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Abstract 15 

Improved predictions of antibiotic efficacy can inform the development of new antibiotics and 16 

extend the effectiveness of existing drugs and thereby help combatting the global antibiotic 17 

resistance crisis. We describe a computational model (COMBAT- COmputational Model of 18 

Bacterial Antibiotic Target-binding) that leverages accessible biochemical parameters to 19 

quantitatively predict the antimicrobial effects of antibiotics based on their drug-target affinity. 20 

We validate our model with MICs of a range of quinolone antibiotics in clinical isolates 21 

demonstrating that antibiotic efficacy can be predicted from drug-target binding (R2>0.9). 22 

Conversely, we experimentally demonstrate that changes in drug-target binding can be predicted 23 

from antibiotic efficacy with 92-94% accuracy by exposing bacteria overexpressing target 24 

molecules to ciprofloxacin. To test the generality of COMBAT, we predict target molecule 25 

occupancy at MIC from antimicrobial action with 90% accuracy for a different antibiotic class, 26 

the beta-lactam ampicillin. Finally, we predict antibiotic concentrations that can select for 27 

resistance due to novel resistance mutations. COMBAT provides a framework to inform optimal 28 

antibiotic dose levels that maximize efficacy and minimize the rise of resistant mutants. 29 

 30 

Introduction 31 

The rise of antibiotic resistance represents an urgent public health threat. In order to effectively 32 

combat the spread of antibiotic resistance, we must optimize the use of existing drugs and 33 

develop new drugs that are effective against drug-resistant strains. Accordingly, methods to 34 

improve antibiotic dose levels to i) maximize efficacy against susceptible strains and ii) 35 

minimize resistance evolution play a key role in our defense against antibiotic resistant 36 

pathogens. 37 
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 38 

It is noteworthy that dosing strategies for treatment of susceptible strains (e.g., dosing level1, 39 

dosing frequency2, and treatment duration3-5) have recently been substantially improved, even for 40 

antibiotic treatments that have been standard of care for decades. This suggests that there likely 41 

remains significant room for optimization in our antibiotic treatment regimens. It also highlights 42 

the difficulty in identifying optimal dosing levels for new antibiotics. Indeed, optimizing dosing 43 

is one of the biggest challenges in drug development. Typically, time-consuming trial-and-error 44 

approaches are used and each failed drug candidate makes this process more expensive6. 45 

 46 

It is even more challenging to optimize dose levels to minimize the emergence of antibiotic 47 

resistance, both for existing and novel antibiotics. There remains substantial debate about which 48 

dosing strategies best prevent the emergence of resistant mutants during treatment7-9. In this 49 

context, a useful concept that links antibiotic concentrations with resistance evolution is the 50 

resistance selection window (mutant selection window) that ranges from the lowest 51 

concentration at which the resistant strain grows faster than the wild-type, usually well below the 52 

wild-type minimum inhibitory concentration (MIC), to the MIC of the resistant strain10-12. 53 

Antibiotic concentrations above the resistance selection window safeguard against de novo 54 

resistance emergence. Antibiotic concentrations below the resistance selection window do not 55 

kill the susceptible strain, but also do not favor the resistant strain and therefore do not promote 56 

emergence of resistance. The latter may be preferable if one cannot dose above the MIC of the 57 

resistant strain due to toxicity or solubility limits. To limit resistance emergence, it is therefore 58 

important to identify the resistance selection window and optimize dosing accordingly. 59 

 60 
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Limitations in our knowledge of how antibiotic treatment regimens affect bacterial populations 61 

contribute to the need for lengthy and expensive trial-and-error approaches, with the sheer 62 

number of possible dosing regimens making it difficult to identify an optimal regimen. We argue 63 

that this knowledge gap is a major limitation for the improvement of dosing regimens of existing 64 

drugs and a real obstacle for the development of new antibiotics13,14. 65 

 66 

Pharmacodynamic models that can make predictions of bacterial killing and selection on the 67 

basis of drug-target interactions offer new promise to inform rational antibiotic dosing 68 

practices15. Recently described models that include drug-target binding have been useful in 69 

gaining a better qualitative understanding of complicated drug effects, such as post-antibiotic 70 

effects, inoculum effects, and bacterial persistence15-18. However, to speed the development of 71 

new antibiotics or to inform practices which minimize resistance, we require quantitative 72 

predictions for antibiotics or resistant bacterial strains that do not exist yet. Models which permit 73 

quantitative predictions of changes in drug efficacy as a function of modification of antibiotic 74 

molecules (i.e. new drugs) or novel resistance mutations would be invaluable. Such tools would 75 

advance our general mechanistic understanding of antibiotic action, could guide dosing trials of 76 

new drugs, and suggest better dosing of existing drugs. 77 

 78 

In this report, we describe a mechanistic computational modeling framework (COMBAT- 79 

COmputational Model of Bacterial Antibiotic Target-binding) that allows us to predict drug 80 

effects based solely on accessible biochemical parameters describing drug-target interaction. 81 

These parameters can be determined early in drug development. We use this framework to 82 

investigate how changes in drug target binding, either due to improvements in existing 83 
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antibiotics or due to resistance mutations in bacteria, affect antibiotic efficacy. We first show that 84 

COMBAT accurately predicts bacterial susceptibility as a function of drug-target binding and, 85 

conversely, allows inference of these biochemical parameters on the basis of observed patterns of 86 

bacterial growth suppression or killing. We then use COMBAT to predict the susceptibility of 87 

newly arising resistant variants based on the molecular mechanism of resistance and determine 88 

the resistance selection window. 89 

 90 

Results 91 

Quinolone target affinities correlate with antibiotic efficacy 92 

To investigate how biochemical changes in antibiotic action modifies bacterial susceptibility, we 93 

explored how the affinity of antibiotics to their target affects the MIC. We compared the MICs of 94 

quinolones, an antibiotic class in which individual antibiotics have a wide range of affinities to 95 

their target, gyrase (KD ~10-4 - 10-7 M) but are of similar molecular sizes and have a similar mode 96 

of action19. This choice allowed us to isolate the effects of differences in drug-target affinity on 97 

the MIC. 98 

 99 

We obtained binding affinities of quinolones to their gyrase target in Escherichia coli from 100 

previous studies20-24. We then retrieved MIC data for several quinolones from clinical 101 

Enterobacteriaceae isolates collected before 199025, i.e., before the widespread emergence of 102 

quinolone resistance19. We assume that quinolone affinities obtained from clinical 103 

Enterobacteriaceae isolates collected before the emergence of resistance correspond to those 104 

measured in wild-type E. coli. 105 

 106 
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To make qualitative predictions of MICs, we employed a simplified model based on the 107 

assumptions that i) drug-target binding occurs much more quickly than bacterial replication, ii) 108 

the antibiotic concentration remains constant and iii) that during the 18 hours of an MIC assay, 109 

the concentration gradient of the drug inside and outside the cell has equilibrated. Under these 110 

assumptions, the MIC can be expressed as 111 

𝑀𝐼𝐶 = 𝐾&
'(
)*'(

          (1) 112 

 113 

where KD represents the affinity constant and fc the fraction of the target bound at the MIC26. 114 

Accordingly, this model predicts that the MIC is linearly correlated with KD. 115 

 116 

Fig. 1 shows the correlations between drug-target affinities and MICs for seven quinolones and 117 

clinical isolates of 11 different Enterobacteriaceae species. We observed a significant (p < 0.018) 118 

linear correlation between MIC and KD in all species, confirming the qualitative model 119 

prediction. 120 

 121 

A quantitative model to predict antibiotic efficacy 122 

While it was encouraging that our model can qualitatively predict MIC changes, our aim was to 123 

quantitatively predict antibiotic treatment performance. The simplified model assumes that the 124 

binding kinetics are much faster than bacterial replication, which may not be true in all cases. To 125 

expand the generalizability of the model, we extended the modeling framework to allow that 126 

bacterial replication may occur in a similar time frame as drug-target binding events. 127 

 128 
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The full model (COMBAT- COmputational Model of Bacterial Antibiotic Target-binding) 129 

describes the binding and unbinding of antibiotics to their targets and predicts how such binding 130 

dynamics affects bacterial replication and death (Fig. 2a). In previous work linking drug-target 131 

binding kinetics with bacterial replication18 , we described a population of bacteria with 𝜃 target 132 

molecules per cell with a system of 𝜃 + 1 (bacteria with 0, 1, …, 𝜃 bound target molecules) 133 

ordinary differential equations (ODEs). This system increases in complexity with the number of 134 

target molecules and makes fitting the model to data computationally too demanding for most 135 

settings. To simplify this prior approach, we developed new mathematical models based on 136 

partial differential equations (PDEs), where a single equation describes all bacteria 137 

simultaneously. The sum of bacteria within all target occupancy states over time can be 138 

described by a time kill curve (Fig. 2b), during which the bacterial population is characterized by 139 

the distribution of bacterial cells with different levels of target occupancies at each time-step 140 

(Fig. 2c). This curve can be visualized as a two-dimensional surface in a three-dimensional 141 

coordinate system where the number of bacteria is represented on the z-axis, the percent of 142 

bacteria with the fraction of bound target molecules on the x-axis, and time on the y-axis (Fig. 143 

2d). 144 

 145 

Antibiotic action is described by rates of binding (kf) and unbinding (kr) to bacterial target 146 

molecules (Fig. 2a, e). The binding of an antibiotic to a target results in the formation of an 147 

antibiotic-target molecule complex x, where x ranges between 0 and 𝜃. 148 

COMBAT consists of two mass balance equations: equation 2 describing bacterial numbers as a 149 

function of bound targets and time and equation 3 describing antibiotic concentration as a 150 

function of time (Methods section). 151 
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 153 

The term for binding kinetics is given in brown, the term for replication in blue and the term for 154 

death in red. 155 

>R(1)
>1

= −𝑘T'𝐴(𝑡) ∫ (𝜃 − 𝑥)𝐵(𝑥, 𝑡)𝑑𝑥X
Y + 𝑘Z ∫ 𝑥𝐵(𝑥, 𝑡)𝑑𝑥X

Y      (3) 156 

 157 

where 𝑣- = 𝑣' − 𝑣Z , 𝑣' = 𝑘T'𝐴(𝑡)(𝜃 − 𝑥) and 𝑣Z = 𝑘Z𝑥. 𝑣-, 𝑣',	and 𝑣Z can be seen as a 158 

generalized velocity 𝑣 = >/
>1

.  159 

 160 

Equation 4 (part of the replication term in equation 2) describes how daughter cells inherit bound 161 

target molecules from the mother cell during replication: 162 

𝑆-(𝑥, 𝑡) = 2∫ ℎ(𝑥, 𝑧)𝑟(𝑧)𝐵(𝑧, 𝑡)𝑑𝑧X
/ ;	∀𝑥 ∈ [0,𝜃]      (4) 163 

 164 

Equation 5 (part of the replication term in equation 2) is a logistic growth model describing 165 

reduced bacterial replication as the carrying capacity is approached: 166 

𝐹H<I = d1 − ∫ -(/,1)>/f
g

h
i         (5) 167 

 168 

Model fit to ciprofloxacin time-kill data 169 

We used the quinolone ciprofloxacin to quantitatively fit bacterial time-kill curves, since this is a 170 

commonly used antibiotic for which binding parameters have been directly measured. 171 
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Supplementary Tab. S1 gives an overview of the known parameters used for fitting; 172 

Supplementary Tab. S2 gives the parameters resulting from our fit. 173 

 174 

The functional relationship between the levels of bacterial replication and death on the fraction 175 

of bound target molecules is extremely hard to obtain experimentally. We therefore treated the 176 

relationships between the fraction of bound target and bacterial replication and death as free 177 

parameters in our model fitting. Ciprofloxacin is considered to have both bacteriostatic and 178 

bactericidal action (mixed action)27,28, and we fitted functions for a monotonically decreasing 179 

replication and a monotonically increasing killing with each successively bound target molecule 180 

(see Methods & Supplementary Fig. S1). 181 

 182 

Overall, we found that COMBAT could fit the time-kill curves well (R2 = 0.93, Fig. 3a). Fig. 3b 183 

shows the predicted bacterial replication r(x) and death as a function of target occupancy 𝛿(𝑥) 184 

based on the fit obtained in Fig. 3a. After model calibration, we simulated bacterial replication 185 

during exposure to different antibiotic concentrations for 18 h. For this simulation, positive 186 

values indicate an increase in the number of bacteria, and negative values indicate a decrease in 187 

the number of bacteria. We estimated a MIC of 0.0139 mg/L (Fig. 3c), a value that is within the 188 

range of MIC determinations for wt E. coli (0.01 mg/L, 0.015 mg/L, 0.017 mg/L and 0.023 mg/L 189 

11,29-31). 190 

Accurate prediction of target overexpression from time-kill data 191 

Having shown that COMBAT can quantitatively fit experimental data on antibiotic action within 192 

biologically plausible parameters, we continued to test the predictive ability of the model. Given 193 

our hypothesis that modifications in antibiotic-target interactions lead to predictable changes in 194 
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bacterial susceptibility, we experimentally induced changes in the antibiotic-target interaction of 195 

ciprofloxacin in E. coli. We then quantified these biochemical changes by fitting COMBAT to 196 

corresponding time-kill curves and compared them to the experimental results. Ciprofloxacin 197 

acts on gyrase A2B2 tetramers19. We used an E. coli strain for which both gyrase A and gyrase B 198 

are under the control of a single inducible promoter (PlacZ), such that the amount of gyrase A2B2 199 

tetramer can be experimentally manipulated32. We measured net growth rates for this strain at 200 

different ciprofloxacin concentrations in the presence of 10 µM isopropyl β-D-1-201 

thiogalactopyranoside (IPTG; mild overexpression) and 100 µM IPTG (strong overexpression) 202 

and compared it to the wild-type in the absence of the inducer (Fig. 4a). 203 

 204 

Like previously reported, we find that increasing gyrase content makes E. coli more susceptible 205 

to ciprofloxacin32. We fitted net growth rates allowing the target molecule content, i.e. gyrase 206 

A2B2, to vary. We assumed that the only change between the different conditions was the amount 207 

of target. We further assumed that the relationship between bound target and bacterial replication 208 

or death did not differ between the control strain containing a mock plasmid (no IPTG) and the 209 

experiments with overexpression (Fig. 4b, between 0 % and 100 %). Finally, we assumed that 210 

the maximal kill rate at very high antibiotic concentrations was accurately measured in our 211 

experiments and forced the function describing bacterial death through the measured value when 212 

all target molecules are bound. We found the best fit for a 1.31x increase in GyrA2B2 target 213 

molecule content for bacteria grown in the presence of 10 µM IPTG and a 2.02x increase in 214 

GyrA2B2 target molecule content for those grown in the presence of 100 µM IPTG. 215 

 216 
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We subsequently tested these predictions experimentally by analyzing Gyrase A and B content 217 

by western blot Fig. 4c; Supplementary Fig. S2). Using realistic association and dissociation 218 

rates for biological complexes33, we predicted a range of functional tetramers based on the 219 

relative amount of Gyrase A and B proteins (Fig. 4d). Supplementary Tab. S3 details the 220 

individual measurements, and the procedure to estimate tetramers is provided in the methods 221 

section. We found that the observed overexpression was very close to our theoretical prediction, 222 

with 1.43x [95 % CI 1.19-1.81] overexpression (model prediction = 1.31x overexpression) in the 223 

presence of 10 µM IPTG and 2.15x [95 % CI 1.73-2.87] overexpression in the presence of 224 

100 µM IPTG (model prediction = 2.02x overexpression). 225 

 226 

Accurate prediction of target occupancy at MIC from time-kill data 227 

Next, we tested whether COMBAT can be applied to the action of the beta-lactam ampicillin, a 228 

very different antibiotic with a distinct mode of action from quinolones. Using published 229 

pharmacodynamic data of E. coli exposed to ampicillin31 also allowed us to compare COMBAT 230 

predictions to established pharmacodynamic approaches. Most of the biochemical parameters for 231 

ampicillin binding to its target, penicillin-binding proteins (PBPs), have been determined 232 

experimentally (Supplementary Tab. S1). Ampicillin is believed to act as a bactericidal drug34, 233 

and this mode of action is supported by findings from single-cell microscopy26. We therefore 234 

assume that ampicillin binding does not affect bacterial replication. In order to model the 235 

consumption of beta-lactams at target inhibition and eventual target recovery, we made small 236 

adjustments to equation 13 (see Methods, description of beta-lactam action). 237 

 238 
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We fitted COMBAT to published time-kill curves of E. coli exposed to ampicillin (Fig. 5a). 239 

Again, COMBAT provides a good fit to the experimental data between 0 min and 40-60 min. 240 

After that time, observed bacterial killing showed a characteristic slowdown at high ampicillin 241 

concentrations which is often attributed to persistence18 (Fig. 5a). For the sake of simplicity, we 242 

chose to omit bacterial population heterogeneity in this work and therefore cannot describe 243 

persistence, even though COMBAT can be adapted to capture this phenomenon18. Because 244 

ampicillin acts in an entirely bactericidal manner, we assume a constant replication rate (see 245 

Methods & Supplementary Fig. S1) and fitted bacterial death as a function of target binding, 246 

𝛿(𝑥) (Fig. 5b, fitted parameters in Tab. S4). Fig. 5c shows the predicted net growth rate over a 247 

range of drug concentrations. We estimated a MIC of 2.6 mg/L. This MIC is based on the 248 

Clinical & Laboratory Standards Institute definition of the MIC determined at 18 h. The original 249 

source of the MIC, which was based on experimental data and a pharmacodynamic model31 250 

determined an MIC of 3.4 mg/L at 1 h. If we change our prediction to 1 h, our estimated MIC is 251 

3.32 mg/L, which is within 2.5 % of the reported value31.  252 

 253 

Having established that COMBAT can also adequately capture the pharmacodynamics of 254 

ampicillin, we next tested whether we can estimate experimentally determined target occupancy 255 

at the MIC. Our estimated mean occupancy considering both living and dead bacteria is 89 % 256 

(Fig. 5b), a value within previously reported experimental estimates from Staphylococcus aureus 257 

(84-99 %)35. 258 

 259 

Sensitivity of antibiotic efficacy to parameters of drug-target binding 260 
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It is possible to vary all parameters in COMBAT and explore their effect. We used this to test 261 

how hypothetical chemical changes to ampicillin or ciprofloxacin would affect antibiotic 262 

efficacy (Supplementary Fig. S3-S11). These changes could reflect either bacterial resistance 263 

mutations or modifications of the antibiotics themselves. We predict that changes in drug-target 264 

affinity, KD, have more profound effects than changes in target molecule content, bacterial 265 

reaction to increasingly bound target (i.e. d(x) and r(x)), or changes in target molecule content. 266 

We also predict that the individual binding rates kr and kf, and not just the ratio of these terms, 267 

the KD, are important factors in efficiency. The faster a drug binds, the more efficient we 268 

predicted it will be. One intuitive explanation for the observation that kf drives efficacy is that a 269 

slow binding fails to rapidly interfere with bacterial replication, which may allow for the 270 

production of additional target molecules and thereby reduce the ratio of free antibiotic to target 271 

molecules. 272 

 273 

Forecasting the resistance selection window 274 

Finally, we illustrate how COMBAT can be used to explore how the molecular mechanisms of 275 

resistance mutations affect antibiotic concentrations at which resistance can emerge, i.e., the 276 

resistance selection window. We compared predicted net growth rates as a function of 277 

ciprofloxacin concentrations for a wild-type strain and an archetypal resistant strain. For this 278 

analysis, we assumed that the resistant strain has a 100x slower drug-target binding rate (i.e. 279 

~100x increased MIC, realistic for novel point mutations36) and that the maximum replication 280 

rate of the resistant strain is 85 % of the wild type strain37. We then predicted the antibiotic 281 

concentrations at which resistance would be selected. Interestingly, when comparing COMBAT 282 

to previous pharmacodynamics models (Fig. 5), we observed that estimates of replication rates 283 
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depend on the selected time frame (Fig. 6a). When the timeframe for MIC determination is set to 284 

18 h as defined by CLSI38, the “competitive resistance selection window”, i.e., the concentration 285 

range below the MIC of both strains where the resistant strain is fitter than the wild type, ranges 286 

from 0.002 mg/L to 0.014 mg/L for ciprofloxacin (Fig. 6a) and 1 mg/L to 2.6 mg/L for 287 

ampicillin (Supplementary Fig. S12), respectively. This corresponds well with previous 288 

observations that ciprofloxacin resistance is selected for well below MIC11. However, when 289 

measuring after 15 min or 45 min, the results are substantially different. The reason for this is 290 

illustrated in Fig. 6b. COMBAT reproduces non-linear time kill curves where bacterial 291 

replication continues until sufficient target is bound to result in a negative net growth rate. This 292 

compares well with experimental data around MIC in Fig. 3a and 5a. In Fig. 6b, we show model 293 

predictions for ciprofloxacin concentrations corresponding to a zero net growth (i.e. same 294 

population size) after 15 min, 45 min and 18 h (MICResistant; 15 min, MICResistant; 45 min, 295 

MICResistant; 18 h). In all cases, the bacterial population first increases and then decreases slowly. 296 

This may have consequences for the selection of resistant strains. Fig. 6c illustrates how the 297 

resistance selection windows depending on the observed time frame. This suggests that even at 298 

concentrations above the 18 h MIC of the resistant strain, there may be initial growth of the 299 

resistant strain. In this case, the resistant strain could continue growing at concentration of up to 300 

7 mg/L ciprofloxacin at 15 min, even though the MIC at 18 h is 1.27 mg/L. 301 

 302 

Discussion 303 

Optimizing dosing levels of antibiotics is important for maximizing drug efficacy against wild-304 

type strains as well as for minimizing the rise of resistant mutants. The determination of optimal 305 

dosing strategies typically requires expensive empirical studies; the need for such studies arises 306 

in part from our currently limited capacity to predict how antibiotics will affect bacteria at a 307 
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given concentration. In fact, drug attrition is mainly due to insufficient predictions of efficacy 308 

(pharmacodynamics) rather than pharmacokinetics6. For optimizing drug development and for 309 

minimizing resistance, we need quantitative predictions for antibiotics or resistant bacterial 310 

strains that do not exist yet. The ability to accurately predict MICs on the basis of biochemical 311 

parameters and, more generally, to define antibacterial activity across a range of drug 312 

concentrations, would allow us to estimate antibiotic efficacy for novel compounds or against not 313 

yet emerged resistant strains15,39. Recent studies have reported methods to predict MICs from 314 

whole genome sequencing data40,41. However, these methods require transfer of prior knowledge 315 

on how the resistance mutations affect MICs in other organisms. There are no methods that could 316 

predict a priori how chemical changes to an antibiotic structure or novel resistance mutations 317 

affect bacterial growth at a given antibiotic concentration. 318 

 319 

Here, we accurately predict antibiotic action on the basis of accessible biochemical parameters of 320 

drug-target interaction. Our computational model, COMBAT provides a framework to predict 321 

the efficacy of compounds based on drug-target affinity, target number, and target occupancy. 322 

These parameters may change both when improving antibiotic lead structures as well as when 323 

bacteria evolve resistance. Importantly, they can be measured early in drug development and 324 

may even be a by-product of target-based drug discovery42. When these data are available, 325 

COMBAT makes only one assumption: that the rate of bacterial replication decreases and/or the 326 

rate of killing increases with successive target binding. While fitting, we allow this relationship 327 

to be gradual or abrupt and select the best fit. This means we do not model specific molecular 328 

mechanisms down-stream of drug-target binding, but their effects are subsumed in the functions 329 

that connect the kinetic of drug-target binding to bacterial replication and death.  330 
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 331 

In previous work, for example on antipsychotics16, antivirals17 and antibiotics15,18, models of 332 

drug-target binding kinetics have been used to improve our qualitative understanding of 333 

pharmacodynamics. Our study substantially advances this work by making accurate quantitative 334 

predictions across antibiotics and bacterial strains when measurable biochemical characteristics 335 

change. This is possible because COMBAT employs an elegant mathematical approach, based 336 

on partial differential equations, that makes it computationally feasible to fit the model to a large 337 

range of data. Importantly, we are not only able to predict antibiotic action from biochemical 338 

parameters, but can also vice versa use COMBAT to accurately predict biochemical changes 339 

from observed patterns of antibiotic action. We have confirmed the excellent predictive power of 340 

COMBAT with clinical data as well as experiments with antibiotics with very different 341 

mechanisms of action. This gives us confidence that biochemical parameters are major 342 

determinants of antibiotic action in bacteria and that COMBAT helps to make rational decisions 343 

about antibiotic dosing. 344 

 345 

In drug development, our mechanistic modeling approach provides insight into which chemical 346 

characteristics of drugs may be useful targets for modification. For example, our sensitivity 347 

analyses indicate that antibiotics with a similar affinity but faster binding inactivate bacteria 348 

more quickly and therefore prevent replication and production of more target molecules, which 349 

would change the ratio of antibiotic to target. Furthermore, because e.g. antibiotic binding and 350 

unbinding rates can be determined early in the drug development process, such insight can help 351 

the transition to preclinical and clinical dosing trials. This may contribute to reducing bottlenecks 352 

between these phases of drug development and thereby save money and time. 353 
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 354 

Avoiding antibiotic concentrations that select for resistance is challenging because the precise 355 

concentrations are only known after extensive experiments have been performed that identify the 356 

MIC of (nearly) all possibly emerging resistant mutants. Predicting the resistance selection 357 

windows of novel resistant mutants on the basis of biologically plausible changes in drug-target 358 

binding would allow us to better assess what drug concentrations need to be achieved to avoid 359 

selection of resistance. This approach offers new promise to assess resistance risks prior to 360 

characterizing the majority of resistance mutations and thereby reduce the failure rates of 361 

candidate compounds late in the drug development process when resistance is observed in 362 

patients and substantial resources have been invested.  363 

 364 

Our approach also offers insight into determinants of the resistance selection window. Rather 365 

than determining the resistance selection window for a comprehensive collection of possibly 366 

arising resistance mutations in each bacteria-drug pair, it would be attractive to build 367 

transferrable knowledge that allows estimating the resistance selection window. In concordance 368 

with a recent meta-analysis of experimental data43, our sensitivity analyses predict that changes 369 

in drug target binding and unbinding have a greater impact on the MIC than changes in target 370 

molecule content or down-stream processes. Thus, a more comprehensive characterization of the 371 

binding parameters of spontaneous resistant mutants would allow an overview of the maximal 372 

biologically plausible levels of resistance that can arise with one mutation. Dosing above this 373 

level should then safeguard against resistance. This is especially useful for compounds for which 374 

it is difficult to saturate the mutational target for resistance, or for safeguarding against resistance 375 

to newly introduced antibiotics for which we do not yet have a good overview of resistance 376 
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conferring mutations. If toxicity, solubility or other constraints do not allow dosing above the 377 

MIC of expected resistant strains, COMBAT can predict the concentration range at which 378 

resistance is less strongly selected. This could guide decisions on treating with low versus high 379 

doses, which is currently controversially debated7,8. Good quantitative estimates on the dose-380 

response relationship of new drugs would also help defining the therapeutic window, i.e. the 381 

range of drug concentrations at which the drug is effective but not yet toxic. 382 

 383 

Our quantitative work can help to identify optimal dosing strategies at constant antibiotic 384 

concentrations for homogeneous bacterial populations. These measures are commonly used to 385 

assess antibiotic efficacy. In addition, previous work has demonstrated that drug-target binding 386 

models can qualitatively describe antibiotic efficacy over the fluctuating concentrations that 387 

actually occur in patients26,44. They can also explain complicated phenomena such as biphasic 388 

kill curves, the post-antibiotic effect, or the inoculum effect15,18,45 that often complicate the 389 

clinical phase of drug development. COMBAT has similar characteristics that allow capturing 390 

these complex phenomena. Therefore, employing COMBAT may be useful for guiding drug 391 

development to maximize antibiotic efficacy and minimize de novo resistance evolution. 392 

 393 

Methods 394 

Mathematical model 395 

COMBAT incorporates the binding and unbinding of antibiotics to their targets and describes 396 

how target binding affects bacterial replication and death. This work extends the model 397 

developed in18. COMBAT consists of a system of two mass balance equations: one PDE for 398 
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bacteria (describing replication and death as a function of both time and target binding) and one 399 

ODE for antibiotic molecules (describing the concentrations as function of time). 400 

 401 

In the most basic version of COMBAT, we ignored differences between extracellular and 402 

intracellular antibiotic concentrations and only followed the total antibiotic concentration A, 403 

assuming that the time needed for drug molecules to enter bacterial cells is negligible. We model 404 

ciprofloxacin (to which there is a limited diffusion barrier46) and ampicillin (where the target is 405 

not in the cytosol, even though the external membrane in gram negatives has to be crossed to 406 

reach PBPs). We therefore believe that this assumption is justified in wild-type E. coli. This 407 

basic version of COMBAT is therefore more accurate for describing antibiotic action where the 408 

diffusion barrier to the target is weak. 409 

 410 

Binding kinetics 411 

We describe the action of antibiotics as a binding and unbinding process to bacterial target 412 

molecules18. For simplicity, we assume a constant number of available target molecules 𝜃. The 413 

binding process is defined by the formula 𝐴 + 𝑇 ⇌ 𝑥, where the intracellular antibiotic 414 

molecules A react with target molecules T at a rate kf and form an antibiotic-target molecule 415 

complex x, where values for x range between 0 and 𝜃. If the reaction is reversible, the complex 416 

dissociates with a rate kr. 417 

In18, the association and dissociation terms are described by the following terms 418 

𝑑𝐵<(𝑡)
𝑑𝑡 = 𝑘T'𝐴(𝑡)l(𝜃 − 𝑖 + 1)𝐵<*)(𝑡) − (𝜃 − 𝑖)𝐵<(𝑡)n89999999999999:9999999999999;

RDDNC<M1<N=	1BZI

−	420 

	𝑘Zl𝑖𝐵<(𝑡) − (𝑖 + 1)𝐵<o)(𝑡)n899999999:99999999;
&<DDNC<M1<N=	1BZI

; 	𝑖𝜖[0, 𝜃]       (6) 419 
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 421 

where 𝑘T' =
Aq

rsts=u
, kf is the association rate, Vtot is the volume in which the experiment is 422 

performed, nA is Avogadro’s number, kr is the dissociation rate, Bi is the number of bacteria with 423 

i bound targets, and 𝜃	is the total number of targets. Green denotes the association term, while 424 

the dissociation term is in orange. 425 

This approach requires the use of a large number of ordinary differential equations, (𝜃 + 1) for 426 

the bacterial population and one for the antibiotic concentration. To generalize this approach, we 427 

assume that the variable of bound targets is a real number 𝑥 ∈ ℛ. Under this continuity 428 

assumption, we consider the bacterial cells as a function of x and the time t, thereby reducing the 429 

total number of equations to two. 430 

Under the continuity approximation (𝑥 ∈ ℛ), we can rewrite the binding kinetics in the form 431 

,-(/,1)
,1

= ,
,/
w𝑘T'𝐴(𝑡)(𝜃 − 𝑥)𝐵(𝑥, 𝑡)x

89999999:9999999;−

RDDNC<M1<N=	1BZI
,
,/
l𝑘Z𝑥𝐵(𝑥, 𝑡)n

89999:9999;
&<DDNC<M1<N=	1BZI

     (7) 432 

 433 

or simply 434 

,-(/,1)
,1

= ,
,/
w𝑣'(𝑥, 𝑡)𝐵(𝑥, 𝑡) − 𝑣Z(𝑥, 𝑡)𝐵(𝑥, 𝑡)x      (8) 435 

 436 

where 𝑣' = 𝑘T'𝐴(𝑡)(𝜃 − 𝑥) and 𝑣Z = 𝑘Z𝑥 can be considered as two velocities, i.e., the derivative 437 

of the bound targets with respect to the time >/
>1

. Green denotes the association term, while the 438 

dissociation term is in orange. 439 

 440 

Replication rate 441 
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We assume that the replication rate of bacteria, r(x), is dependent on the number of bound target 442 

molecules x. The function r(x) is a monotonically decreasing function of x, such that fewer 443 

bacteria replicate as more target is bound. r(0) is the maximum replication rate, corresponding to 444 

the replication rate of bacteria in absence of antibiotics. Thus, r(x) describes the bacteriostatic 445 

action of the antibiotics, i.e., the effect of the antibiotic on bacterial replication. 446 

 447 

Carrying capacity 448 

Replication ceases as the total bacterial population approaches the carrying capacity K. At that 449 

point, the replication term of the equation is 450 

,-(/,1)
,1

= 𝑟(𝑥)𝐵(𝑥, 𝑡)
h*∫ -(/,1)>/f

g
h

= 𝑟(𝑥)𝐵(𝑥, 𝑡)𝐹H<I     (9) 451 

 452 

where 𝐹H<I =
h*∫ -(/,1)>/f

g
h

 is the replication-limiting term due to the carrying capacity K, and 453 

0 ≤ 𝐹H<I ≤ 1. 454 

 455 

Distribution of target molecules upon division 456 

We assume that the total number of target molecules doubles at replication, such that each 457 

daughter cell has the same number as the mother cell. We also assume that the total number of 458 

drug-target complexes is preserved in the replication and that the distribution of x bound target 459 

molecules of the mother cell to its progeny is described by a hypergeometric sampling of n 460 

molecules from x bound and 2𝜃 − 𝑥 unbound molecules. Under the continuity assumption, we 461 

generalize the concept of hypergeometric distribution. Because the hypergeometric distribution 462 

is a function of combinations and because a combination is defined as function of factorials, we 463 
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can use 𝛤 functions in place of factorials and redefine a continuous hypergeometric distribution 464 

as a function of 𝛤 functions. A 𝛤 function is 465 

𝛤(𝜁) = ∫ 𝑥|*)𝑒*/𝑑𝑥; 	𝑅𝑒(𝜁) > 0�
Y         (10) 466 

 467 

where 𝜁 is a complex number. In this way, the distribution can be expressed as a probability 468 

density function of continuous variables. The amount of newborn bacteria is given by the term 469 

𝑟(𝑥)𝐵(𝑥, 𝑡)𝐹H<I(𝑡). We assume that bound target molecules are distributed randomly between 470 

mother and daughter cells, with each of them inheriting 50% upon division on average. This 471 

means that twice the amount of newborn cells must be redistributed along x to account for the 472 

random distribution process. For example, if a mother cell with 4 bound targets divides, we have 473 

two daughter cells, each with a number of bound targets between 0 and 4 (their sum has to be 4), 474 

following the generalized hypergeometric distribution. For simplicity, we define S(x,t) to be a 475 

function related to the replication rate that depends on the number of bacteria with a number of 476 

bound target molecules ranging between x and 𝜃, their specific replication rate r(x), and the 477 

fraction of their daughter cells expected to inherit x antibiotic-target complexes h(x,z): 478 

𝑆(𝑥, 𝑡) = 2∫ ℎ(𝑥, 𝑧)𝑟(𝑧)𝐵(𝑧, 𝑡)X
/ 𝑑𝑧        (11) 479 

 480 

Death rate 481 

The death rate function 𝛿(𝑥) depends on the number of bound target molecules. The function 482 

𝛿(𝑥) is assumed to be a monotonically increasing function of x, where 𝛿(𝜃) is the maximum 483 

death rate, when all targets in the bacteria have been bound by antibiotics. The shape of this 484 

function describes the bactericidal action of the antibiotic. 485 

 486 
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Bacteriostatic and bactericidal effects 487 

We consider several potential functional forms of the relationship between the percentage of 488 

bound targets and replication and death rates, because the exact mechanisms how target 489 

occupancy affects bacteria is unknown (Supplementary Fig. S1). We use a sigmoidal function 490 

that can cover cases ranging from a linear relationship to a step function. When the inflection 491 

point of a sigmoidal function is at 0 % or 100 % target occupancy, the relationship can also be 492 

described by an exponential function. We assume that replication in bactericidal and death in 493 

bacteriostatic drugs is independent of the amount of bound target. With sufficient experimental 494 

data, the replication rate r(x) and/or the death rate 𝛿(𝑥) can be obtained by fitting COMBAT to 495 

time-kill curves of bacterial populations after antibiotic exposure. The sigmoidal shape of r(x) 496 

and d(x) can be written as:  497 

𝑟(𝑥) = Zg
)oB��l����s�n

; 	𝛿(𝑥) = >���

)oB���l����s�n
       (12) 498 

 499 

where xrth is the replication rate threshold, xdth is the death rate threshold, and both represent the 500 

point where the sigmoidal function reaches ½ of its maximum. gr and gd represent the shape 501 

parameters of the replication and death rate functions, respectively. These factors determine the 502 

steepness around the inflection point. When they are extreme, the relationship approaches a 503 

linear or a step function.  504 

 505 

Full equation describing bacterial population 506 

Putting these components together, the full equation describing a bacterial population is: 507 
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,-(/,1)
,1

+ ,
,/
w𝑣'(𝑥, 𝑡)𝐵(𝑥, 𝑡) − 𝑣Z(𝑥, 𝑡)𝐵(𝑥, 𝑡)x

899999999999:99999999999;
-<=><=?	A<=B1<CD

=508 

	−𝑟(𝑥)𝐵(𝑥, 𝑡)𝐹H<I(𝑡) + 𝑆-(𝑥, 𝑡)𝐹H<I(𝑡)899999999999:99999999999;
KBLH<CM1<N=	M=>	<1D	B''BC1D	N=	O<=><=?

− 𝛿(𝑥)𝐵(𝑥, 𝑡)899:99;
&BM1Q

     (13) 509 

 510 

where B(x,t) is the number of bacteria. As in equations 2, 6, 7 and 8, green denotes the binding 511 

term, orange the unbinding term (together the binding kinetics is given in brown), blue the term 512 

describing bacterial replication and red the term describing bacterial death. 513 

  514 

Equation describing antibiotic concentration 515 

The free antibiotic concentration results from mass conservation, i.e., all antibiotic molecules 516 

associating with their target are subtracted and all dissociating antibiotic molecules are added. 517 

Equation 3 in the results section describes the dynamics of the antibiotic concentration. 518 

 519 

Description of beta-lactam action 520 

Beta-lactams acetylate their target molecules (PBPs) and thereby inhibit cell wall synthesis. The 521 

acetylation of PBPs consumes beta-lactams. However, PBPs can recover through deacetylation. 522 

We modified the term of drug-target dissociation in the equation describing antibiotic 523 

concentrations (equation 3), and set the unbinding rate kr = 0. To reflect the recovery of target 524 

molecules, we substituted the dissociation rate kr in the equation describing the bacterial 525 

population with the deacetylation rate ka, as described in26. 526 

 527 

Initial and boundary conditions 528 
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At t = 0, we assume that all bacteria have zero bound targets (𝑥 = 0), and the initial 529 

concentration of bacteria is 𝐵(𝑥, 0) = 0, 𝑥 > 0, and 𝐵(0,0) = 𝐵Y. 530 

At the boundaries of the partial differential equation (𝑥 = 0, 𝑥 = 𝜃), we specify that the outgoing 531 

velocities are zero. For 𝑥 = 0, i.e. no bound target molecules, the unbinding velocity 𝑣Z(0, 𝑡) =532 

0, and in 𝑥 = 𝜃, i.e. all targets are bound, the binding velocity 𝑣'(𝜃, 𝑡) = 0. When the 533 

replication term at 𝑥 = 0 and the death term at 𝑥 = 𝜃 are known, we can solve the partial 534 

differential equation with two ordinary differential equations at the boundaries. They are similar 535 

to the equations at 𝑥 = 0 and at 𝑥 = 𝜃 described by Abel zur Wiesch et al.18, but taking into 536 

account that x is a continuous variable instead of a natural number. 537 

 538 

Numerical schemes 539 

To solve our system of differential equations, we used a first-order upwind scheme. Specifically, 540 

we used the spatial approximation 𝑢*' =
�(<)*�(<*))

∆/
 for the binding term (vf > 0) and the spatial 541 

approximation 𝑢o
' = �(<o))*�(<)

∆/
 for the unbinding term (vr < 0). For the time approximation of 542 

both the PDEs and the ODEs, we used the forward approximation ∆-
∆1
= -���*-�

∆1
47. We also 543 

verified that the Courant-Friedrichs-Lewy condition is satisfied. For fitting the experimental data 544 

of bacteria exposed to ciprofloxacin and ampicillin, we used the particle swarm method 545 

(“particleswarm” function in Matlab, MathWorks software). 546 

 547 

Concentrations of gyrase A2B2 tetramers 548 
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We assumed that gyrases A and B first homo-dimerize to A2 and B2, respectively, which in turn 549 

bind to each other to form the tetramer TR48. The following system of equations describes their 550 

binding kinetics: 551 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

>R
>1
= −2𝑘)𝐴� + 2𝑘*)𝐴�	

>-
>1
= −2𝑘�𝐵� + 2𝑘*�𝐵�	

>R�
>/

= 𝑘)𝐴� − 𝑘*)𝐴� − 𝑘�𝐴�𝐵� + 𝑘*�𝑇𝑅
>-�
>1

= 𝑘�𝐵� − 𝑘*�𝐵� − 𝑘�𝐴�𝐵� + 𝑘*�𝑇𝑅
>�K
>1

= 𝑘�𝐴�𝐵� − 𝑘*�𝑇𝑅	

       (14) 552 

⎩
⎪
⎨

⎪
⎧ 𝐴 + 𝐴

A�⇌
A��

𝐴�	

𝐵 + 𝐵
A�⇌
A��

	𝐵�

𝐴� + 𝐵�
A�⇌
A��

𝑇𝑅

	          (15) 553 

 554 

First, we calibrated the model to ensure that we obtain the correct number of gyrase A2B2 555 

tetramers (~100) per wild type bacterial cell49,50. This results in an average of each 206 gyrase A 556 

and B monomers. Because the association and dissociation rates of the dimers and tetramers are 557 

unknown, we sampled 104 sets of six parameters in equation 14 (𝑘*�,… 𝑘�) in a Latin hypercube 558 

approach from a biologically plausible range where the association rates are between 107 - 109 559 

M-1 s-1 and the dissociation rates between 10-3 - 10-1 s-1 33. This results in 104 estimates for each of 560 

the six experimental replicates quantifying gyrase A and B (Fig. 4, Supplementary Fig. S2, 561 

Supplementary Tab. S3). 562 

 563 

Experimental methods 564 

Strains, growth conditions and strain construction 565 
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Escherichia coli strain BW2511351 (SoA2740) was transformed with plasmids pCA24N-SC101-566 

gyrAB32 and pCA24N-SC101-ΔP-YFP32 using electroporation, resulting in strains 567 

BW25113/pCA24N-SC101-gyrAB (SoA3329) and BW25113/pCA24N-SC101-ΔP-YFP 568 

(SoA3330), respectively. pCA24N-SC101-gyrAB encodes the E. coli gyrAB genes under control 569 

of the IPTG inducible LacZ promoter. pCA24N-SC101-ΔP-YFP encodes a promoterless copy of 570 

YFP and was used as a control. Bacteria were grown at 30°C on either LB agar or in LB broth, 571 

both supplemented with 10 µg/mL chloramphenicol (Cm) and 10 µM (mild induction) or 100 572 

µM (strong induction) of isopropyl β-D-1-thiogalactopyranoside (IPTG) (43714 5X, VWR 573 

Chemicals) when necessary. 574 

 575 

Time-kill curves 576 

Overnight cultures of BW25113 or SoA3329 and SoA3330 were diluted 1:1000 in pre-warmed 577 

LB or LB-Cm and LB-Cm-IPTG, respectively, and grown with shaking to OD600 ~0.5. A 1:3 578 

dilution series of ciprofloxacin was made and added to the cultures at indicated concentrations. 579 

Additional cultures without antibiotics and with a very high concentration of ciprofloxacin 580 

(2.187 mg/L) were used to determine the minimal and maximal kill rate, respectively. Samples 581 

were taken immediately prior to addition of the antibiotic and in ~20 min intervals or after 45 582 

min, respectively. Samples were washed once in phosphate buffered saline (PBS) before colony 583 

forming units (CFUs) were determined for each sample by plating a 1:10 dilution series in PBS 584 

on LB agar plates. 585 

 586 

GyrAB quantification 587 
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To quantify the relative amount of GyrAB, samples of SoA3329 and SoA3330 were collected 588 

after 45 min of drug treatment as described above. An equal number of cells corresponding to 1 589 

mL culture at OD600 = 1 were harvested by centrifugation. Pelleted cells were lysed at room 590 

temperature for 20 min using B-PER bacterial protein extraction reagent (90078, Thermo 591 

Scientific) supplemented with 100 µg/mL lysozyme, 5 units/mL DNaseI (all part of B-PER™ 592 

with Enzymes Bacterial Protein Extraction Kit, 90078, Thermo Scientifc) and 100 µM/mL 593 

PMSF (52332, Calbiochem). Samples were stored at -80°C until further use. 594 

Samples were heated to 70°C for 10 min after addition of 1x Bolt sample reducing agent (B0009, 595 

Life Technologies) and 1x fluorescent compatible sample buffer (LC2570, Invitrogen). Proteins 596 

in whole-cell lysates were separated on 4-15 % Mini-Protean TGX Precast gels (456-1085, Bio-597 

Rad) and transferred to 0.2 µm Nitrocellulose membranes (1704158, Bio-Rad). 598 

Membranes were blocked in Odyssey blocking buffer-TBS (927-50000, Li-Cor) for at least one 599 

hour at room temperature. Primary antibodies raised against GyrA (Rabbit α-Gyrase A, PA005, 600 

Inspiralis), GyrB (Rabbit α-Gyrase B , PB005, Inspiralis), and CRP (Mouse α-E. coli CRP, 601 

664304, Nordic Biosite antibodies) were diluted 1:250, 1:250, and 1:2,000 in Odyssey blocking 602 

buffer-TBS, respectively. The blocked membranes were incubated with the appropriate primary 603 

antibodies overnight at 4°C, washed 4x for 15 min each in TBS-T solution (Tris buffered saline 604 

supplemented with Tween20: 0.138 M sodium chloride, 0.0027 M potassium chloride, 0.1 % 605 

Tween20, pH 8.0 at 25°C), and incubated for 2 h at room temperature with fluorescent labelled 606 

secondary antibodies (1:10,000 of IRDye® 680RD Goat anti-Mouse IgG, P/N 925-68070, Li-607 

Cor and 1:5000 of IRDye® 800CW Goat anti-Rabbit IgG, P/N 925-32211, Li-Cor) in Odyssey 608 

blocking buffer-TBS. Finally, the membranes were washed 4x for 15 min each in TBS-T 609 

solution and imaged at 700 nm and 800 nm using a Li-Cor Odyssey Sa scanning system. 610 
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Band intensities were quantified from unmodified images using the record measurement tool of 611 

Photoshop CS6, normalized to the CRP loading control after background subtraction, and 612 

reported relative to SoA3330. For clarity, the “levels” tool of Photoshop CS6 was used to 613 

enhance the contrast of shown Western blot images. 614 

 615 

Data Availability 616 

Computer code will be available at https://www.abel-zur-wiesch-lab.com/. 617 
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 636 

Fig. 1| Clinical data confirm linear correlation between MICs and affinities of quinolones to 637 

gyrase. We analyzed MIC and drug-target affinity data from 11 Enterobacteriaceae isolates and 638 

seven different quinolones. The x-axes show the affinities (KD), and the y-axes show the MICs, 639 

both in mol/L. The adjusted R2 and p-value of each correlation are given. In cases where there 640 

was more than one KD value reported in the literature, we used the mean for this analysis. The 641 

tested MIC values are the median of several clinical isolates described previously25.  642 
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 643 

Fig. 2| Illustration of modeling approach. a, Schematic illustration of binding kinetics (adapted 644 

from52). The grey triangles depict the drug target molecules, and the orange circles represent 645 

antibiotic molecules within bacteria. The arrows indicate individual binding and unbinding 646 

events of the antibiotic to its target molecule in the cell. 𝑘T' is the adjusted forward reaction rate, 647 
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kr is the reverse reaction rate, A is the concentration of antibiotics inside the bacterium, x is the 648 

number of bound targets, θ is the number of targets and Bx is the number of bacteria with x bound 649 

targets. b, Modeled sample time-kill curve, in which the sum of bacteria in all binding states (i.e., 650 

the entire population of living bacteria) is followed over time after exposure to antibiotics. The 651 

vertical dotted lines indicate the time points depicted in (c); 1 min (grey), 14 min (yellow), and 652 

80 min (purple). c, The percentage of bound antibiotic targets in the bacterial population at 653 

indicated time points. d, Illustration of how the partial differential equation describes the 654 

bacterial population as a surface in a three-dimensional coordinate system, the dimensions of 655 

which represent percent bound target (x-axis), time (y-axis), and number of bacteria (z-axis). The 656 

three time points shown in (c) represent two-dimensional cross-sections at different points of the 657 

y-axis. e, Overview of used parameters and functions.  658 
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 659 

Fig. 3| Model predictions for the MIC and the bacteriostatic and bactericidal effects of 660 

ciprofloxacin. a, Model fit to experimental time-kill curves. The points indicate the 661 

experimental data of three independent replicates, and the lines indicate the model fit. Each color 662 

indicates a ciprofloxacin concentration as reported in the figure. b, The blue line indicates the 663 

bacteriostatic effect (r(x), replication rate) of ciprofloxacin and the red line the bactericidal effect 664 

(δ(x), death rate) as a function of the number of bound targets predicted by the model fit in (a). 665 
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The values of the fitted parameters are listed in Supplementary Tab. S2. c, The net growth rate as 666 

determined by the slope of a line connecting the initial bacterial density and the final bacterial 667 

density of a time-kill curve at 18 h on a logarithmic scale, is given as function of the drug 668 

concentration (blue). The dotted horizontal line indicates zero net growth, and the intersection 669 

with the blue line predicts the MIC (0.0139 mg/mL).  670 
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 671 

Fig. 4| Prediction of relative antibiotic target molecule content from time-kill curves. a, 672 

Dose-response curves of E. coli expressing gyrA and gyrB under the same IPTG-inducible 673 

promoter (SoA3329) grown in the presence of 10 µM IPTG (mild overexpression; red) and 100 674 

µM IPTG (strong overexpression; yellow). A control strain (SoA3330), which expresses wild-675 

type GyrAB levels and contains a mock plasmid, is grown in the absence of inducer (blue). The 676 

x-axis indicates the ciprofloxacin concentration, and the y-axis indicates the fold change in 677 

colony forming units over time. The dotted lines indicate experimental data, and the solid lines 678 

indicate the model fit. The best model fit was obtained for relative target molecule contents of 679 

131 % (mild overexpression) and 202 % (strong overexpression) relative to the control strain 680 

(WT). b, Death rates of E. coli expressing different levels of GyrAB. The colors represent 681 

GyrAB expression conditions as in (a). The x-axis shows the percentage of bound antibiotic 682 
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target normalized to the control strain; the y-axis shows the death rate d(x). Each line represents 683 

the best fit for d(x). c, Western blot analysis of GyrA&B in the strains/conditions shown in (a). 684 

CRP (cAMP receptor protein) was used as loading control. A representative example of six 685 

replicates is shown; see Supplementary Fig. S2 for full blots. d, comparison of theoretical 686 

prediction (from (b), solid colors) and GyrA2B2 tetramer levels estimated from relative GyrA&B 687 

monomer levels (quantified in (c), translucent colors). For the experimental measurements, the 688 

bars indicate the mean, and the whiskers represent the 95 % confidence interval.  689 
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 690 

Fig. 5| Model prediction of MIC and target occupancy at MIC for ampicillin. a, Model fit to 691 

previously published time-kill curves31. The points represent experimental data, and the lines 692 

represent the fit of the model. Each color indicates a single ampicillin concentration, as described 693 

in the legend. b, Replication (blue) and death (red) rates as a function of the number of bound 694 

targets predicted by the model fit in (a). The black line indicates the predicted distribution of 695 

target occupancies in a bacterial population (both living and dead cells) exposed to ampicillin at 696 
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the MIC for 18 h. c, The net growth rate, as determined by the slope of a line connecting the 697 

initial bacterial density and the bacterial density at 18 h on a logarithmic scale predicted from the 698 

model fit in (a), is shown as function of the drug concentration (blue). The dotted horizontal line 699 

indicates zero net growth, and the intersection with the blue line predicts the MIC (2.6 mg/mL).  700 
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 701 

Fig. 6| Predicted mutation selection windows for E. coli exposed to ciprofloxacin. a, The 702 

drug concentration of ciprofloxacin is shown on the x-axes, and the average bacterial net growth 703 

rate in the first 15 min (grey panel), 45 min (yellow panel), and 18 h (purple panel) of exposure 704 

is given on the y-axes. The blue line represents the wild-type strain based on the fits shown in 705 

Fig. 3, and the red line represents a strain with a hypothetical resistance mutation that decreases 706 

the binding rate (kf) 100-fold and imparts a 15 % fitness cost. The horizontal dotted line indicates 707 

no net growth. The vertical dotted line indicates where the resistant strain becomes more fit than 708 

the wild-type, the solid vertical line indicates the MIC of the wild-type, and the dashed vertical 709 

line indicates the MIC of the resistant strain. b, Modeled time kill curves of the resistant strain 710 

for ciprofloxacin concentrations at which there is no growth at 15 min (grey; MIC15 min = 7 711 

mg/L), 45 min (yellow; MIC45 min = 3 mg/L) and 18 h (purple; MIC18 h = 1.27 mg/L). The 712 

horizontal dotted line indicates the initial population size; the vertical dotted lines represent the 713 

time points at which the initial and final population size is the same. c, The mutation selection 714 
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window depends on the time at which bacterial growth is observed. The x-axis shows the 715 

observed time at which replication rates were determined, the y-axis shows ciprofloxacin 716 

concentrations. The dotted curve shows the ciprofloxacin concentration at which the resistant 717 

becomes fitter than the WT (FitnessResistant > FitnessWT), the solid line the MIC of the WT 718 

(MICWT), and the dashed line the MIC of the resistant strain (MICResistant). The area between the 719 

dotted and dashed line indicates the competitive resistance selection window. 720 
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