




Induced spatiotemporal changes 

consistent with a physiologic gait pattern used by healthy controls walking on a 

treadmill, which is characterized by single limb support duration of ~31-32% of the gait 

cycle.34 We emphasize these observations were made acutely, in response to an 

experimental condition. 

Conclusions/Implications 

Commonly used rehabilitation interventions for gait dysfunction following stroke 

do not produce uniform effects. We identified differential acute responses to locomotor 

training conditions between groups with disparate asymmetry patterns, suggesting 

these subgroups may benefit from distinct intervention strategies. Improvements in 

temporal symmetry revealed in the Symmetrical group were noted to result from both 

limbs. Similarly, improvements in spatial symmetry noted in the NPshort group were 

driven by bilateral improvements, namely increased nonparetic step length occurring in 

combination with increased paretic single limb support. By investigating individual limb 

effects, we were able to determine the changes in spatial and temporal symmetry 

resulted from desirable effects rather than compensatory mechanisms. 
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Figure 1. Symmetrical step lengths (Symmetrical) 

The Symmetrical group (n=17) was characterized by equivalent paretic and nonparetic 

step lengths while walking overground. (a) Spatial and (c) temporal symmetry was 

calculated with a symmetry index (SI) with the general equation SI =Xp/(Xp+Xnp), 

where Xp and Xnp are the paretic and nonparetic values for the variable of interest, 

respectively. Step length and percent of the gait cycle spent in single limb support were 

used to assess spatial and temporal symmetry. The symmetry index calculated for step 

length results in the paretic step ratio (PSR) used to categorize asymmetry groups (see 

Methods). Individual data are illustrated; the vertical black line represents the group 

median. The vertical gray shaded areas denote the SI values that represent symmetry 

(0.475 ≤ SI ≤ 0.525).25 Box-and-whisker plots for (b) step length and (d) single limb 

support duration (SLS%) illustrate the distribution of the individual leg data. The 

whiskers illustrate the 5th and 95th percentiles. Group means are depicted with “+”. 

Paretic and nonparetic leg data are illustrated in grey and black, respectively. Of note, 

the temporal symmetry achieved in the Symmetrical group with GuidanceNP results from 

a concurrent nonparetic reduction and paretic increase in SLS%. Abbreviations: OG: 

overground condition at self-selected walking speed; TM: treadmill condition at self-

selected walking speed, with 0% BWS; BWS: body weight support condition at self-

selected walking speed, with 30% BWS; GuidanceNP: fastest comfortable walking 

speed, with 30% BWS, and nonparetic limb guidance. 

 

Figure 2. Stride length 

Stride length depicts the combined length of the paretic and nonparetic steps. The 

shaded gray regions represent reference values (± 1 standard error) for overground 
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stride length calculated from a known regression equation relating stride length and gait 

speed.35 Data are mean ± SEM. Abbreviations: Symmetrical: paretic and nonparetic 

step lengths are equivalent; Pshort: paretic step length shorter than nonparetic; NPshort: 

nonparetic step length shorter than paretic; OG: overground condition at self-selected 

walking speed; TM: treadmill condition at self-selected walking speed, with 0% BWS; 

BWS: body weight support condition at self-selected walking speed, with 30% BWS; 

GuidanceNP: fastest comfortable walking speed, with 30% BWS and nonparetic limb 

guidance. 

 

Figure 3. Paretic step length shorter than nonparetic (Pshort) 
The Pshort group (n=11) was characterized by a shorter paretic step length than 

nonparetic step length while walking overground. Spatial (top, left) and temporal 

(bottom, left) symmetry was calculated with a symmetry index (SI) with the general 

equation SI =Xp/(Xp+Xnp), where Xp and Xnp are the paretic and nonparetic values for 

the variable of interest, respectively. Individual data are illustrated; the vertical black line 

represents the group median. The vertical gray shaded areas denote the SI values that 

represent symmetry (0.475 ≤ SI ≤ 0.525).25 Box-and-whisker plots for step length (top, 

right) and single limb support duration (SLS%; bottom, right) illustrate the distribution of 

the individual leg data. The whiskers illustrate the 5th and 95th percentiles. Group means 

are depicted with “+”. Paretic and nonparetic leg data are illustrated in grey and black, 

respectively. Note, a concurrent decrease in nonparetic SLS% (∆: 5%) and increase in 

paretic SLS% (∆: 5%) between the overground and GuidanceNP conditions (c). While 

these changes resulted in temporal symmetry, they failed to reach statistical 

significance. Abbreviations: OG: overground condition at self-selected walking speed; 
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TM: treadmill condition at self-selected walking speed, with 0% BWS; BWS: body 

weight support condition at self-selected walking speed, with 30% BWS; GuidanceNP: 

fastest comfortable walking speed, with 30% BWS, and nonparetic limb guidance; P: 

paretic; N: nonparetic. 

 

Figure 4. Nonparetic step length shorter than paretic (NPshort) 

The NPshort group (n=11) walked with shorter nonparetic than paretic step lengths 

overground. Spatial (top, left) and temporal (bottom, left) symmetry was calculated with 

a symmetry index (SI) with the general equation SI =Xp/(Xp+Xnp), where Xp and Xnp 

are the paretic and nonparetic values for the variable of interest, respectively. Individual 

data are illustrated; the vertical black line represents the group median. The vertical 

gray shaded areas denote the SI values that represent symmetry (0.475 ≤ SI ≤ 0.525).25 

Box-and-whisker plots for step length (top, right) and single limb support duration 

(SLS%; bottom, right) illustrate the distribution of the individual leg data. The whiskers 

illustrate the 5th and 95th percentiles. Group means are depicted with “+”. Paretic and 

nonparetic leg data are illustrated in grey and black, respectively. Note, the GuidanceNP 

condition produced symmetric step lengths (a) by increasing the nonparetic step length 

(b; ∆: 0.11m). Importantly, P SLS% increased from 23% to 28% of the gait cycle 

between OG and GuidanceNP conditions (d), though this increase did not achieve 

statistical significance. Abbreviations: OG: overground condition at self-selected walking 

speed; TM: treadmill condition at self-selected walking speed, with 0% BWS; BWS: 

body weight support condition at self-selected walking speed, with 30% BWS; 
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GuidanceNP: fastest comfortable walking speed, with 30% BWS, and nonparetic limb 

guidance; P: paretic; N: nonparetic. 
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Table 1. Demographics. 
Data for age, chronicity, and gait speeds are Mean ± SD. Data for LE Fugl-Meyer Synergy, Berg Balance Score, and Dynamic Gait 
Index are Median (Min, Max). Abbreviations: Symmetrical: paretic and nonparetic step lengths are equivalent; Pshort: paretic step 
length shorter than nonparetic; NPshort: nonparetic step length shorter than paretic; yr: years; m/f: male/female; r/l: right/left; mo: 
months; m/s: meters per second GuidanceNP: fastest comfortable walking speed, with 30% BWS, and nonparetic limb guidance; LE: 
lower extremity. 
 

 All Symmetrical Pshort NPshort p-value 
n 39 17 11 11  
age (yr) 61.3 ± 11.4 63.4 ± 9 65.5 ± 8 53.9 ± 14.6 0.09 
sex (m/f) 29/10 13/4 8/3 8/3 0.97 
paretic side (r/l) 21/18 8/9 5/6 8/3 0.33 
chronicity (mo) 68.4 ± 61.7 71.8 ± 68.5 48.3 ± 44.6 83.5 ± 65.9 0.38 
gait speed (m/s)      
 Overground (OG) 0.63 ± 0.2 0.69 ± 0.2 0.59 ± 0.2 0.55 ± 0.16  
 Treadmill (TM) 0.44 ± 0.14 0.48 ± 0.16 0.41 ± 0.12 0.4 ± 0.11  
 Body weight support (BWS) 0.52 ± 0.2 0.59 ± 0.25 0.47 ± 0.14 0.47 ± 0.13  
 GuidanceNP 0.72 ± 0.25 0.78 ± 0.26 0.64 ± 0.18 0.72 ± 0.29  
LE Fugl-Meyer Synergy (/22) 16 (5, 22) 16 (8, 22) 20 (5, 22) 13 (8, 20) 0.1 
Berg Balance Score (/56) 46 (32, 55) 47 (40, 55) 48 (41, 55) 45 (32, 55) 0.61 
Dynamic Gait Index (/24) 15 (7, 22) 15 (9, 22) 12 (7, 21) 15 (10, 19) 0.81 
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Table 2. Asymmetry groups respond differently to experimental conditions. 
Data are mean ± SD. Reference values for single limb support duration (sec) are ≥ 0.67±0.03 sec for the overground walking speeds 
recorded in this study.35 Abbreviations: Symmetrical: paretic and nonparetic step lengths are equivalent; Pshort: paretic step length 
shorter than nonparetic; NPshort: nonparetic step length shorter than paretic; OG: overground; TM: treadmill condition at self-selected 
walking speed, with 0% BWS; BWS: body weight support condition at self-selected walking speed, with 30% BWS; GuidanceNP: 
fastest comfortable walking speed, with 30% BWS, and nonparetic limb guidance. 
* significant Experimental Condition X Leg interaction (p<0.0006) 
† significant Experimental Condition main effect (p<0.0006)  
‡ significant Leg main effect (p<0.0006) 
 
 Symmetrical Pshort NPshort 
 paretic nonparetic paretic nonparetic paretic nonparetic 
Step length (m) * ‡   * 
 OG 0.5 ± 0.09 0.5 ± 0.08 0.34 ± 0.12 0.47 ± 0.11 0.49 ± 0.08 0.37 ± 0.1 
 TM 0.35 ± 0.09 0.34 ± 0.09 0.2 ± 0.08 0.33 ± 0.09 0.35 ± 0.08 0.27 ± 0.13 
 BWS 0.41 ± 0.13 0.38 ± 0.12 0.28 ± 0.08 0.38 ± 0.09 0.4 ± 0.09 0.31 ± 0.11 
 GuidanceNP 0.43 ± 0.15 0.52 ± 0.1 0.28 ± 0.13 0.48 ± 0.09 0.47 ± 0.13 0.48 ± 0.12 
       
Single limb support (%) *  ‡ 
 OG 0.26 ± 0.06 0.37 ± 0.05 0.25 ± 0.06 0.32 ± 0.05 0.23 ± 0.04 0.38 ± 0.06 
 TM 0.23 ± 0.06 0.29 ± 0.03 0.22 ± 0.05 0.26 ± 0.04 0.19 ± 0.06 0.33 ± 0.04 
 BWS 0.26 ± 0.05 0.3 ± 0.04 0.25 ± 0.04 0.27 ± 0.05 0.22 ± 0.05 0.34 ± 0.05 
 GuidanceNP 0.31 ± 0.04 0.32 ± 0.05 0.3 ± 0.05 0.27 ± 0.05 0.28 ± 0.06 0.36 ± 0.03 
       
Single limb support (sec) *  ‡ 
 OG 0.38 ± 0.06 0.55 ± 0.12 0.35 ± 0.06 0.44 ± 0.07 0.37 ± 0.09 0.61 ± 0.09 
 TM 0.33 ± 0.1 0.43 ± 0.11 0.29 ± 0.09 0.34 ± 0.06 0.29 ± 0.11 0.50 ± 0.06 
 BWS 0.36 ± 0.08 0.43 ± 0.1 0.34 ± 0.03 0.37 ± 0.09 0.34 ± 0.12 0.52 ± 0.09 
 GuidanceNP 0.41 ± 0.07 0.43 ± 0.08 0.38 ± 0.05 0.35 ± 0.08 0.39 ± 0.09 0.51 ± 0.09 
       
Stride length (m) † †  
 OG 0.99 ± 0.17 0.81 ± 0.22 0.87 ± 0.17 
 TM 0.68 ± 0.17 0.54 ± 0.15 0.62 ± 0.19 
 BWS 0.79 ± 0.24 0.66 ± 0.13 0.71 ± 0.19 
 GuidanceNP 0.96 ± 0.23 0.76 ± 0.18 0.95 ± 0.25 
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