
ntEdit: scalable genome assembly polishing

René L Warren 1,∗, Lauren Coombe 1, Hamid Mohamadi 1, Jessica Zhang 1,
Barry Jaquish 2, Nathalie Isabel 3, Steven JM Jones 1, Jean Bousquet 4, Joerg

Bohlmann 5 and Inanç Birol 1

1Genome Sciences Centre, BC Cancer, Vancouver, Canada
2BC Ministry of Forests, Victoria, Canada

3Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
4Canada Research Chair in Forest Genomics, Université Laval, Québec, Canada

5Michael Smith Laboratories, University of British Columbia, Vancouver, Canada

Abstract. In the modern genomics era, genome sequence assemblies
are routine practice. However, depending on the methodology, result-
ing drafts may contain considerable base errors. Although utilities ex-
ist for genome base polishing, they work best with high read cover-
age and do not scale well. We developed ntEdit, a Bloom filter-based
genome sequence editing utility that scales to large mammalian and
conifer genomes.
We first tested ntEdit and the state-of-the-art assembly improvement
tools GATK, Pilon and Racon on controlled E. coli and C. elegans se-
quence data. Generally, ntEdit performs well at low sequence depths
(<20X), fixing the majority (>97%) of base substitutions and indels,
and its performance is largely constant with increased coverage. In all
experiments conducted using a single CPU, the ntEdit pipeline executed
in <14s and <3m, on average, on E. coli and C. elegans, respectively.
We performed similar benchmarks on a sub-20X coverage human genome
sequence dataset, inspecting accuracy and resource usage in editing chro-
mosomes 1 and 21, and whole genome. ntEdit scaled linearly, executing
in 30-40m on those sequences. We show how ntEdit ran in <2h20m to im-
prove upon long and linked read human genome assemblies of NA12878,
using high coverage (54X) Illumina sequence data from the same indi-
vidual, fixing frame shifts in coding sequences. We also generated 17-
fold coverage spruce sequence data from haploid sequence sources (seed
megagametophyte), and used it to edit our pseudo haploid assemblies
of the 20 Gbp interior and white spruce genomes in <4 and <5h, re-
spectively, making roughly 50M edits at a (substitution+indel) rate of
0.0024.
Availability: https://github.com/bcgsc/ntedit
*Contact: rwarren@bcgsc.ca
Supplemental material: available online.

Introduction

This past decade, next generation sequencing technologies have greatly improved
their throughput. For example, 50-fold coverage of a 20 Gbp conifer genome can

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/565374doi: bioRxiv preprint

https://doi.org/10.1101/565374

2 René L Warren

today be achieved on a single, 8-lane flowcell of the Illumina HiSeq-X instrument.
However, this massive data is creating bottlenecks in bioinformatics pipelines.
Typically, with short read data, a pseudo haploid draft genome representing
unresolved allelic mixtures results from diploid sequence assembly. Depending
on the methodology used, these assemblies may contain appreciable errors. Al-
though many tools exist for base error correction of reads from high throughput
sequencing platforms [1], few genome assembly polishing tools are available.

The leading utilities for assembly polishing include GATK [2], Pilon [3] and
Racon [4]. Pilon and GATK are well established and comprehensive tools for
genome improvements, and include the ability to fill short gaps, fix local misas-
semblies, and identify and report variant bases. In comparison, Racon is a more
recent utility originally designed as a fast nanopore read correction tool. The
latter is gaining traction in polishing, using Illumina data, single molecule se-
quencing (SMS) genome drafts such as those assembled from Pacific Biosciences
(PacBio) and Oxford Nanopore (Nanopore) sequence reads [5]. Considered the
state-of-the art in polishing accuracy, Pilon is a robust genome assembly improve-
ment tool routinely used to polish microbial and small (<100 Mbp) eukaryotic
genomes. It has also been applied to human assemblies [6], but unfortunately
scales quadratically in time.

The aforementioned tools all employ read alignments. This paradigm gives
context to the bases under scrutiny, albeit at the expense of run time. To address
these scalability limitations, we developed ntEdit, a utility that uses words of
length k (kmer) for correcting homozygous errors in very large genome (>3Gbp)
assemblies. ntEdit employs a succinct Bloom filter data structure for evaluation
and correction. By comparing it to the base polishing capabilities of other tools,
namely the ability to fix base substitutions and indels, we show how ntEdit
produces comparable results, and scales linearly to the large 3-20 Gbp genomes
of human and spruce [7].

Methods

We first run ntHits (v0.0.1; https://github.com/bcgsc/nthits; Supplemental Meth-
ods) to remove error kmers from high throughput sequencing data, and build
a canonical representation of coverage-thresholded kmers using a Bloom filter,
while maintaining a low false positive rate (≈0.0005). The Bloom filter is then
read by ntEdit (v1.1.0 with matching kmer length k), and contigs from a sup-
plied assembly are processed in turn (Fig. S1). From each sequence, 5’ to 3’
assembly kmers are used to interrogate the Bloom filter for presence/absence.
When a kmer is absent, ntEdit moves the frame over the next (k-1) 3’-end bases
along the assembled sequence, and uses a subset of these k kmers to further
interrogate the Bloom filter. In its tests, it uses two leniency factors. The first
one ensures that only positions that do not have a sufficient subset of k kmer
support are edited. The kmers that pass this filter (ie. absent kmers) will have
their 3’-end base permuted, in turn, to one of the three alternate bases. Changes
are tracked when kmers with the base substitution are contained in the Bloom

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/565374doi: bioRxiv preprint

https://doi.org/10.1101/565374

scalable genome editing 3

filter using a kmer threshold set by a second leniency factor. In that case, the
remaining alternate base substitution(s) are also investigated. The kmers that
do not pass this second filter are inspected for micro-insertion(s) and deletion(s)
of up to 5 bases, and changes are tracked as per above. The process repeats
until a change is made that has sufficient support, or until all possible edits have
been exhausted at that position (Fig. S1). ntEdit outputs a new fasta sequence
with the changes applied, and a text file tracking changes made along with with
positions. ntEdit is implemented in C++. Detailed methods available online.

Results and Discussion

Wemeasured the performance of these tools using QUAST [8], comparing genome
copies with simulated 0.001 and 0.0001 substitution and indel rates, along with
GATK, Pilon, Racon and ntEdit-polished versions to their respective reference
genomes (Fig. S2. and Fig. 1). The performance of ntEdit in fixing substitutions
and indels was largely constant with increased coverage from 15-50X. It was also
similar to the performances of other tools, and consistent even at low (15-20x)
read coverages (Fig. 1 panels A, B, E, F, I; Tables S1-S3). Notably, ntEdit had a
slightly higher false discovery rate (FDR) under all tested conditions, and gen-
erally less than 2 and 1 percent at higher k values (k45 and up), for the larger (3
Gbp) and smaller (<100 Mbp) genomes, respectively. We also note that its FDR
diminished with increasing k (Table S4-S6). We determined that, although the
Bloom filter false positive rate (FPR) has the potential to affect the corrections
if set too high (at FPR >0.001), it did not impact ntEdit’s ability to identify
and correct erroneous bases at the FPR levels used in our experiments (Fig. S3,
FPR≈0.0005). For E. coli, C. elegans and H. sapiens the optimum k to use with
ntEdit was 25, 35 and 50 (Table S7), respectively. We also tested how iterative
ntEdit runs with varied kmer lengths may benefit in correctly fixing additional
sites, despite run time trade-offs (Tables S1-S6). Pilon and Racon performed
best at higher coverage (≥20X) sequencing data, though they also had higher
resource requirements (Fig. 1 panels C, D, G, H, J, K; Tables S1-S3). The ntE-
dit pipeline ran in 10s, 3m and 38m on average for 15-50X E. coli (k25), C.
elegans (k35) and sub-20X H. sapiens (k50) data (Tables S1-S3), respectively.
In contrast, Pilon took 4-11m, 2-5h and several hours/days on the same data,
and it ran twice as slow at lower (eg. 15X) coverages.

Since Pilon executed in >1 week on chromosome 1 (with 48 threads, Table
S3), we did not run it on experimental large genome assemblies. Running ntEdit
for correction of experimental human NA12878 SMS assemblies with Illumina
reads, of which some were already polished [6], led to the recovery of additional
complete BUSCO genes [9]. BUSCO measures assembly completeness by map-
ping single-copy gene products to assemblies. To this effect, a higher number
of genes are expected to be recovered when fixing substitutions, but more im-
portantly, indels causing premature stops and frame shifts. Of the best runs,
ntEdit recovered 26 and 366 additional complete BUSCO genes, in Nanopore
[10] and PacBio [11] assemblies, respectively (Table S8). As expected given the

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/565374doi: bioRxiv preprint

https://doi.org/10.1101/565374

4 René L Warren

1

10

100

10 20 30 40 50
#
 M

is
m

a
tc

h
e
s
 p

e
r

1
0
0
k
b
p

A

0.3

1.0

3.0

10.0

10 20 30 40 50 #
 I
n
d
e
ls

 p
e
r

1
0
0
k
b
pB

0.0

2.5

5.0

7.5

10.0

10 20 30 40 50

T
im

e
 (

m
in

)

C

1

2

10 20 30 40 50 P
e
a
k
 M

e
m

o
ry

 (
G

b
)D

Tool
Baseline
GATK

Racon
Pilon

ntEdit k=20
ntEdit k=25

ntEdit k=30
ntEdit iterative

1

10

100

20 30 40 50

#
 M

is
m

a
tc

h
e
s
 p

e
r

1
0
0
k
b
p

E

0.3

1.0

3.0

10.0

20 30 40 50 #
 I
n
d
e
ls

 p
e
r

1
0
0
k
b
pF

0

100

200

300

20 30 40 50

T
im

e
 (

m
in

)

G

0

10

20

30

40

50

20 30 40 50 P
e
a
k
 M

e
m

o
ry

 (
G

b
)H

Tool
Baseline
GATK

Racon
Pilon

ntEdit k=25
ntEdit k=30

ntEdit k=35
ntEdit iterative

1

10

100

30 40 50 60 70
k

E
rr

o
rs

 p
e
r

1
0
0
k
b
p

Error type Indels per 100kbp Mismatches per 100kbp

I

0

200

400

600

800

30 40 50 60 70
k

T
im

e
 (

m
in

)

J

20

25

30

35

40

30 40 50 60 70
k

P
e
a
k
 m

e
m

o
ry

 (
G

b
)K

Tool
Baseline
GATK

Racon
Pilon

ntEdit

Coverage

Coverage

Fig. 1. Performance and benchmark of GATK, ntEdit, Pilon and Racon using con-
trolled E. coli (panels A, B, C, D) and C. elegans (panels E, F, G, H) genomes and H.

sapiens chromosome 21 (I, J, K) sequences.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/565374doi: bioRxiv preprint

https://doi.org/10.1101/565374

scalable genome editing 5

low indel rate of Illumina data, sequence polishers had only marginal effects
on the Supernova assembly using the BUSCO metric, recovering <3 complete
BUSCOs. The ntEdit runs on the SMS assemblies were fast, with the whole
pipeline (ntHits and ntEdit) executing in 2h, with the ntEdit portion taking two
to four minutes at most. The accuracy of GATK and Racon is noteworthy, albeit
the former appears to struggle when fixing indels. In order to run Racon in a
reasonable amount of time on large (>3Gbp) genomes, we sectioned the drafts
(20 sub files), each running in an embarrassingly parallel fashion, with 48 CPU
threads. Its cumulative run time was >1.6 days. Without any partitioning of
the human genome drafts, Racon runs took over 3 days. On small genomes and
less contiguous (N50 <1Mbp) assemblies, the memory (RAM) usage of ntEdit is
largely constant, occupied mainly by the Bloom filter. We observe larger memory
footprints with more contiguous draft assemblies (Tables S3 and S8).

Table 1. Performance of ntEdit in polishing the pseudo haploid assemblies of interior
(PG29-v4) and white (WS77111-v1) spruce, using DNA sequences from their respective
haploid megagametophyte tissue. Bloom filter creation with ntHits took 4h23m and
3h29m and required 206.9 GB and 207.8 GB RAM on these data, using 48 CPU threads.

Assembly Time (mm:ss) RAM (GB) Edits (M) Subs. (M) Indels (M)

PG29-v4 23:05 86.1 48.31 47.29 1.02
WS77111-v1 25:42 90.2 50.49 49.39 1.11

We also ran ntEdit serially on the interior (PG29-v4, 20.17 Gbp) and white
(P. glauca WS77111-v1, 21.90 Gbp) spruce pseudo haploid genome assemblies
[12]. Runs took 4h46m and 3h55m in total, with the ntEdit portion running in
less than 30 minutes, and required at most 208 GB RAM. Overall 48.3 and 50.5
M haploid edits were made at a substitution and indel rate of 2.3x10−3 and
5.0x10−5 for the two genomes, respectively (Table 1).

Genome polishing approaches that rely on paired-end read alignments tend
to be more accurate overall. This is not surprising since paired-end reads provide
more sequence context than kmers. For ntEdit, in its current implementation,
additional sequence context is considered up to twice the value of k by exploring
a subset of overlapping k kmers having the qualifying change. At the moment,
only homozygous errors are targeted and ntEdit compromises sensitivity in favor
of performance. With its fast Bloom filter operations, ntEdit simplifies polishing
and ”haploidization” of gene and genome sequences since those data structures
can be re-used on different sequences, draft assemblies, etc., and in separate
polishing runs, without the need to partition the input assembly. We also ex-
pect ntEdit to have additional applications in fast mapping of simple nucleotide
variations between any two individuals or species’ genomes.

Acknowledgements

This work was supported by Genome Canada and Genome BC [243FOR, 281ANV];
and the National Institutes of Health [2R01HG007182-04A1].

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/565374doi: bioRxiv preprint

https://doi.org/10.1101/565374

6 René L Warren

References

1. Akogwu, I., et al. (2016) A comparative study of k-spectrum-based error correction
methods for next-generation sequencing data analysis. Hum. Genomics. 10. 20.

2. McKenna, A., et al. (2010) The Genome Analysis Toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome Res. 20. 1297-1303.

3. Walker, B.J., et al. (2014) Pilon: an integrated tool for comprehensive microbial
variant detection and genome assembly improvement. PLoS ONE 9. e112963.

4. Vaser, R., et al. (2017) Fast and accurate de novo genome assembly from long
uncorrected reads. Genome Res. 27. 737-746.

5. Koren, S., et al. (2019) Reply to ’Errors in long-read assemblies can critically affect
protein prediction’. Nat. Biotechnol. 37. 127-128.

6. Watson, M. and Warr, A. (2019) Errors in long-read assemblies can critically affect
protein prediction. Nat. Biotechnol. 37. 124-126.

7. Birol, I., et al. (2013) Assembling the 20 Gb white spruce (Picea glauca) genome
from whole-genome shotgun sequencing data. Bioinformatics 29. 1492-1497.

8. Mikheenko, A., et al. (2018) Versatile genome assembly evaluation with QUAST-
LG. Bioinformatics 34. i142-i150.

9. Simão, R.M., et al. (2015) BUSCO: assessing genome assembly and annotation
completeness with single-copy orthologs, Bioinformatics 31. 3210-3212.

10. Jain, M., et al. (2018) Nanopore sequencing and assembly of a human genome with
ultra-long reads. Nat. Biotechnol. 36. 338-345.

11. Pendleton, M., et al. (2015) Assembly and diploid architecture of an individual
human genome via single-molecule technologies. Nat. Methods 12. 780-786.

12. Warren, R.L., et al. (2015) Improved white spruce (white spruce) genome assem-
blies and annotation of large gene families of conifer terpenoid and phenolic defense
metabolism. Plant J. 83. 189-212.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/565374doi: bioRxiv preprint

https://doi.org/10.1101/565374

