. Importantly, we find that 70% of the deregulated genes cluster 

together in a subset of TADs or CTCF-mediated loops that harbor significant changes in CTCF 

and/or H3K27ac binding. Alterations in gene regulation within this subset of insulated domains 

occurs at a frequency that is significantly above that expected by random chance. These findings 

suggest that the presence of alterations in either CTCF and/or H3K27ac in the same insulated 

region has an impact on gene expression. As highlighted in the examples in this manuscript, these 
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changes provide an explanation for the activation of many oncogenes associated with multiple 

myeloma. Our findings are consistent with a model in which gene regulation is constrained at the 

3D level by insulated boundaries that restrict the influence of enhancers.  

 

Since the NSD2 phenotype relies on the histone methyl transferase activity of the protein, the 

upstream causal event is the expansion of H3K36me2 domains. Beyond this change it is not clear 

what order the other events occur in, or whether they are reliant on each other. It is unlikely that 

alterations in H3K27ac enrichment and CTCF binding are dependent on each other as they do 

not bind to overlapping sites. We speculate that opening up of the chromatin through deposition 

of the active mark, H3K36me2 allows binding of CTCF and transcription factors such as AP1, 

which recruits CBP/p300 to mediate deposition of H3K27ac, a well-defined marker of enhancer 

activity. Indeed, we found that the motif for AP1 is enriched at new H3K27ac peaks including 

those designated as super-enhancers. Moreover, the gene that encodes this protein is 

upregulated in NSD2 high cells. H3K27ac enriched regulatory elements and CTCF bound sites 

are known to participate in cohesin-mediated loop formation and in line with this, we show that 

new H3K27ac and CTCF peaks overlap with new Rad21 peaks and form new or strengthened 

contacts, linked to changes in gene expression. An overall increase in CTCF/Rad21 and H3K27ac 

as well as transcriptional activity likely contributes to the overall increase in intra-TAD interactions 

as shown by the pairwise and three way-comparisons in Figure 5. These changes are also 

positively correlated with B to A compartment changes. Specifically, we find that 83% of TADs 

with B to A switching regions overlap with active features in the 3D graph in common TADs with 

differential changes in CTCF, H3K27ac as well as RNA.  

 

Here we have identified a functional interplay between NSD2-mediated changes in chromatin, 3D 

organization and transcriptional output. These results underscore the bidirectional relationship 

between 2D chromatin status and 3D genome organization in gene regulation. In the context of 
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multiple myeloma, a cancer in which many patients do not harbor oncogenic driver mutations, we 

demonstrate that global chromatin changes can lead to the increased expression of KRAS and 

SYK, that contribute to the oncogenic program of the disease as highlighted by the enrichment of 

KRAS amongst deregulated pathways (Figure S1B). Furthermore, our finding that global 

alterations in chromatin drive changes in transcriptional programs that can be regulated at the 

level of insulated domains has implications for any disease that involves altered chromatin 

modifiers. Indeed, this work demonstrates that alterations in chromatin modifiers in disease states 

enables dissection of the interplay between 2D and 3D chromatin structure and their links to gene 

regulation 

 

Acknowledgements 

The authors thank Ben Ho Park laboratory for sending the NSD2 High and Low cells, Skok lab 

members for helpful scientific discussions, New York University School of Medicine High 

Performance Computing (HPC) for computing technical support, and Adriana Heguy and the 

Genome Technology Center (GTC) core for sequencing efforts. 

 

Funding 

This work was supported by NIH 1R35GM122515 (J.S), American Association for Cancer 

Research Takeda Multiple Myeloma fellowship (P.L), National Cancer Center postdoctoral 

fellowship (P.L), American Cancer Society (RSG-15-189-01-RMC) (A,T), St. Baldrick's foundation 

(581357) (A.T) and NIH R35GM128938 (F.A).  

 

Author contributions 

Conceptualization & Study Design, P.L and J.S; Investigation, P.L; Formal analysis, P.L, Sa.Ba, 

J-R.H, G.S, A.K, M.C, So.Bh; Writing – Original Draft, P.L, J.S, Sa.Ba and J-R.H; Supervision, 

R.B, F.A, A.T and J.S; Funding Acquisition, P.L, J.S, A.T and F.A. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587931doi: bioRxiv preprint 

https://doi.org/10.1101/587931


21 
 

 

Declaration of Interests 

The authors declare no competing interests. 

 

Figure legends 

Figure 1. NSD2 overexpression leads to alterations in H3K27ac enrichment linked to 

changes in gene expression. (A) NSD2 Low and High isogenic cell lines generated from a 

patient derived KMS11 t(4;14) multiple myeloma cell line: NTKO (non-translocated knockout) and 

TKO (translocated knockout) cells, which have the endogenous allele or translocated NSD2 allele, 

respectively inactivated. (B) Volcano plot showing significant NSD2-mediated changes in gene 

expression (FDR <0.01). Upregulated genes: 1650 (red, log2 fold change >1); downregulated 

genes: 303 (blue, log2 fold change <-1). (C) Volcano plot showing significant NSD2-mediated 

changes in H3K27Ac (FDR <0.01). Decreased peaks: 701 (blue, log2 fold change <-1); increased 

peaks: 1896 (red, log2 fold change >1). (D) Heatmap showing differential H3K27ac peaks 

identified using DiffBind analysis of ChIP-seq triplicates in NSD2 High versus Low cells. Increase 

and decrease in H3K27ac signal is shown in red and blue, respectively. (E) Genomic locations of 

the differential H3K27ac peaks. (F) Volcano plot showing significant NSD2-mediated changes in 

super-enhancers (FDR <0.1). Super-enhancers in NSD2 High versus Low cells were called based 

on H3K27ac levels using ROSE. Increased super-enhancers: 51 (red) and decreased super-

enhancers: 40 (blue). (G) Transcription factor motifs identified in 119 ATAC-seq peaks of 

increased (51) and 102 ATAC-seq peaks of decreased (40) super-enhancers using TRAP. Motifs 

found in increased (red) and decreased (blue) super-enhancers (-log10 p-value). Red and blue 

stars indicate that the gene coding for the TF is respectively up- or downregulated in NSD2 High 

cells. (H) Gene expression changes are associated with H3K27ac changes at promoters (top 

panel, -/+ 3kb around TSS), distal H3K27acand super-enhancers (middle and bottom panels, 
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respectively, 3-250kb up and downstream from TSSs associated with genes using GREAT). 

H3K27ac up, down and stable red, blue and grey in NSD2 High versus Low cells.  

 

Figure 2. New CTCF and H3K27ac peaks are located within expanded H3K36me2 domains. 

(A) Volcano plot showing significant NSD2-mediated changes in CTCF binding (FDR <0.01). 

Increasing peaks: 1650 (red, log2 fold change >1); decreasing peaks: 295 (blue, log2 fold change 

<-1). (B) Heatmap showing differential CTCF peaks identified using DiffBind analysis of ChIP-seq 

triplicates in NSD2 High versus Low cells. Increases and decreases in CTCF binding are shown 

in red and blue, respectively. (C) Genomic locations of differential CTCF peaks. (D) Gene 

expression changes are associated with CTCF changes at promoters (top panel, -/+ 3kb around 

TSS) and distal CTCF (bottom panel, 3-250kb up and downstream from TSSs associated with 

genes using GREAT). CTCF up, down and stable red, blue and grey in NSD2 High versus Low 

cells. (E) Heatmaps of H3K27ac, H3K36me2, H3K27me3, ATAC-seq, Rad21 and CTCF signal at 

the top 1000 increased H3K27ac (top panels) and CTCF (bottom panels) peaks in NSD2 High 

cells. Peaks are ranked by H3K27ac (top panels) and CTCF (bottom panels) signal in NSD2 High 

cells. (F) UCSC genome browser screenshots of chromatin features at regions surrounding three 

oncogenes (SYK, left panel; MET, middle panel; and SH3GL3, right panel). 

 

Figure 3. NSD2 overexpression drives A/B compartment switching. (A) Compartment 

weakening for half of chromosome 7 is shown in NSD2 High versus Low cells. Top and right: 

Eigen vector (PC1) for compartments A and B in red and blue, respectively. Switching regions 

are shown in green and in purple the subtraction of CTCF signal (NSD2 High - Low). Heatmaps 

represent the Pearson correlation of interactions in NSD2 Low (top) and High (bottom) cells. 

Positive and negative Pearson correlation between two loci are represented in red and blue, 

respectively. (B) Total number of A (red) and B (blue) compartments in NSD2 High versus Low 

cells. (C) Number of regions that switch compartments from B to A (491 regions) or A to B (324 
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regions) in NSD2 High versus Low cells. (D) IGV screenshots show examples of regions that 

switch from B to A (top panel) and A to B (bottom panel) in NSD2 High versus Low cells. Eigen 

vectors (PC1), differential compartment switching, subtraction tracks of H3K36me2, H3K27me3, 

ATAC-seq, H3K27ac, Rad21 and CTCF, and log2 fold-change expression for NSD2 High/Low 

cells are shown. H-L refers to subtraction High – Low. Regions that significantly switch from B to 

A and from A to B are indicated in red (top panel, B to A) or in blue (bottom panel, A to B), 

respectively. (E) Changes in H3K36me2 and H3K27me3 levels within regions that switch 

compartment from B to A (red), A to B (blue) or are stable (grey) in NSD2 High cells. Log2 fold 

changes (NSD2 High versus Low cells) for H3K36me2 and H3K27me3 are shown. The median 

is indicated under the violins. 

 

Figure 4. Changes in TAD boundaries and intra-TAD interactions. (A) Boundary alterations 

in NSD2 High versus Low cells. NSD2 overexpression is associated with increases (red, 61) and 

decreases (blue, 5) in TAD boundary strength (cutoffs of absolute Log2 fold change > 0.1 and 

FDR < 0.05). (B) TAD boundary increases and decreases in NSD2 High versus Low cells are 

associated with increases and decreases in CTCF and Rad21 binding, respectively. The median 

is indicated under the violins. (C) Intra-TAD interaction changes in NSD2 High versus Low cells 

for common TADs (1564). NSD2 overexpression is associated with gain (red, 229) and loss (blue, 

30) of intra-TAD interactions (cutoffs of absolute Log2 fold change > 0.3 and FDR < 0.05). (D) 

Changes in H3K36me2 and H3K27me3 within TADs that have increased (red), decreased (red) 

or stable (grey) interactions in NSD2 High cells. Log2 Fold changes (NSD2 High/Low cells) for 

H3K36me2 and H3K27me3 ChIP-seq are shown. The median is indicated under the violins. (E) 

UCSC tracks showing chromatin features in the region surrounding the FZD8 gene (FZD8 gene 

indicated in red and location highlighted by a yellow stripe) and the new contact that is formed by 

a strengthened boundary (blue stripe). The graphical representation of interaction between FZD8 

and the super enhancer is shown as a loop below. H-L refers to subtraction High – Low. (F) Hi-C 
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plots of the region surrounding the FZD8 gene. Top panel: NSD2 Low, bottom panel: NSD2 High. 

Green arrow identifies the TAD boundary that is strengthened in NSD2 High cells versus Low 

cells. Black arrow indicates the FZD8 gene. Circle indicates a new loop between FZD8 and the 

boundary. 

 

Figure 5. NSD2 overexpression drives concordant chromatin and transcriptional changes 

in insulated domains. (A) Scheme illustrating the strategy to identify chromatin and 

transcriptional changes within TADs (470) or CTCF HiChIP loops (543), that were filtered to have 

at least one differentially expressed gene, CTCF and H3K27ac peak. (B) Pairwise (2D scatter 

plots left panel) and three-way (3D scatter plots right panels) comparisons representing significant 

log2 fold-changes in gene expression, H3K27ac, CTCF, intra-TAD interactions and PC1 values 

(representing subtraction of NSD2 High and Low levels) within TADs that have at least one 

significantly differentially expressed gene, CTCF and H3K27ac peak (FDR < 0.05). Concordant 

increased and decreased changing TADs are colored in red and blue, respectively. TADs that 

switch from B to A according to HOMER analysis (see STAR Method for details) are highlighted 

in orange. Pearson correlations are indicated. (C) Pairwise (2D scatter plots left panel) and three-

way (3D scatter plots right panels) comparisons representing significant log2 fold-changes of 

NSD2 High versus Low levels in gene expression, H3K27ac and CTCF within CTCF HiChIP loops 

that have at least one differentially expressed gene, CTCF and H3K27ac peak (FDR < 0.05). 

Concordant increased and decreased changing loops are colored in red and blue, respectively. 

Pearson correlations are indicated.  

 

Figure 6. Significant changes in gene expression and activation of oncogenes occurs in 

insulated domains. (A) Bar graph showing the proportion of concordant and discordant change 

in CTCF, H3K27ac and gene expression in TADs and CTCF loops. (B) Scheme showing analysis 

of changes in CTCF, H3K27ac and gene expression in concordant and discordant TADs and 
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CTCF loops. (C) UCSC tracks showing chromatin features and CTCF-mediated loop changes in 

the region surrounding the PTPN13 (left panel) and ETV5 (right panel) genes (PTPN13 and ETV5 

genes are indicated in red and highlighted with a yellow stripe). H-L refers to subtraction High – 

Low.  

 

Figure 7. Activation of SYK involves increased promoter contacts within a CTCF-mediated 

loop. (A) Interaction profile of a 4C bait located 27 kb downstream of the SYK promoter (green 

arrow, bait -27 kb) in a 2.4 Mb region surrounding the SYK gene in NSD2 High (red line represents 

the average between two replicates) and Low (blue line represents the average between two 

replicates) cells using 4C counts in 20 kb sliding windows. DESeq2 analysis identified significantly 

different 4C signal in duplicated 4C samples from NSD2 High versus Low cells. Regions with 

differential interactions are indicated by red and blue dots (p-value < 0.05). (B) UCSC tracks 

showing chromatin features in the region surrounding SYK (SYK indicated in red). A graphical 

representation of interactions from the 4C viewpoint (highlighted by a yellow strip) located 27 kb 

downstream of the SYK promoter is drawn with arcs at the bottom and highlighted by blue stripes. 

H-L refers to subtraction High – Low. (C) Hi-C plots of the region surrounding SYK in NSD2 Low 

and High cells (left and right panels, respectively). 

 

STAR Methods 

Key resource table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

CTCF ChIP-grade, from Rabbit, 

polyclonal 

Millipore Cat# 07-729, lots# 

2475698, 

2628833, 1350637 
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H3K27ac, Rabbit ChIP grade purified 

1mg/ml 

Abcam Cat# ab4729, lots# 

GR211895-1, 

GR312658-1 

Rad21, Rabbit polyclonal ChIP grade 

purified 1mg/ml  

Abcam  Cat# ab992, lot# 

GR208564-1 

H3K36me2, serum from rabbit, ChIP-

grade 

Active motif  Cat# 39255, Lot# 

8308001 

H2Av, Rabbit polyclonal affinity purified Active motif Cat# 39716, lot# 

08614002 

Rabbit IgG control Abcam Cat# ab37415, 

Lot# GR215822-1 

Critical Commercial Assays 

NEBNext® Poly(A) mRNA Magnetic 

Isolation Module 

NEB E7490S 

Expand™ Long Template PCR System Sigma 11681834001 

Arima Hi-C kit Arima  

Deposited Data 

H3K27me3 ChIP-seq (Popovic et al., 2014) GSE57977 

All other raw sequencing data This study Available to public 

upon publication.  

Experimental Models: Cell Lines 

 NSD2 High (KMS11 and NTKO) and 

NSD2 Low (TKO) 

(Lauring et al., 2008)  

Oligonucleotides 
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SYK 4C bait primer (DpnII restriction 

site): 

AATGATACGGCGACCACCGAGATCT

ACACTCTTTCCCTACACGACGCTCTT

CCGATCTNNNNNNGAGGGCATTCCC

ATTAGATC (NNNNNN: barcode 

sequence different for each sample) 

This paper N/A 

SYK 4C bait primer (Csp6I restriction 

site): 

CAAGCAGAAGACGGCATACGAGATA

GGTCGCAGTGACTGGAGTTCAGACG

TGTGCTCTTCCGATCTtaatctttggataagt

ggcc 

This paper N/A 

Software and Algorithms 

R https://www.r-project.org  

Bowtie2 (Langmead and Salzberg, 2012) http://bowtie-

bio.sourceforge.ne

t/bowtie2/index.sht

ml 

Samtools (Li et al., 2009) http://samtools.sou

rceforge.net/ 

TopHat2 (Kim et al., 2013) N/A 

Trim Galore! https://github.com/FelixKrueger/

TrimGalore 

N/A 

UCSC genome browser https://genome.ucsc.edu/ N/A 
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deepTools/2.3.3 (Ramirez et al., 2016) N/A 

Bowtie 2 (Langmead and Salzberg, 2012) N/A 

BEDTools (Quinlan and Hall, 2010) N/A 

MACS1.4.2 (Zhang et al., 2008) N/A 

Hi-C bench (Lazaris et al., 2017) N/A 

GenomicTools (Tsirigos et al., 2012) N/A 

ICE “correction” algorithm (Imakaev et al., 2012) N/A 

Crane insulation scores (Crane et al., 2015) N/A 

Hi-C Pro (Servant et al., 2015) N/A 

Fit-HiChIP (Bhattacharyya et al., 2018) N/A 

DESeq2 version 1.4 (Love et al., 2014) N/A 

htseq-counts (Anders et al., 2015) N/A 

4Cker (Raviram et al., 2016) https://github.com/r

r1859/R.4Cker 

GSEA (Subramanian et al., 2005) http://software.bro

adinstitute.org/gse

a/index.jsp 

PeaKDEck (McCarthy and O'Callaghan, 

2014) 

N/A 

 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents may be directed to the Lead Contact, 

Jane Skok (Jane.Skok@nyulangone.org). 

 

Experimental Model and Subject Details 
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NSD2 High (one clone of NTKO and KMS11 parental cell line, which is a human myeloma cell 

line from a female patient) and NSD2 Low cells (two clones of TKO) were obtained from Ben Ho 

Park (Lauring et al., 2008) who generated the cell lines. Upon reception, the phenotype of the 

cells was as described (Lauring et al., 2008), and NSD2 High and Low cells harbored expected 

alterations in NSD2 RNA and protein as confirmed by RNA-seq and Western-blot, respectively. 

Additional cell authentication was not performed. Cells were maintained in culture as per Ben Ho 

Park’s recommendations. Briefly, cells were grown in RPMI-1640 supplemented with 10% fetal 

bovine serum, 100 U/mL penicillin and 100 μg/mL streptomycin and subcultured twice a week by 

dilution. Our PCA revealed that NTKO (two replicates from independent cultures) and KMS11 

(one replicate) were identical in terms of gene expression, CTCF and H3K27ac peaks. Only 

NTKO cells were used for further experiments. For NSD2 low cells, two replicates from 

independent cultures were used from one clone as well as one replicate from the other clone. Our 

PCA revealed that TKO clones and replicates were identical in term of gene expression, CTCF 

and H3K27ac peaks. For downstream experiments, NTKO and KMS11 cells were trypsinized 

while TKO cells were directly obtained from suspension cultures. Cells were freshly crosslinked 

for ChIP-seq, Hi-C, Hi-ChIP and 4C (see corresponding sections for detailed protocols), 

resuspended in RLT buffer for RNA extraction as per the instructions provided by the kit (RNeasy 

plus kit from QIAGEN), or directly processed for ATAC-seq (see corresponding section for 

detailed protocol). 

 

Method Details 

RNA-seq 

RNA was extracted from 5 replicates for each condition, using the RNeasy plus kit from QIAGEN. 

Poly-adenylated transcripts were positively selected using the NEBNext® Poly(A) mRNA 

Magnetic Isolation Module following the kit procedure. Libraries were prepared according to the 

directional RNA-seq dUTP method adapted from 
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http://wasp.einstein.yu.edu/index.php/Protocol:directional WholeTranscript_seq that preserves 

information about transcriptional direction. Sequencing was performed with Illumina Hi-Seq 2500 

using 50 cycles paired-end mode. 

 

ATAC-seq 

NTKO and KMS11 cells were trypsinized while TKO cells were directly obtained from suspension 

cultures. Cell were counted to collect 50,000 cells per replicate. Two different cultures of NTKO 

cells were used for the NSD2 High condition and one culture from two different clones of TKO for 

the NSD2 Low condition. The procedure was repeated in three independent days for a total of six 

replicates for NSD2 High and six replicates for NSD2 Low. The assay was performed as described 

previously (Buenrostro et al., 2013). Cells were washed in cold PBS and resuspended in 50 μl of 

cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3mM MgCl2, 0.1% IGEPAL CA-630). The 

tagmentation reaction was performed in 25 μl of TD buffer (Illumina Cat #FC-121-1030), 2.5 μl 

Nextera Tn5 Transposase, and 22.5 μl of Nuclease Free H2O at 37oC for 30 min. DNA was 

purified on a column with the Qiagen Mini Elute kit, eluted in 10 μl H2O. Purified DNA (10 μl) was 

combined with 10 μl of H2O, 2.5 μl of each primer at 25 mM and 25 μl of NEB Next PCR master 

mix. DNA was amplified for 5 cycles and a monitored quantitative PCR was performed to 

determine the number of extra cycles needed as per the original ATAC-seq protocol (Buenrostro 

et al., 2013). DNA was purified on a column with the Qiagen Mini Elute kit. Samples were 

quantified using Tapestation bioanalyzer (Agilent) and the KAPA Library Quantification Kit and 

sequenced on the Illumina Hi-Seq 2000 using 50 cycles paired-end mode. The six replicates were 

sequenced independently and three replicates were pooled together during the data processing 

in order to get two replicates with sufficient sequencing depth for downstream analysis (see 

ATAC-seq processing data for details).  

 

ChIPmentation  
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Cells were fixed in culture medium within 1% formaldehyde at RT for 10 minutes and quenched 

with 0.125 M glycine. Pellets were washed twice with ice-cold PBS, snap-frozen in liquid nitrogen 

and stored at -80°C. ChIP-seq was performed as per the original ChIPmentation protocol (Schmidl 

et al., 2015) in triplicate for CTCF and H3K27ac, and in duplicate for H3K36me2 and Rad21. 

Briefly, chromatin was lysed during a 10 min rotation in the cold room in 350 μl of lysis buffer (10 

mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA pH8.0 NaOH, 0.5 mM EGTA pH8.0 NaOH, 0.1% 

sodium deoxycholate, 0.5% N-lauroysarcosine). Lysates were sonicated using Bioruptor 

(Diagenode) (15 cycles 30 sec ON, 30 sec OFF, an agarose gel was run to make sure that the 

sonicated DNA smear was in the range of 100-700bp). Triton X-100 1% finale were added and 

the samples were centrifuged 5 min at 16000 rcf at 4°C. Supernatant was collected. Antibody was 

combined with protein A magnetic beads for one hour at room temperature and added to 

chromatin. For CTCF, H3K27ac and Rad21 and IgG as negative control, 10 μl of antibody 

(Millipore 07-729, Abcam ab4729, Abcam ab992, Abcam ab37415, respectively) was added to 

50 μl of protein-A magnetic beads (Dynabeads) and added to the sonicated chromatin from 10 

million cells per immunoprecipitation. For H3K36me2, internal spike-in was added for 

normalization as previously described (Oksuz et al., 2018). Briefly, per immunoprecipitation, 1 μl 

of H3K36me2 antibody and 0.1 μl of Drosophila-specific H2Av antibody were added to 10 μl of 

protein-A magnetic beads and added to 100 μg of human sonicated chromatin supplemented with 

2 μg of drosophila sonicated chromatin. Of note, chromatin was quantified with Nanodrop at 260 

nm. Immunoprecipitation was performed for 3 to 6 hours rotating in the cold room, then washes 

and tagmentation were performed as per the original ChIPmentation protocol (Schmidl et al., 

2015). Briefly, beads were washed twice with 500 μl cold low-salt wash buffer (20 mM Tris-HCl 

pH 7.5, 150 mM NaCl, 2 mM EDTA pH8.0 NaOH, 0.1% SDS, 1% triton X-100), twice with 500 μl 

cold LiCl-containing wash buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM EDTA pH8.0 NaOH, 

1% triton X-100, 0.7% sodium deoxycholate), and twice with 500 μl cold 10 mM cold Tris-Cl, pH 

8.0, to remove detergent, salts and EDTA. Subsequently, beads were resuspended in 25 μl of the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587931doi: bioRxiv preprint 

https://doi.org/10.1101/587931


32 
 

freshly prepared tagmentation reaction buffer (10 mM Tris-HCl, pH 8.0, 5 mM MgCl2, 10% 

dimethylformamide) and 1 μl Tagment DNA Enzyme from the Nextera DNA Sample Prep Kit 

(Illumina) and incubated at 37°C for 1 min in a thermocycler. Following tagmentation, the beads 

were washed twice with 500 μl cold low-salt wash buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 

2 mM EDTA pH8.0 NaOH, 0.1% SDS, 1% triton X-100), and twice with 500 μl cold Tris-EDTA-

Tween buffer (0.2% tween, 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0). Chromatin was eluted 

and decrosslinked by adding 70 μl of freshly prepared elution buffer (0.5% SDS, 300 mM NaCl, 5 

mM EDTA pH 8.0, 10 mM Tris-HCl pH 8.0) and 2 μl of proteinase K at 10 mg/ml for 2 hours at 

55°C and overnight incubation at 65°C. Supernatant was kept and to recover as much DNA as 

possible, beads were washed with an additional 30 μl of elution buffer and combined supernatant 

was incubated an additional hour at 55°C. DNA was purified on a column with the Qiagen Mini 

Elute kit. Purified DNA (20 μl) was combined with 2.5 μl of each primer at 25 mM and 25 μl of 

NEB Next PCR master mix and was amplified as per the ChIPmentation protocol (Schmidl et al. 

2015) in a thermomixer with the following program: 72°C for 5 min; 98°C for 30 s; 14 cycles of 

98°C for 10 s, 63°C for 30 s and 72°C 30 s; and a final elongation at 72°C for 1 min. DNA was 

purified using two consecutive rounds of SPRI AMPure XP beads: the first one with a beads-to-

sample ratio of 0.6:1 to remove potential fragments larger than 700 bp (supernatant kept) and the 

second one with a beads-to-sample ratio of 1:1 to remove potential primer dimers (beads kept), 

and eluted in 20 μl of H2O. Samples were quantified using Tapestation bioanalyzer (Agilent) and 

KAPA Library Quantification Kit and sequenced with Illumina Hi-Seq 2500 using 50 cycles paired-

end mode (CTCF and H3K27ac) or single-end mode (Rad21 and H3K36me2). 

 

Hi-C 

Hi-C was performed in duplicate, from 0.5 to 1 million cells fixed in culture medium within 1% 

formaldehyde at RT for 10 minutes and quenched with 0.125M glycine. Hi-C samples were 
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processed using the Arima Hi-C kit as per the kit protocol, and sequenced with Illumina Hi-Seq 

2500 using 50 cycles paired-end mode. 

 

CTCF HiChIP 

HiChIP was performed in duplicate. Cells were fixed in culture medium with 1% formaldehyde at 

RT for 10 minutes and quenched with 0.125 M glycine. Pellets were washed twice with ice-cold 

PBS, snap-frozen in liquid nitrogen and stored at -80°C. HiChIP was performed with 15 million 

cells, as per the original protocol (Mumbach et al., 2016). Cells were then lysed in 500 μl ice-cold 

lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% Igepal CA-630, protease inhibitor cocktail 

(Roche complete, EDTA-free)) rotating at 4°C for 30 minutes. Cell pellets were collected, washed 

once in 500 μl ice-cold lysis buffer and then incubated in 100 μl 0.5% SDS at 62°C for 10 min. 

SDS was quenched by adding 285 μl of H2O and 50 μl of Triton X-100 10%, and incubating at 

37°C for 15 min. Chromatin was then digested by adding 50 μl of NEBuffer 2 10X and 350 units 

of MboI (NEB R0147M) at 37°C for 2 hours while rotating at 950 rpm. MboI was inactivated by 

incubating the samples 20 minutes at 62°C. To fill in the restriction fragment overhangs and mark 

the DNA ends with biotin, 1.5μl 10 mM dCTP, 1.5μl 10 mM dGTP, 1.5μl 10 mM dTTP, 37.5μl 0.4 

mM biotin-14-dATP (Life Technologies 19524-016), and 10 μL 5U/μl Klenow (DNA polymerase I 

large fragment, NEB M0210L) were added to each tube, and incubated for 60 minutes at 37°C. 

Ligation mix was added to the samples (150 μl 10x ligation buffer (NEB B0202S), 7.5 μl 20mg/ml 

BSA (NEB B9001S), 150 μl Triton X-100 10%, 10 μl 400U/μl T4 DNA ligase (NEB M0202S), and 

655.5 μl H2O) for 4 hours at RT with rotation. Following ligation, nuclei were pelleted and 

resuspended in 350 μl cold Nuclei Lysis Buffer (50 mM Tris-HCl pH 7.5, 10 mM EDTA, 1% SDS, 

and 1x Protease Inhibitors) with incubation rotating in the cold room for 10 min. Samples were 

sonicated on the bioruptor for 15 min (an agarose gel was performed to make sure that the 

sonicated DNA smear was in the range of 250-600bp), supplemented with 1% Triton X-100 and 

centrifuged 5 min at 16000 rcf at 4°C. CTCF antibody (5 μl, Millipore 07-729) was combined with 
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50 μl of protein-A magnetic beads (Dynabeads) for one hour at room temperature, and added to 

sonicated chromatin from 15 million cells. Immunoprecipitation was performed by overnight 

incubation rotating in cold room and washes were performed. Briefly, beads were washed twice 

with 500 μl cold Low-salt wash buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM EDTA pH8.0 

NaOH, 0.1% SDS, 1% triton X-100), twice with 500 μl cold high-salt wash buffer (20 mM Tris-HCl 

pH 7.5, 500 mM NaCl, 2 mM EDTA pH8.0 NaOH, 0.1% SDS, 1% triton X-100), and twice with 

500 μl cold LiCl-containing wash buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM EDTA pH8.0 

NaOH, 1% NP-40, 1% sodium deoxycholate). Chromatin was eluted and decrosslinked by adding 

100 μl of freshly prepared elution buffer (0.5% SDS, 300 mM NaCl, 5 mM EDTA pH 8.0, 10 mM 

Tris-HCl pH 8.0) and 10 μl of proteinase K at 10 mg/ml for 45 min at 55°C and at least 1.5 hour 

at 67°C. DNA was purified on kept a column with the Qiagen Mini Elute kit, eluted in 12 μl of H2O, 

and quantified using Qubit. Of note, we obtained between 3 to 8 ng of DNA for CTCF HiChIP from 

15 million cells. To enrich for ligation events, 5 μl of Streptavidin C-1 beads were washed in Tween 

Wash Buffer (TWB, 5 mM Tris-HCl pH 7.5, 0.5 mM EDTA pH 8.0, 1M NaCl, 0.05% Tween-20), 

resuspended in 10 μl of 2X Biotin Binding Buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8.0, 2 

M NaCl), added to 10 μl of the samples and incubated at room temperature for 15 min with 

rotation. Samples were then washed twice in TWB with 2 min incubation at 55°C shaking. For 

tagmentation, beads were washed twice in 100 μl of freshly prepared tagmentation reaction buffer 

(10 mM Tris-HCl, pH 8.0, 5 mM MgCl2, 10% dimethylformamide), and resuspended in 25 μl of 

the tagmentation reaction buffer and 1 μl Tagment DNA Enzyme from the Nextera DNA Sample 

Prep Kit (Illumina) and incubated at 55°C for 10 min in a thermocycler with interval shaking. Beads 

were resuspended in 50 mM EDTA and incubated at 50°C for 30 min to quench the transposase 

reaction. This was followed by two washes in 50 mM EDTA incubated at 50°C for 3 min, two 

washes in Tween Wash Buffer incubated at 55°C for 2 min, and one wash in 10 mM Tris-HCl pH 

7.5. Beads were resuspended in 50 μl of PCR master mix (1 μl of each primer at 25 mM, 25 μl of 

NEB Next PCR master mix and 23 μl of H2O) and DNA was amplified in a thermomixer with the 
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following program: 72°C for 5 min; 98°C for 30 s; 10 cycles of 98°C for 10 s, 63°C for 30 s and 

72°C for 1 min. DNA was purified using two consecutive rounds of SPRI AMPure XP beads: the 

first one with a beads-to-sample ratio of 0.6:1 to remove potential fragments larger than 700 bp 

(supernatant kept) and the second one with a beads-to-sample ratio of 0.18:1 to keep fragments 

greater than 300 bp (on beads), and eluted in 15 μl of H2O. Samples were quantified using the  

Tapestation bioanalyzer (Agilent) and the KAPA Library Quantification Kit and sequenced with 

Illumina Hi-Seq 2500 using 50 cycles paired-end mode. 

 

4C-seq 

4C-seq was performed in duplicate and analyzed as previously described (Raviram et al., 2016; 

Rocha et al., 2016) with minor changes. 10 million cells were fixed in 2% formaldehyde for 10 

minutes at room temperature and quenched with glycine (0.125 M final concentration). Nuclei 

were isolated in lysis buffer (50mM Tris-HCl ph7.5, 150mM NaCl, 5mM EDTA, 0.5% NP-40, 1% 

TX-100 containing 1X Roche complete Mini protease inhibitors) and dounced 40 times on ice. 

Nuclei were resuspended in 360 μl H2O and 60 μl warm 10X NEB DpnII buffer. They were 

permeabilized using 15 μl 10% SDS for 60min at 37°C and then 150 μl 10% Triton X-100 for 

60min at 37°C. Chromatin was digested using 500U DpnII (NEB) overnight at 37°C while shaking, 

and the digestion was repeated with an additional 250U of enzymes for 8 hours, meanwhile 

digestion was determined by gel electrophoresis. Enzyme was deactivated at 65°C for 20 min. 

Chromatin samples were divided in 3 tubes, diluted and ligated by adding H2O up to 1.2 ml, 133 

μl T4 ligase buffer 10X and 6000U total NEB T4 DNA Ligase (M0202M) per tube and incubating 

at 16°C overnight while shaking. Ligation efficiency was checked by gel electrophoresis. 

Chromatin was de-crosslinked with proteinase K overnight at 65°C, and treated with RNase A at 

37°C for 1 hour. DNA was extracted by Phenol:Choroform and precipitated with Ethanol. Purified 

DNA was digested with 50U NEB Csp6I overnight at 37°C while shaking, and digestion was 

determined by gel electrophoresis. Enzyme was deactivated at 65°C for 20 min. DNA 
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circularization was performed using 4000U NEB T4 DNA Ligase overnight at 16°C. A total of 1 

μg DNA was amplified per sample with inverse PCR primers containing Illumina forward and 

reverse sequencing adapters (see Key resources for sequences). PCR was performed using 

Expand™ Long Template PCR System (Sigma) with the following thermocycler program: 94°C 

for 2 min; 94°C for 15 sec; 53-55°C for 1 min; 68°C for 2.30 min; repeat for 29 cycles; 68°C for 7 

min; hold at 4°C. 4C-seq libraries were size-selected on gel to remove any potential primer dimers 

and fragments above 700 bp, then quantified using RT-PCR (KAPA Biosystems) and sequenced 

using 50bp single-end on Illumina HiSeq 2500. 

 

Quantification and Statistical Analysis 

RNA-Seq Data processing and quality control  

Paired-end reads were mapped to the hg38 genome using TopHat2 (Kim et al., 2013) 

(parameters:–no-coverage-search–no-discordant–no-mixed–b2-very-sensitive–N 1). Bigwigs 

were obtained for visualization on individual as well as merged bam files using Deeptools/2.3.3 

(Ramirez et al., 2016) (parameters bamCoverage --binSize 1 --normalizeUsing RPKM). Counts 

for Refseq genes were obtained using htseq-counts (Anders et al., 2015). Principal Component 

Analysis was performed using R to check the reproducibility of replicates (See Supplementary 

Figure S1A). DESeq2 version 1.4 (Love et al., 2014) was used to normalize expression counts 

and get differentially expressed genes (absolute log2 fold-change> 1 and FDR < 0.01). Gene Set 

Enrichment Analysis of gene expression in NSD2 High versus Low cells were performed using 

GSEA (Subramanian et al., 2005) desktop application on normalized reads counts for each 

replicate from the 26586 protein coding genes of hg38 genome. 

 

 

ATAC-seq Data processing and quality control 
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Reads were aligned to hg38 genome with Bowtie2 (Langmead and Salzberg, 2012) (parameters: 

–no-discordant -p 12 –no-mixed -N 1 -X 2000). Potential PCR duplicates were removed from the 

reads with Picard-tools. ATAC-seq peaks were called with PeaKDEck (McCarthy and 

O'Callaghan, 2014) (parameters: -sig 0.0001 -PVAL ON). Bigwigs were obtained for visualization 

on individual as well as merged bam files using Deeptools/2.3.3 (parameters bamCoverage --

binSize 1 --normalizeUsing RPKM). 

 

4C-seq Data processing and quality control 

Processing of 4C-seq data was performed using 4Cker pipeline (Raviram et al., 2016). Briefly, 

mapping was performed using Bowtie2 to a reduced genome consisting of all unique 24-nt-long 

regions surrounding DpnII sites from the human reference genome (hg38), allowing for zero 

mismatches. For comparison between conditions, DESeq2 version 1.4 (Love et al., 2014) with 

default parameters was used to normalize total read count per window between samples and to 

identify the windows with significant 4C signal differences, using an FDR-adjusted p-value cutoff 

of 0.05. 

 

ChIP-seq Data processing and quality control 

Reads were aligned to hg38 genome with Bowtie2 (Langmead and Salzberg, 2012) (parameters: 

–no-discordant -p 12 –no-mixed -N 1 -X 2000). Ambiguous reads were filtered to use uniquely 

mapped reads in the downstream analysis. PCR duplicates were removed using Picard-tools 

(version 1.88). Bigwigs were obtained for visualization on individual as well as merged bam files 

using Deeptools/2.3.3 (Ramirez et al., 2016) (parameters bamCoverage --binSize 1 --

normalizeUsing RPKM; or bamCompare --verbose --binSize 25 --ratio subtract --

scaleFactorsMethod SES for subtraction files). For H3K36me2 ChIP-seq, an internal Drosophila 

spike-in was added. Reads were aligned to dm6 genome with Bowtie2 (parameters: –no-

discordant -p 12 –no-mixed -N 1 -X 2000). Bigwigs were created after normalization with the 
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spike-in Drosophila read counts. Heatmaps and average profiles were performed on merged 

bigwig files using Deeptools/2.3.3. For CTCF, H3K27ac and Rad21 ChIP-seq, MACS version 

1.4.2 (Zhang et al., 2008) was used to call peaks (parameters: -p 1e-6 -g hs -B --single-profile). 

For CTCF and H3K27ac ChIP-seq, a reference list of peaks coordinates was created containing 

all the peaks present in any replicate, and merging overlapping peaks using Bedtools merge –i. 

Counts for the reference list of peak coordinates were obtained using htseq-counts (Anders et al., 

2015). PCA was performed using R to check the reproducibility of replicates (See Supplementary 

Figure S2A and S2D). DESeq2 version 1.4 (Love et al., 2014) was used to normalize read counts 

and get differential peaks (absolute log2 fold-change> 1 and FDR < 0.01).  

 

Hi-C Data processing and quality control 

Processing 

HiC-Bench (Lazaris et al., 2017) was used to align and filter the Hi-C data, identify TADs, and 

generate Hi-C heatmaps. To generate Hi-C filtered contact matrices, the Hi-C reads were aligned 

against the human reference genome (hg38) by bowtie2 (Langmead and Salzberg, 2012) (version 

2.3.1) (Settings: --very-sensitive-local –local). Mapped read pairs were filtered by the 

GenomicTools (Tsirigos et al., 2012) tools-hic filter command integrated in HiC-bench for known 

artifacts of the Hi-C protocol. The filtered reads include multi-mapped reads (‘multihit’), read-pairs 

with only one mappable read (‘single sided’), duplicated read-pairs (‘ds.duplicate’), low mapping 

quality reads (MAPQ < 30), read-pairs resulting from self-ligated fragments, and short-range 

interactions resulting from read-pairs aligning within 25kb (‘ds.filtered’). For the downstream 

analyses, all the accepted intra-chromosomal read-pairs (‘ds.accepted intra’) were used. The Hi-

C filtered contact matrices were corrected using the ICE “correction” algorithm (Imakaev et al., 

2012) built into HiC-bench. TADs and boundaries were identified using the Crane method (Crane 

et al., 2015) at 40 kb bin resolution with an insulating window of 500kb. HiC heatmaps for regions 
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of interest were generated using the ICE corrected contact matrices through the ‘hic-plotter-diff’ 

pipeline step integrated in HiC-bench. 

 

Quality Control and TAD / Boundary Stats 

Quality assessment analysis shows that the total numbers of reads in the samples ranged from 

~120 million to ~185 million (Supplementary Figure S4A). The percentage of reads aligned was 

always over 98% in all samples. The proportion of accepted reads (‘ds-accepted-intra’ and ‘ds-

accepted-inter’) were in the range of ~46 - 47%. 

 

The number of TADs identified by the Crane method across replicates ranged between 3460 and 

3532 from which ~500 TADs (14%) showed sizes smaller or equal to 80kb in each replicate. We 

removed such short length TADs from the following metrics analysis, considering this approach 

more representative. The distribution of TAD sizes showed that 85% of the TADs ranged between 

160 kb and 1.04 Mb with a median of 480 kb in both NSD2 High and Low conditions. The mean 

TAD sizes were 573 kb and 591 kb for NSD2 High and Low conditions, respectively 

(Supplementary Figure S4G).  

 

R (prcomp, scale=TRUE and center=TRUE) was used to perform a PCA on the Hi-C datasets 

using the “ratio” insulation scores produced by HiC-Bench (bins = 40kb) after ICE correction 

(Supplementary Figure S4B).  

 

DOWNSTREAM ANALYSIS: TADs, Boundaries, and Compartments  

Screening of Potentially Altered Boundaries 

The Hi-C downstream analysis involved a genome-wide screening of TAD boundary insulation 

changes in NSD2 High cells based on boundary insulation scores (ratio index) and CTCF/Rad21 
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binding enrichment. Individual cases of potentially altered boundaries were confirmed by visual 

inspection of HiC heatmaps.  

 

Mean Boundary Insulation Scores (Ratio index) 

To assess and compare boundary strength alteration in NSD2 High versus Low cells, we included 

the calculation of the Mean Boundary Score (MBS) for every boundary identified in the NSD2 Low 

condition (reference boundaries). For this purpose, we used the ‘by group’ NSD2 Low TADs 

identified by the Crane method. HiC-Bench performs a ‘by group’ analysis by merging the DNA 

interaction information of all the replicates of the same condition, in this case, to identify TADs per 

condition. 

 

We calculated the MBS as the arithmetic mean of the ‘ratio’ insulation scores inside the reference 

boundary coordinates being assessed. HiC-Bench calculates one ratio score per bin (40kb) as 

explained in Lazaris et al. (2017). As a result, there are generally multiple insulation scores per 

TAD boundary identified by the Crane algorithm. The number of bins inside boundaries showed 

a median number of 7 and, accordingly, the boundary median size was 280 kb. The MBS was 

used to calculate NSD2 High MBS logFC values with respect to the NSD2 Low condition. A 

differential analysis on the ratio insulation scores inside each boundary was also performed. An 

unpaired t-test (two-sided) was used by pooling all the ratio insulation scores inside the reference 

boundary coordinates and adjusting with FDR correction.  

 

CTCF and Rad21 Occupancy in Boundaries: Integration with Insulation Data 

The CTCF and Rad21 peaks were mapped to the boundaries to integrate the boundary insulation 

data obtained with the CTCF and Rad21 binding data. We assigned a peak to a boundary if the 

peak overlapped with the boundary region (> 0 bp). An extension of the boundary region by 1 bin 

(40 kb) on either side of the boundary was considered. The CTCF/Rad21 signal of all the peaks 
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assigned to a boundary were aggregated and then NSD2 High versus Low logFC values were 

calculated. Significant changes in global CTCF/Rad21 occupancy within the boundaries were 

calculated using a two-sided unpaired t-test by pooling all the CTCF/Rad21 peak intensities 

assigned in the boundary. 

 

A ranked-table of boundary coordinates with the insulation and CTCF/Rad21 metrics was created. 

To generate Hi-C heatmaps, the best-ranked boundary cases were selected by taking into 

account unidirectional significant fold changes in MBS, CTCF and Rad21 (FDR < 0.01). In this 

approach, we assumed that there would be a positive correlation between boundary insulation 

scores and CTCF/Rad21 binding in boundaries. In addition, we screened each boundary 

candidate and the adjacent TADs and boundaries in search of significant deregulated genes, gain 

/ loss of interactions and significant changes in H3K27ac, CTCF and other features.  

 

Compartments 

Compartment analysis was carried out using the Homer pipeline (v4.6) (Crane et al., 2015). 

Homer performs a principal component analysis of the normalized interaction matrices and uses 

the PC1 component to define regions of active (A compartments) and inactive chromatin (B 

compartments). HiC filtered matrices were given as input to run Homer with default parameters 

(50kb resolution). To confirm the proper sign of the A and B compartment, we used the --active 

parameter to input peaks of the active mark H3K27ac. We use Homer to compare the interaction 

profiles in both experiments and calculate a correlation. If one region interacts similarly with other 

regions in both conditions, then the correlation will be high. On the other hand, the correlation will 

be low if a locus interacts with different regions in both conditions. Using Homer’s 

getHiCcorrDiff.pl, we compared the interaction profiles of both conditions and obtained a 

correlation difference to identify stable and switching compartments. Altered compartments are 

named as AB and BA for regions switching from A to B and B to A, respectively.  
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Intra-TAD interactions 

To assess statistically significant intra-TAD interactions, we used an algorithm developed by 

Andreas Kloetgen. As a first step, the algorithm identifies overlapped or positionally consistent 

TADs (common TADs). This approach establishes a minimum TAD length parameter (default: 10 

bins) and extends either side of the TAD by 3 bins (+/-120 kb in 40kb resolution). TADs across 

two samples are considered positionally consistent if their boundaries are as close as 3 bins. The 

boundaries of the common TAD are then set to those which yield the largest TAD. The set of 

common TADs between any two samples 𝑠" and 𝑠# is denoted as T. In the next step, a paired 

two-sided t-test is performed on each single interaction bin within each common TAD between 

the two samples. It calculates the difference between the average scores of all interaction 

intensities within such TADs. A multiple testing correction by calculating the false-discovery rate 

per common TAD (using the R function p.adjust with method=”fdr”) is also calculated. 

 

for each t Î T, and 𝐼% being all intra-TAD interactions for TAD t. 

 

We classified the common TADs in terms of Loss, Gain or Stable intra-TAD interactions by using 

FDR < 0.1 and absolute TAD interactions change > 0.3. A minimum common TAD length of 200 

kb was considered in the intra-TAD interactions differential analysis (5 bins). We used the intra-

TAD interactions fold change of each common TADs with a TAD length higher or equal to 80 kb 

(2 bins) in the Local Analysis in Common TADs (See ‘Data Integration: Local Analysis in 

Common TADs’ section). 

 

Data Integration: Global Analysis. 

AB and BA Compartment Changes.  
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To show the correlation between the different measurements and the compartment changes, we 

mapped the peaks obtained in H3K27ac2, CTCF, RAD21 and ATAC-seq to the AB, BA and Stable 

regions. We used the peak intensity values to calculate the peak intensity fold change between 

NSD2 High and Low and the mean fold change of all the peaks assigned to a compartment region. 

Similarly, in the case of RNA-seq data, genes were mapped to the compartment regions and the 

mean fold change of all the genes assigned to a region was calculated by using the DESeq2 fold 

change data. 

 

We assigned a peak or gene to a compartment region when the complete peak or gene coordinate 

was found inside the compartment coordinates. For sparse measurements as in H3K36me2 and 

H3K27me3 chromatin marks, we used HTSeq to obtain read counts on the AB, BA and Stable 

regions. Next, we used DESeq2 to normalize the read counts across NSD2 High and Low 

replicates and to obtain fold change values.  

 

To show the correlation between the different measurements and the compartment changes, we 

used the mean fold change values to generate boxplots. Statistical significance was assessed 

using a paired two-sided Wilcoxon rank-sum test. 

 

Intra-TAD Interactions. Gain, Loss and Stable TADs. 

We used the same method as described in the previous subsection to integrate the H3K27ac2, 

CTCF, RAD21, ATAC-seq, RNA-seq data, H3K36me2, H3K27me3 measurements with the 

different intra-TAD interactions subgroups described above (Gain, Loss and Stable TADs). 

 

Data Integration: Local Analysis in Common TADs. 

CTCF binding, H3K27ac and RNA expression. 
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To compute the total number of differential changes in CTCF binding, RNA expression, and 

H3K27ac mark that fall within common TADs. We overlapped all CTCF peaks, genes, and 

H3K27ac peaks with common TADs. Volcano plots were generated using the log2 fold changes 

and –log10 (p-value) for all three data types (CTCF-ChIP, RNA-seq, H3K27ac-ChIP). Overlapping 

features with log2 fold change greater than 1 and a FDR less than 0.01 were colored red, while 

overlapping features with log2 fold change smaller than -1 and a FDR smaller than 0.01 were 

colored in blue, and all others were colored in black.  

 

To assess the correlation of CTCF binding, H3K27ac, and RNA expression inside each Common 

TAD, we assigned a peak to each Common TAD when the complete peak coordinate was found 

inside the TAD coordinates. Genes were assigned to common TADs when the promoter 

overlapped with each TAD (overlap > 1 bp). Common TADs lacking either CTCF, H3K27ac, or 

RNA expression features were filtered in the three-way analysis (3D scatter-plots). The mean fold 

change of each feature (CTCF, H3K27ac and RNA expression) inside each Common TAD was 

computed by two methods. One method considered only the differential peaks / genes found 

inside a Common TAD (FDR < 0.05) in the mean fold change calculation (filtered analysis). The 

second method considered all the peaks / genes assigned to a Common TAD (unfiltered 

analysis).   

 

Intra-TAD Interactions and Compartment Alteration. 

One mean log fold change value for each feature (CTCF, H3K27ac and RNA expression) was 

assigned to every Common TAD, together with the intra-TAD interactions fold change value 

previously calculated (see ‘Intra-TAD interactions’ subsection). Compartment alteration was 

also assessed by calculating the mean PC1 value of each Common TAD (by 50kb bins) and 

computing the PC1 mean difference between conditions (NSD2 High – NSD2 low). A positive 

value of the PC1 mean difference indicates that in the NSD2 High condition, that Common TAD 
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had become more active. The higher the PC1 mean difference the stronger the compartment 

alteration change. To confirm if the PC1 mean difference correlated with real compartment 

changes, we looked at whether the significant AB and BA regions identified by Homer overlapped 

with the Common TADs.  We then computed the overlap length. One common TAD was assigned 

as an AB or BA switching region when the overlap length of the BA or AB in a TAD was higher or 

equal to 100kb (2 PC1 bins). Common TADs assigned to a BA switching region were colored 

orange in Figure 5C. The median overlap lengths in the three-way concordant common TADs 

were 400 kb and 450 kb for common TADs assigned to B to A and A to B regions, respectively. 

 

To show the intra-TAD association of all the five features (CTCF, H3K27ac, RNA expression, 

Intra-TAD interactions and PC1 mean difference) we classified the Common TADs in ‘positive’, 

‘negative’ or ‘no correlated’ groups, by taking into account the direction of CTCF, H3K27ac and 

RNA expression (positive correlation). The Pearson Correlation Coefficient (PCC) was calculated 

by using R (‘Cor’ and ‘pairs’ command). 3D plots were also generated using R (‘plot_ly’ command 

of the ‘plotly’ library). 

 

HiChIP Data processing and quality control 

HiChIP paired-end reads were aligned to hg38 genome using the HiC-Pro pipeline (Servant et 

al., 2015). Default settings were used to remove duplicate reads, assign reads to MboI restriction 

fragments, filter for valid pairs, and generate 10kb binned interaction matrices. FitHiChIP 

(Bhattacharyya et al., 2018) was used to identify statistically significant chromosomal interactions 

from the CTCF HiChIP experiments, using a bin size of 10kb. FitHiChIP allows users to use a 

reference list of peaks from ChIP-seq data. Therefore, we used the ChIP-seq data from NSD2 

high and low cells as described above. Statistically significant HiChIP interactions (q<0.01) were 

called separately in each experiment with a minimum distance of 20kb and a maximum distance 

of 3MB. The UseP2PBackgrnd parameter was set to 1 for estimating contact probability 
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background only from peak-to-peak interactions (i.e., stringent mode). Statistical significance was 

assigned for all HiChIP interactions that involve at least one anchor with a CTCF ChIP-seq peak 

(peak-to-all interactions). This resulted in 8,651 statistically significant CTCF peak-to-all 

interactions in NSD2 High and 4,914 CTCF peak-to-all interactions in NSD2 low. Common CTCF 

high confidence loops in NSD2 High and NSD2 Low were identified by overlapping loop anchors 

on both sides. The median size for common loops was calculated to be 210 kb.  

 

HiChIP Data integration with CTCF ChIP-seq, RNA-seq and H3K27ax ChIP-seq  

To compute the total number of differential changes in CTCF binding, RNA expression, and 

H3K27ac marks that fall within common CTCF HiChIP loops, we overlapped all CTCF peaks, 

genes (5kb upstream of TSS), and H3K27ac peaks within common HiChIP loops (full loop plus 

anchors). Volcano plots were generated using the log2 fold changes and –log10 (p-value) for all 

three data types (CTCF-ChIP, RNA-seq, H3K27ac-ChIP). Overlapping features with log2 fold 

change greater than 1 and FDR less than 0.01 were colored red, while overlapping features with 

log2 fold change less -1 and a FDR less than 0.01 were colored in blue, and all others were 

colored in black.  

 

To assess the correlation of CTCF binding, H3K27ac, and RNA expression inside each Common 

CTCF Loops, we applied the same approach used to assess the correlation of these features in 

Common TADs. First, all CTCF peaks were overlapped with all the common loops, and the mean 

log2 fold change for all peaks found within a common loop were calculated. The same approach 

was applied to calculate the mean log2 fold change for all genes and for all H3K27ac peaks within 

each common loop.  

 

To correlate the mean log2 fold changes of all three features, we considered only the common 

loops that had at least one overlapping differential CTCF and H3K27ac peak as well as one gene 
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expression change. Pairwise correlation plots were generated for the three comparisons, so that 

each individual point in the scatterplot represents a common CTCF loop. Loops that had positive 

mean log2 fold change for all three features were colored in red, while loops that had negative 

log2 fold change for all three features were colored in blue.   

 

To determine if there is a correlation between the significant alterations of CTCF, RNA expression, 

and H3K27ac, we performed the same analysis, but first filtered for significant changes in CTCF, 

RNA expression, and H3K27ac peaks, with a FDR of less than 0.05 and an absolute value of the 

log2 fold change greater than 1. Next, the mean log2 fold change was computed for all the 

differential CTCF, gene expression changes, and H3K27ac peaks that overlapped common 

HiChIP loops. Pearson correlation was calculated for all three comparisons. 

 

Supplemental Information 

Figure S1. RNAseq analysis in NSD2 High versus Low cells, related to Figure 1. (A) PCA of 

RNA-seq replicates for NSD2 High and Low cells. (B) Gene Set Enrichment Analysis of gene 

expression in NSD2 High versus Low cells on normalized genes reads counts for each replicate. 

 

Figure S2. Transcription factor motifs identified in differential H3K27Ac peaks, related to 

Figures 1 and 2. (A) PCA of H3K27ac ChIP-seq replicates for NSD2 High and Low cells. (B) 

Identification of super-enhancers in NSD2 Low (upper panel) and High (lower panel) using 

H3K27ac with ‘ROSE’ (rank ordering of super-enhancers (Whyte et al., 2013)). (C) Transcription 

factor motifs identified in increased (1650) and decreased (303) H3K27ac peaks using TRAP, 

related to Figure 1G. Motifs also presents in Figure 1G are in bold. Motifs found in increased (red) 

and decreased (blue) H3K27ac peaks (-log10 p-value). (D) PCA of CTCF ChIP-seq replicates for 

NSD2 High and Low cells. 
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Figure S3. Chromatin landscape of the regions surrounding CTCF and H3K27ac changes, 

related to Figure 2. Heatmaps (A) and average profiles (B) of H3K27ac, H3K36me2, H3K27me3, 

ATAC-seq, Rad21 and CTCF signal at the top 1000 increased, 100 stable and 1000 decreased 

H3K27ac peaks in NSD2 High versus Low cells. Heatmaps (C) and average profiles (D) of CTCF, 

H3K36me2, H3K27me3, ATAC-seq, Rad21 and H3K27ac signal at top 1000 increased, 100 

stable and 1000 decreased CTCF peaks in NSD2 High versus Low cells. Top 1000 increased, 

100 stable and 1000 decreased CTCF and H3K27ac peaks are based on Log2 Fold changes in 

reads counts in NSD2 High versus Low cells. Peaks are ranked by H3K27ac (A) and CTCF (C) 

signal in NSD2 High cells. 

 

Figure S4. Hi-C analysis in NSD2 High and Low cells, related to Figure 3 and Figure 4. (A) 

Histogram representing read filtering of Hi-C replicates processed using Hi-C bench (Lazaris et 

al., 2017). “Ds accepted-intra” and “ds accepted inter” reads were retained for further analysis. 

(B) PCA of Hi-C replicates for NSD2 High and Low cells using the “ratio” insulation scores 

produced by HiC-Bench (bins = 40kb) after ICE correction. Histograms representing the total size 

(C) and average size (D) of A, B and switching compartments in NSD2 High and Low cells. (E) 

Bar plot representing the proportion of A (red) and B (blue) compartments in the genome for NSD2 

High and Low cells. (F) Histogram representing the number of TADs for each replicate of NSD2 

High and Low cells. (G) Boxplots representing the distribution of TAD sizes (in megabases, Mb), 

for each replicate of NSD2 High and Low cells. 

 

Figure S5. CTCF and H3K27ac peaks participate in new or strengthened chromosomal 

loops, related to figure 4. (A) UCSC tracks showing chromatin features in the region surrounding 

the FGF13 gene (FGF13 gene indicated in red and location highlighted by a yellow stripe) and 

the new contacts that are formed by stronger CTCF and Rad21 binding (blue stripes and shown 

as a loop below). H-L refers to subtraction High – Low. (B) Hi-C plots of the region surrounding 
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the FGF13 gene. Top panel: NSD2 Low, bottom panel: NSD2 High. Black arrow indicates the 

FGF13 gene. Circle indicates a loop between FGF13 and surrounding increased CTCF and 

Rad21 regions highlighted by a blue strip in panel (B). (C) UCSC tracks showing chromatin 

features in the region surrounding the KRAS gene (KRAS gene indicated in red and highlighted 

by a yellow stripe) and a downstream super enhancer (indicated by a green arrow and highlighted 

by a blue stripe). Left and right boundaries surrounding intra-TAD interaction gain are highlighted 

by blue stripes and indicated by green arrows labelled as boundary ‘1’ and ‘2’, respectively. A 

graphical representation of the interaction between KRAS and the super enhancer is shown as a 

loop below. H-L refers to subtraction High – Low. (D) Hi-C plots of the region surrounding the 

KRAS gene in NSD2 Low versus High cells (top and bottom panels, respectively). Black arrow 

indicates the location of KRAS. Green arrows indicate the super enhancer (also labelled as ‘SE’), 

and left and right boundaries surrounding intra-TAD interaction gain as labelled as boundary ‘1’ 

and ‘2’, respectively. Circle indicates a loop between KRAS and the super enhancer.  

 

Figure S6. NSD2 overexpression drives concordant chromatin and transcriptional changes 

in insulated domains, related to Figure 5. (A) Bar plot (left panel) and Volcano plots (right 

panel) showing significant NSD2-mediated changes in CTCF binding (left panels), gene 

expression (middle panels) and H3K27ac signal (right panels) within TADs (top panels) or CTCF 

HiChIP loops (bottom panels). Increases of log2 fold change >1 are shown in red and decreases, 

log2 fold change <-1 are shown in blue (FDR <0.01). (B) Percentage of significantly differential 

features in TADs. (C) Density plot of CTCF HiChIP loop sizes.  

 

Figure S7. NSD2 overexpression drives concordant chromatin and transcriptional changes 

in insulated domains, related to Figure 5. (A) Pairwise (2D scatter plots left panel) and three-

way (3D scatter plots right panels) comparisons representing log2 fold-changes of gene 

expression, H3K27ac, CTCF, intra-TAD interactions and PC1 values (representing subtraction of 
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NSD2 High and Low levels within TADs) in NSD2 High versus Low cells. Concordant increased 

and decreased changing TADs are colored in red and blue, respectively. TADs that switch from 

B to A as determined by HOMER analysis (see method for details) are highlighted in orange. 

Pearson correlations are indicated. (B) Pairwise (2D scatter plots left panel) and three-way (3D 

scatter plots right panels) comparisons representing log2 fold-changes of gene expression, 

H3K27ac and CTCF within CTCF HiChIP loops in NSD2 High versus Low cells. Concordant 

increased and decreased changing loops are colored in red and blue, respectively. Pearson 

correlations are indicated. 
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