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Abstract 

Rational protein engineering requires a holistic understanding of protein function. Here, we apply deep learning 
to unlabelled amino acid sequences to distill the fundamental features of a protein into a statistical 
representation ​that is semantically rich and structurally, evolutionarily, and biophysically grounded. We show 
that the simplest models built on top of this ​uni​fied ​rep ​resentation (UniRep) are broadly applicable and 
generalize to unseen regions of sequence space. Our data-driven approach reaches near state-of-the-art or 
superior performance predicting stability of natural and​ de novo​ designed proteins as well as quantitative 
function of molecularly diverse mutants. UniRep further enables two orders of magnitude cost savings in a 
protein engineering task. We conclude UniRep is a versatile protein summary that can be applied across protein 
engineering informatics.  
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Protein engineering has the potential to transform synthetic biology, medicine, and nanotechnology. Traditional 
approaches to protein engineering rely on random variation and screening/selection without modelling the 
relationship between sequence and function​1,2​. In contrast, rational engineering approaches seek to build 
quantitative models of protein properties, and use these models to more efficiently traverse the fitness landscape 
to overcome the challenges of directed evolution​3–9​. Such rational design requires a holistic and predictive 
understanding of structural stability and quantitative molecular function that has not been consolidated in a 
generalizable framework to date. 
 
Although the set of engineering-relevant properties might be large, proteins share a smaller set of fundamental 
features that underpin their function. Current quantitative protein modeling approaches aim to approximate one 
or a small subset of them. For example, structural approaches, which include biophysical modeling​10​, statistical 
analysis of crystal structures​10​, and molecular dynamics simulations​11​, largely operate on the basis of free energy 
and thermostability in order to predict protein function. More data-driven co-evolutionary approaches rely on 
fundamental evolutionary properties to estimate the statistical likelihood of protein stability or function. While 
successful in their respective domains, these methods’ tailored nature, by way of the features they approximate, 
limit their universal application. Structural approaches are limited by the relative scarcity of structural data 
(Supp. Fig. 1), computational tractability, or difficulty with function-relevant spatio-temporal dynamics, which 
are particularly important for engineering​12​,​13,14​.  Co-evolutionary methods operate poorly in underexplored 
regions of protein space (such as low-diversity viral proteins​15​) and are not suitable for ​de novo ​designs. Unlike 
these approaches, a method that scalably approximates a wider set of fundamental protein features could be 
deployed in a domain independent manner, bringing a more holistic understanding to bear on rational design. 
 
Deep learning is a flexible machine learning paradigm that can learn rich data representations from raw inputs. 
Recently, this flexibility was demonstrated in protein structure prediction, replacing complex informatics 
pipelines with models that can predict structure directly from sequence​16​. Additionally, deep learning has shown 
success in sub-problems of protein informatics; for example: variant effect prediction​15​, function annotation​17,18​, 
semantic search ​18​, and model-guided protein engineering​3,4​. While exciting advances, these methods are 
domain-specific or constrained by data scarcity due to the high cost of protein characterization.  
 
On the other hand, there is a plethora of publicly available raw protein sequence data. The number of such 
sequences is growing exponentially​19​, leaving most of them uncharacterized (Supp. Fig. 1) and thus difficult to 
use in the modeling paradigms described above. Nevertheless, these are sequences from extant proteins that are 
putatively functional, and therefore may contain valuable information about stability, function, and other 
engineering-relevant properties. Indeed, previous works have attempted to learn raw sequence-based 
representations for subsequences​20​, and full-length “Doc2Vec” protein representations specifically for protein 
characteristic prediction​21​. However, these methods have neither been used to learn general representations at 
scale nor been evaluated on a comprehensive collection of protein informatics problems.  
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Here, we use a recurrent neural network to learn statistical representations of proteins from ~24 million 
UniRef50​22​ sequences (Fig. 1a). Without structural or evolutionary data, this ​uni​fied​ ​rep​resentation (UniRep) 
summarizes arbitrary protein sequences into fixed-length vectors approximating fundamental protein features 
(Fig. 1b). This method scalably leverages underutilized raw sequences to alleviate the data scarcity constraining 
protein informatics to date, and achieves generalizable, superior performance in critical engineering tasks from 
stability, to function, to design. 
 
 

 
Figure 1. ​ ​Workflow to learn and apply deep protein representations. ​a.​ UniRep model was trained on 24 million UniRef50 primary 

amino acid sequences. The model was trained to perform next amino acid prediction (minimizing cross-entropy loss), and in so doing, 
was forced to learn how to internally represent proteins.  ​b. ​ During application, the trained model is used to generate a single 
fixed-length vector representation of the input sequence by globally averaging intermediate mLSTM numerical summaries (the hidden 
states). A top model (e.g. a sparse linear regression or random forest) trained on top of the representation, which acts as a featurization 
of the input sequence, enables supervised learning on diverse protein informatics tasks.  

Results 

An mLSTM learns semantically rich representations from a massive sequence dataset 

 
Multiplicative Long-Short-Term-Memory (mLSTM) Recurrent Neural Networks (RNNs) can learn rich 
representations for natural language, which enable state-of-the-art performance on critical tasks​23​. This 
architecture learns by going through a sequence of characters in order, trying to predict the next one based on 
the model’s dynamic internal “summary” of the sequence it has seen so far (its “hidden state”). During training, 
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the model gradually revises the way it constructs its hidden state in order to maximize the accuracy of its 
predictions, resulting in a progressively better statistical summary, or ​representation ​, of the sequence.  
 
We trained a 1900-hidden unit mLSTM with amino acid character embeddings on ~24 million UniRef50 amino 
acid sequences for ~3 weeks on 4 Nvidia K80 GPUs (Methods). To examine what it learned, we interrogated 
the model from the amino acid to the proteome level and examined its internal states. 
 
We found that the amino-acid embeddings (Methods) learned by UniRep contained physicochemically 
meaningful clusters (Fig. 2a). A 2D t-Distributed Stochastic Neighbor Embedding​24​ (t-SNE) projection of 
average UniRep representations for 53 model organism proteomes (Supp. Table 1) showed meaningful 
organism clusters at different phylogenetic levels (Fig. 2b), and these organism relationships were maintained at 
the individual protein level (Supp. Fig. 2).  
 
To assess how semantically related proteins are represented by UniRep, we examined its ability to partition 
structurally similar sequences that share little sequence identity, and enable unsupervised clustering of 
homologous sequences.  
 
UniRep separated proteins from various Structural Classification of Proteins (SCOP) classes derived from 
crystallographic data (Fig. 2c,  Methods). More quantitatively, a simple Random Forest Model trained on 
UniRep could accurately group unseen proteins into SCOP superfamily and fold classes (Supp. Table 2, 
Methods).  
 
We next sourced two expertly labeled datasets of protein families compiled on the basis of functional, 
evolutionary, and structural similarity: HOMSTRAD​25​ (3450 proteins in 1031 families) and OXBench​26​ (811 
proteins in 180 families). Using Euclidean distances between UniRep vectors, we performed unsupervised 
hierarchical clustering of proteins in these families, and found good agreement with expert assignments 
according to three standard clustering metrics. We compared to baselines which include global sequence 
alignment distance computed with the Levenshtein algorithm, which is equivalent to the standard 
Needleman-Wunsch with equal penalties​27,28​ (Fig. 2d, Supp. Figs. 3-5, Methods).   
 
We finally examined correlations of the internal hidden states with protein secondary structure on a number of 
datasets (Methods). Surprisingly, we found a ​single neuron ​that ​ ​discriminated beta sheets from alpha helices, 
positively correlating with alpha-helix annotations (Pearson’s ​r​= .33, p < 1e-5), and negatively correlating with 
beta-sheet annotations (Pearson’s ​r ​ = -0.35, p < 2e-6). Examination of its activation pattern on the Lac repressor 
structure visually confirmed these statistics (Fig. 2e). A larger-scale spatial analysis performed across many 
helices and sheets from different proteins revealed an activation pattern of the helix-sheet neuron that indicated 
it encodes features of both secondary structure units, going beyond individual amino acids (Fig. 2f). We found 
other neuron correlations with biophysical parameters including solvent accessibility (Supp. Fig. 6).  Taken 
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together, we conclude the UniRep vector space is semantically rich, and encodes structural, evolutionary, and 
functional information. 
 

 
Figure 2. ​ ​UniRep encodes amino acid physicochemistry, organism level information, secondary structure, evolutionary and 

functional information, and higher order structural features​. ​a.​ PCA (Principal Component Analysis) of amino acid embeddings 
learned by UniRep. ​b.​ t-SNE of the proteome-average UniRep vector of 53 model organisms ​c. ​Low dimensional t-SNE visualization 
of UniRep represented sequences from SCOP colored by ground-truth structural classes, which were assigned after crystallization​29​. 
d. ​Agglomerative distance-based clustering of UniRep, a Doc2Vec representation method from Yang et al. (2018)​21​, a deep structural 
method from AlQuraishi (2018)​16​, Levenshtein (global sequence alignment) distance, and the best of a suite of machine learning 
baselines (Methods). Scores how well each approach reconstitutes expert-labeled family groupings from OXBench and HOMSTRAD. 
All metrics vary between 0 and 1, with 0 being a random assignment and 1 being a perfect clustering (Methods).  ​e.​ Activation pattern 
of the helix-sheet secondary structure neuron colored on the structure of the Lac repressor LacI (PDB:2PE5, right). ​f.​ Average 
helix-sheet neuron (as visualized in f) activation as a function of relative position along a secondary structure unit (Methods).  

UniRep enables stability prediction and generalizes to ​de novo ​designed proteins 

 
Protein stability is a fundamental determinant of protein function and a critical engineering endpoint that affects 
the production yields​30​, reaction rates​31​, and shelf-life​32​ of protein catalysts, sensors, and therapeutics. 
Therefore, we next sought to evaluate whether UniRep could provide a suitable basis for stability prediction. 
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Toward this end, we analyzed a large dataset of stability measurements for ​de novo ​designed mini proteins​5​. For 
proper model comparison we withheld a random test set never seen during training, even for model selection 
(Methods). We compared simple sparse linear models trained on top of UniRep (Fig. 1b) to those trained on a 
suite of baseline representations selected to encompass simple controls, standard models known to generalize 
well, and published state of the art. Among others, they included standard machine learning methods like 
bag-of-words, the state-of-the-art Doc2Vec representation from Yang ​et al. ​(2018)​21​, and a deep structural 
representation from the Recurrent Geometric Network (RGN)​16​ (Supp. Fig. 7, Methods). For this analysis, we 
also generated “UniRep Fusion” by concatenating the UniRep representation with other internal states of the 
mLSTM to obtain an expanded version of the representation (Methods, Supp. Table 3).  
 
We also benchmarked against Rosetta, an established structural stability prediction method, using published 
Rosetta total energy scores for a subset of proteins in this dataset​5​. Despite lacking the explicit physical 
knowledge and structural data that Rosetta relies on, UniRep Fusion with a top model trained on experimental 
stability data significantly outperformed Rosetta on rank-order correlation with measured stability on the 
held-out test set (Spearman’s ​ρ​ = 0.59 vs. 0.42, Fig. 3a, Methods). Unlike UniRep, Rosetta does not provide a 
mechanism to incorporate our experimental stability data, which we recognize is a limitation of this 
comparison. UniRep Fusion additionally outperformed all baselines in our suite on the test dataset (Supp. Table 
4-5, Methods). Due to Rosetta’s large computational requirements​33​ we did not extend this baseline to further 
analyses. 
 
This result was surprising because ​de novo ​ designed proteins constitute a miniscule proportion (1e-7) of the 
UniRep training data​34​. Thus, we further evaluated UniRep’s performance on ​de novo​ designs compared directly 
to natural proteins by using 17 distinct deep mutational scanning (DMS) datasets, which provide uniform 
measurements of stability of 3 natural and 14 ​de novo ​ designed proteins​5​. These datasets consist of 
single-residue mutants, which presents an additional challenge for UniRep trained exclusively on sequences 
with <50% similarity. As before, a random test set was withheld for each protein. 
 
We found UniRep Fusion-based models outperformed all baselines on both natural and ​de novo​ designed 
protein test sets. Surprisingly, the 3 proteins with the best test performance (EEHEE_rd3_0037, 
HHH_rd2_0134, HHH_0142 measured by Pearson’s ​r​) were ​de novo​ designed (Fig. 3b, validation in Supp. Fig. 
8). We confirmed these findings with a pooled analysis to train and predict on all subsets (Supp. Table 4-5). 
Further, we found that the same features of the representation were consistently identified by the linear model 
(Fig. 3c), suggesting a learned basis that is shared between ​de novo​ designed and naturally occurring proteins. 
Strikingly, the helix-sheet neuron, evaluated earlier on natural proteins (Fig. 2f), detected alpha helices on the 
de novo ​ designed protein HHH_0142 (PDB: 5UOI) (Fig. 3d). Together, these results suggest that UniRep 
approximates a set of fundamental biophysical features shared between all proteins. 
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UniRep enables prediction of the functional effects of single mutations for eight diverse 
proteins with distinct functions 

 
Because UniRep enables prediction of stability, we hypothesized it could be a basis for the prediction of protein 
function directly from sequence. To test this hypothesis, we first sourced 9 diverse quantitative function 
prediction DMS datasets, incorporating data from 8 different proteins​35​. Each of these datasets only included 
single point mutants of the wild-type protein (>99% similarity), which were characterized with molecular 
assays specific to each protein function​35​. For each protein dataset, we asked if a simple sparse linear model 
trained on UniRep representations could predict the normalized (to wildtype) quantitative function of held out 
mutants.  
 
On all 9 DMS datasets, UniRep Fusion-based models achieved superior test set performance, outperforming a 
comprehensive suite of baselines including a state-of-the-art Doc2Vec representation (Fig. 3e, Supp. Table 4-5). 
This is surprising given that these proteins share little sequence similarity (Fig. 3f), are derived from 6 different 
organisms, range in size (264 aa - 724 aa), vary from near-universal (hsp90) to organism-specific (Gb1), and 
take part in diverse biological processes (e.g. catalysis, DNA binding, molecular sensing, protein 
chaperoning)​35​. UniRep’s consistently superior performance, despite each protein’s unique biology and 
measurement assay, suggests UniRep is not only robust, but also must encompass features that underpin the 
function of all of these proteins.  
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Figure 3. ​ ​UniRep predicts structural and functional properties of proteins.​ a. ​Spearman correlation with true measured stability 

rankings of ​de-novo​ designed mini proteins UniRep Fusion-based model predictions and two alternative approaches: negative Rosetta 
total energy and non-polar surface area (Methods). UniRep Fusion outperforms both alternatives (​p​ < 0.001; Welch’s t-test on 
bootstrap replicates). ​b.​ UniRep performance compared to a suite of baselines across 17 proteins in the DMS stability prediction task 
(Pearson’s ​r​). UniRep Fusion achieved significantly higher Pearson’s ​r​  on all subsets (​p​ < 0.006; Welch’s t-test on bootstrap 
replicates). ​c.​ Average magnitude neuron activations for ​de novo ​designed and natural protein stability prediction show significant 
co-activation (p < 0.01; permutation test). ​d. ​Activations of the helix-sheet neuron colored onto the ​de novo​ designed protein 
HHH_0142 (PDB: 5UOI). ​e. ​UniRep Fusion achieves statistically lower mean squared error than a suite of baselines across a set of 8 
proteins with 9 diverse functions in the DMS function prediction task (p<0.0002 on 8/9 and p<0.009 on 1/9; Welch’s t-test on 
bootstrap replicates). ​f​. UniRep performance across orders of scale: from distant proteins, to variants of the same protein one mutation 
apart. Scale bar illustrates the average distance between proteins in the DMS function prediction dataset. The scale of one mutation 
(10x magnification from the average distance bar) is shown to contrast the small mutational range UniRep is asked to model. 

UniRep enables generalization through accurate approximation of the fitness landscape 

 
A core challenge of rational protein engineering is building models which generalize from local data to distant 
regions of sequence space where more functional variants exist. Deep learning models often have difficulty 
generalizing outside of their training domain​36​. Unlike most models, which are only trained with data specific to 
the task at hand, UniRep was trained in an unsupervised manner on a wide sampling of proteins. Combined with 
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its relative compactness (Supp. Fig. S9), we therefore hypothesized UniRep might capture general features of 
protein fitness landscapes which extend beyond task-specific training data.  
 
To test this, we focused on fluorescent proteins, which have previously measured fitness landscapes​37​, and are 
useful for ​in vivo ​and ​in situ ​imaging, calcium and transmembrane voltage sensing, and optogenetic actuation​38​. 
We tested UniRep’s ability to accurately predict the phenotype of distant functional variants of ​Aequorea 
victoria ​green fluorescent protein (avGFP) given only local phenotype data from a narrow sampling of the 
avGFP fitness landscape ​37​.  
 
We considered what sized region of sequence space would make the best training data for UniRep. Training on 
a broad sequence corpus, like UniRef50, captures global determinants of protein function, but sacrifices 
fine-grained local context. On the other hand, training on a local region of extant sequences near the 
engineering target provides more nuanced data about the target, but neglects global features. Therefore, we 
hypothesized that an effective strategy may be to start with the globally trained UniRep and then fine-tune it to 
the evolutionary context of the task (Fig. 4a). To perform ​evo ​lutionary fine-​tuning​ (which we call “evotuning”), 
we ran ~13k unsupervised weight updates of the UniRep mLSTM (Evotuned UniRep) performing the same 
next-character prediction task on a set of ~25k likely evolutionarily related sequences obtained via 
JackHMMER search (Methods). We compared this to the untuned, global UniRep as well as a randomly 
initialized UniRep architecture trained only on local evolutionary data (Evotuned Random; Fig. 4a, Methods).  
 
Using these trained unsupervised models we generated representations for the avGFP variant sequences from 
Sarkisyan ​et al.​ (2016)​37​ and trained simple sparse linear regression top models on each to predict avGFP 
brightness. We then predicted the brightness of 27 functional homologs and engineered variants of avGFP 
sourced from the FPbase database​39​ using each of the models. The sequences in this generalization set were 2 to 
19 mutations removed from avGFP, and were not present in the set of sequences used for evotuning.  
 
All three representation-based models correctly predicted most of the sequences in the generalization set to be 
bright (Fig. 4b), with the Evotuned UniRep based model having the best classification accuracy (26/27 correctly 
classified). As a control, we predicted the brightness of 64,800 variants, each of which harbored 1-12 mutations 
relative to a generalization set member. We assumed variants with 6-12 mutations were non-functional based on 
empirical observation of the avGFP fitness landscape​37​. Indeed, variants with 6-12 mutations were predicted to 
be non-functional on average, confirming that these representation + avGFP top models were both sensitive and 
specific even on a distant test set (Fig. 4b). Figure 4c further illustrates that, on average, the representation + 
avGFP top models predicted decreasing brightness under increasing mutational burden. In particular, the 
Evotuned UniRep-based predictions for generalization set members closely matched the empirical 
brightness-vs-mutation curve for that of avGFP​37​ (Pearson’s r=.98). These observations imply that each model 
predicts generalization set members sit at a local optima in the fitness landscape. Furthermore, Evotuned 
UniRep, unlike the Evotuned Random, predicted a non-linear decline in brightness indicative of predicted 
epistasis, which is consistent with previous theoretical and empirical work on epistasis in protein fitness 
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landscapes​37,40,41​. These data suggest that UniRep-based models generalize by building good approximations of 
the distant fitness landscape using local measurements alone. 
 
We confirmed these findings with additional analysis of generalization for distinct prediction tasks (Supp. Fig. 
10). We show that UniRep does not require evotuning to enable generalizable prediction of stability (Supp. Fig 
10c), even if forced to extrapolate from nearby proteins to more distant ones (Supp. Fig 10d). We also provide 
data from a variant effect prediction task, which enumerates the requirements -- such as standardized phenotype 
measurement -- of an appropriate generalization task for a sequence-only model like UniRep (Supp. Fig. 10b). 
 
To better understand how UniRep enables extrapolation, we visually examined the spatial pattern of training 
and test data in sequence space (Supp. Fig 10e), Doc2Vec space (Supp. Fig 10g), and UniRep space (Supp. Fig. 
10f,h).  Interestingly, despite not overlapping in sequence space, training and test points were co-localized in 
UniRep space suggesting that UniRep discovered commonalities between training and test proteins that 
effectively transformed the problem of extrapolation into one of interpolation, providing a plausible mechanism 
for our performance. 

Evotuning of UniRep increases efficiency and decreases cost in a fluorescent protein 
engineering problem 

 
We hypothesized that UniRep’s generalizable function prediction could enable the discovery of functional 
diversity and function optimization ​—​ the ultimate goals of any protein engineering effort. We constructed a 
sequence prioritization problem in which the representation + avGFP top models were tasked with prioritizing 
the 27 truly bright homologs from the generalization set over the 32,400 likely non-functional sequences 
containing 6-12 mutations relative to a member of the generalization set. We tested each model’s ability to 
prioritize the brightest GFP in the dataset under differently sized testing budgets, and its ability to recover all 
bright members with high purity. “Brightest sequence recovery” measures a model’s utility for function 
optimization. “Bright diversity recovery,” as measured by statistical recall, measures the ability of each model 
to capture functional diversity, which could represent engineering endpoints or substrates for directed evolution. 
As a lower-bound model, we defined a null model that orders sequences randomly, and as a upper-bound 
model, we defined an ideal model that prioritizes sequences perfectly according to ground truth. As a baseline, 
we trained avGFP top models on Doc2Vec representations​21​ (Methods). 
 
Figures 4d,e illustrate each representation + avGFP top model performance in terms of recall and prioritization 
of sequences by brightness. All models outperformed the null model in terms of recall and brightest sequence 
recovery. While the best performing Doc2Vec baseline outperformed untuned UniRep in both tasks, the various 
Doc2Vec baselines were unreliable in performance (Supp. Fig. 11) in a manner that was not explainable by 
their expressivity, architecture, or training paradigm. Evotuned UniRep demonstrated superior performance in 
both the function diversity and function optimization tasks, having near ideal recall for small (<30 sequence) 
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testing budgets and quickly recovering the brightest sequence in the generalization set of >33,000 sequences 
with fewer than 100 sequences tested (Fig. 4d, red). The global information captured by UniRep was critical for 
this gain as evotuning from a random initialization of the same architecture yielded inferior performance (Fig. 
4d, yellow). More concretely, for small plate-scale testing budgets of 10-96 sequences, Evotuned Unirep 
achieved a ~3-5x improvement in recall and a ~1.2-2.2x improvement in maximum brightness captured over the 
best Doc2Vec baseline at the same budget. Conditioning on a desired performance level, Evotuned UniRep 
achieved 80% recall within the first ~60 sequences tested, which would cost approximately $3,000 to 
synthesize.  By contrast, the next best approach examined here would be 100x more expensive (Supp. Fig. 12). 
 
 

Figure 4. ​ UniRep, fine-tuned to a local evolutionary context, facilitates protein engineering by enabling generalization to distant 

peaks in the sequence landscape. ​a.​ We hypothesize UniRep trades-off nuance for universality in a theoretical protein engineering 
task.  By unsupervised training on a subspace of sequences related to the engineering target -- “evotuning” -- UniRep representations 
are honed to the task at hand. ​b.​ Predicted brightness of 27 homologs and engineered variants of avGFP under various representations 
+ sparse linear regression models trained only on local avGFP data. Box and whisker plots indicate predicted distribution of dark 
negative controls. Green region above dotted line is predicted bright, below is predicted dark. On the left in gray is the training 
distribution from local mutants of avGFP.  ​c.​ Predicted brightness-vs-mutation curves for each of the 27 avGFP homologs and 
engineered variants (the generalization set). Each grey line depicts the average predicted brightness of one of the 27 generalization set 
members as an increasing number of random mutations is introduced. Red line shows the average empirical brightness-vs-mutation 
curve for avGFP ​37​. ​d.​ Recall vs. sequence testing budget curves for each representation + sparse linear regression top model (bottom). 
Efficiency gain over random sampling (top) depicted as the ratio of a method’s recall divided by the recall of the null model as a 
function of testing budget. ​e.​ Maximum brightness observed vs. sequence testing budget curves for each representation + sparse linear 
regression top model (bottom). Efficiency gain over random sampling analogously defined for recall but instead with normalized 
maximum brightness (top).  
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Discussion 

In this work we used abundant unlabeled protein sequence data to learn a broadly applicable statistical vector 
representation of proteins. This representation enabled near state-of-the-art or superior performance on more 
than 20 stability and function prediction tasks (Supp. Table 6) that reflect the challenges faced by protein 
engineers. Importantly, these results (Fig. 3, Supp. Table 4-5) were obtained using the same set of 
UniRep-parameterized features, which were superior to a suite of non-trivial baseline representations. Given 
additionally the simplicity of the top-models used and the compactness of UniRep (Supp. Fig. 9), this provides 
strong, albeit indirect, evidence that UniRep must approximate fundamental protein features that underpin 
stability and a broad array of protein-specific functions.  
 
A more direct interrogation of UniRep features at the amino acid to whole proteome level revealed that these 
features at least embody a subset of known characteristics of proteins (Fig. 2); however, we note the possibility 
of UniRep representing more. Because UniRep is learned from raw data, it is unconstrained by existing mental 
models for understanding proteins, and may therefore approximate currently unknown engineering-relevant 
features. Taken together, these results suggest UniRep is likely to be a rich and robust basis for protein 
engineering prediction tasks beyond those examined here.  
 
Remarkably, UniRep achieves these results from “scratch”, using only raw sequences as training information. 
This is done without experimentally determining, or computationally folding, a structural intermediate - a 
necessary input for alternative methods​6,42​. By enabling rapid generalization to distant, unseen regions of the 
fitness landscape, UniRep may improve protein engineering workflows, or in the best case, enable the discovery 
of sequence variants inaccessible to purely experimental or structural approaches. Although the utility of the 
representation is limited by sampling biases in the sequence data​43,44​ length of training, the size​45​ and coverage​43 
of sequence databases as well as deep-learning specific computational hardware ​46​ are improving exponentially. 
Coupled with the continued proliferation of cheap DNA synthesis/ assembly technologies​47​, and methods for 
digitized and multiplexed phenotyping, UniRep-guided protein design promises to accelerate the pace with 
which we can build biosensors ​13​, protein​48​ and DNA binders ​49​, and genome editing enzymes ​50​. 
 
Finally, there are many exciting, natural extensions of UniRep. It can already be used generatively (Supp. Fig. 
13), evoking deep protein design, similar to previous work with small molecules​51​. Beyond engineering, our 
results (Fig. 2b-e, Supp. Fig. 2) suggest UniRep distance might facilitate vector-parallelized semantic protein 
comparisons at any evolutionary depth. Among many straightforward data augmentations (Supp. Table. 7), 
UniRep might advance ab-initio structure prediction by incorporating untapped sequence information with the 
RGN ​52​ via joint training​52​. Most importantly, UniRep provides a new perspective on these and other established 
problems. By learning a new basis directly from ground-truth sequences, UniRep challenges protein informatics 
to go directly from sequence to design.  
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Materials and Methods 
 
Training the UniRep representations 
 
Unsupervised training dataset:​ We expected that public protein databases, unlike many Natural Language 
datasets, would contain a) random deleterious mutations yet to be eliminated by selection, and b) hard-to-catch 
sequencing/assembly mistakes, both leading to increased noise.  Therefore, we chose UniRef50​22​ as a training 
dataset. It is “dehomologized” such that any two sequences have at most 50% identity with each other. By 
selecting the single highest quality sequence for each cluster of homologs​22​, we hypothesized UniRef50 would 
be less noisy. It contains ~27 million protein sequences. We removed proteins longer than 2000 amino acids 
and records containing non-canonical amino acid symbols (X, B, Z, J), randomly selected test and validation 
subsets for monitoring training (1% of the overall dataset each) and used the rest of the data (~24 million 
sequences) in training. 
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Models and training details:​ We approached representation learning for proteins via Recurrent Neural 
Networks (RNNs). Unlike other approaches to representing proteins, namely as one-hot-encoded matrices as in 
Biswas et. al 2018 ​3​, RNNs produce fixed-length representations for arbitrary-length proteins by extracting the 
hidden state passed forward along a sequence. While padding to the maximum sequence length can in principle 
mitigate the problem of variable length sequences in a one hot encoding, it is ad-hoc, can add artifacts to 
training, wastes computation processing padding characters, and provides no additional information to a top 
model besides the naive sequence. Furthermore, even very large representations, like the 1900 dimensional 
UniRep, are more compact than average protein length 1-hot encodings (Supp. Fig. 9), reducing the potential 
for overfitting. While Doc2Vec methods produce fixed-length vectors, they have been empirically outperformed 
by more expressive architectures like RNNs in recent work on representation learning in natural language ​23​.  
 
We considered the mLSTM​53​, LSTM​54​, and Gated Recurrent Unit (GRU) ​55​ for candidate RNN representation 
learners. After manual explorations comparing these classes, and considering previous work demonstrating the 
success of the mLSTM for a similar task in natural language​23​, we decided to use the mLSTM. Specifically, the 
architectures selected for large-scale training runs were a 1900-dimensional single layer multiplicative LSTM​53 
( ~18.2 million parameters) as described elsewhere​23​, a 4-layer stacked mLSTM of 256 dimensions per layer 
(~1.8 million parameters), and a 4-layer stacked mLSTM with 64 dimensions per layer (~.15 million 
parameters), all regularized with weight normalization​56​. As a matter of definition, we note that because all of 
these networks are recurrent, even the single hidden layer mLSTM-1900 is considered “deep” because the 
network is unrolled in the timestep dimension as a composition of hidden layers through time.  
 
We followed a heuristic that assumes, for large data sets like ours, more expressive models will learn richer 
representations. Thus, we selected 1900 dimensions in the large single-layer mLSTM because it was 
approximately the largest dimensionality that could fit in GPU memory after some experimentation.  We tried 
smaller widths (the 256 and 64 dimensions) in case the large number of latent dimensions in the 1900-unit 
mLSTM led to overfitting on prediction tasks. Our comparison with the mLSTM-1900 suggested this was 
almost never the case (Supp. Data 3).  
 
Sequences of amino acids were one-hot encoded and passed through a 10 dimensional amino-acid character 
embedding before being input to the mLSTM layer. For the smaller stacked networks, both standard recurrent 
and residual recurrent connections, in which the hidden states of each layer are summed, were evaluated. For 
these stacked networks, dropout probability was selected from {0, .5}. Hyperparameters were tuned manually 
on a small number of weight updates and final parameters were selected based on the rate and stability of 
generalization loss decrease. We found that dropout and residual connections both increased validation set error. 
We hypothesized that residual connections, which should improve gradient flow to earlier layers, were not 
advantageous here given the small number of layers tested. We further hypothesized that these networks did not 
require dropout or other regularization outside of weight normalization because of the high ratio of observations 
to model parameters. 
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All models were trained with the Adam optimizer using truncated-backpropagation through time with initial 
states initialized to zero at the beginning of sequences and persistent across updates to simulate full 
backpropagation as described previously​23​. Batch sizes and truncation windows were selected to fit into GPU 
memory and were, respectively, 256 and 128 (mLSTM-1900), 512 and 384 (4x-mLSTM-256), 1028 and 384 
(4x-mLSTM-64). Training was performed using data parallelism on 4 Nvidia K-80 GPUs (mLSTM-1900) or 2 
Nvidia K-40s (4x-mLSTM-256, 4x-mLSTM-64). The mLSTM-1900 model was trained for ~770K weight 
updates, or ~3.5 weeks wall clock time, corresponding to ~1 epoch. The 4x-mLSTM-256 and  4x-mLSTM-64 
were trained for ~90K weight updates, ~2 days wall clock time, ~3 epochs and 220k weight updates, ~2 days 
wall clock time, 14 epochs, respectively. 
 
Computing vector representations 
 
The mLSTM architecture has two internal states that encode information about the sequence it is processing, the 
hidden state and the cell state​53​. One hidden state and one cell state are produced for every amino acid in a 
forward pass over a sequence. Previous work in Natural Language has used the final hidden state 
(corresponding to the residue at the C terminus in our case) as the sequence representation​23​.  
 
Compared to natural language, we hypothesized that the complexity of protein folding would generate more 
long-range and higher-order dependencies between amino acids. Therefore, we elected to construct the UniRep 
representation as the ​average ​ of the 1900-unit model’s hidden states, integrating information across distant 
amino-acids. We hoped this would better represent long-term dependencies critical to protein function 
prediction. 
 
For convenience we named this vector representation -- the Average Hidden state of mLSTM-1900 -- simply 
“UniRep” everywhere in the main text. 
 
We compared the performance of UniRep as defined above with other possibilities for the representation state. 
We extracted final hidden state produced by the model when predicting the last amino acid in a protein 
sequence (Final Hidden) and the last internal cell state (Final Cell).  
 
Curious whether these vectors contained complementary information, we also constructed a concatenation of all 
3 representation possibilities (Average Hidden, Final Hidden and Final Cell) from the 1900-unit mLSTM. For 
convenience, we named this 1900 x 3 dimensional representation “UniRep Fusion” everywhere in the main text. 
We built various other concatenations of these representations (Supp. Table 3), denoted as “Fusions”, to be 
evaluated in supervised stability and quantitative function prediction. 
 
We consider UniRep to be the most information-dense representation evaluated here, while UniRep Fusion is 
the most complete. UniRep, by virtue of its smaller dimensionality, should be deployed where computational 
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resources are constrained. We present UniRep Fusion only for supervised prediction tasks (of protein stability, 
biophysical characteristics and function).  
 
For completeness we evaluated the influence of network size in representation performance. There is evidence 
that larger neural networks learn better representations​23​. When we compared UniRep, UniRep Fusion and the 
other 1900-unit representations defined above to identical representations extracted from 64 and 256-unit 
models with an identical architecture (training described above, Supp. Table 3) our results agree with this 
pattern except with very small datasets, which are more variable as expected (Supp. Data 1,3).  
 
Supervised model benchmarking 
 
Sourcing and processing analysis datasets: ​All the datasets (Supp. Table 6) were obtained from the 
supplemental information of corresponding publications. Sequence, function pairs were deduplicated, validated 
to exclude records containing non-standard amino acid symbols, and split randomly into 80-10-10 train - 
validation - test sets as described below. Size is reported after cleaning. When protein sequences could not be 
found in the published data, they were retrieved from UniProt by whatever sequence identifiers were available, 
using UniProt ID mapping utility (​https://www.uniprot.org/help/uploadlists​). After this, the same split and top 
model training analysis was done with all datasets, as described below. 
 
Inference of RGN representations on a small number (on the order of 10s) of sequences could not be completed 
due to challenges constructing PSSMs using the JackHMMER program (the multiple sequence alignments were 
so large they would not fit in available memory). To obtain comparable scores between the performance of 
RGN and other representations, we dropped these sequences from the datasets used for training and evaluation. 
 
Train-Validation-Test Split: ​For most supervised tasks no test set was provided, so we made a 80%-10%-10% 
Train-Validation-Test split in python using the numpy package and a fixed random seed. The validation set was 
never used for training so that it could be used to estimate generalization performance while we were 
conducting experiments and building models. In order to obtain a final, truly held-out, measure of 
generalization performance we did not look at the test set until all models were finalized and a submission ready 
version of this manuscript was prepared.  
 
Baselines representations - RGN: ​We used the Recurrent Geometric Network (RGN) model trained on the 
ProteinNet12 dataset​57​ and assessed on CASP12 structures in AlQuraishi (2018)​16​. The model was used as is 
without additional training or fine-tuning. Instead of using the predicted structures of the RGN, we extracted the 
internal state learned by the model for each sequence + PSSM combination (3200 dimensions corresponding to 
the last outputs of two bidirectional LSTMs, each comprised of 800 units per direction). PSSMs were generated 
in a manner identical to that used for generating ProteinNet12 PSSMs​57​. 
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Baseline representations - Doc-2-Vec: ​We used the 4 best performing models as chosen for presentation by 
the authors of Yang ​et al. ​(2018)​21​. These are (using the original names): original with k=3 w=7, scrambled with 
k=3 w=5, random with k=3 w=7, and uniform k=4 w=1. We downloaded the trained models from 
http://cheme.caltech.edu/~kkyang/models/​ and performed inference on all of the sequences in our datasets, 
adapting as much as possible the code used by the authors found at 
https://github.com/fhalab/embeddings_reproduction​. 
 
Baseline representations - N-gram, length, and basic biophysical: ​We utilized 6 baseline representations - 
they constitute 3 distinct approaches to constructing a general scalable protein vector representations without 
using deep learning techniques: 

- Amino-acid frequencies in the protein and protein length normalized to average protein length in the 
unsupervised training data 

- Amino-acid frequencies in the protein concatenated with predicted biophysical parameters of the 
protein: molecular weight, instability index, isoelectric point, secondary structure fraction. The 
annotation/prediction for biophysical parameters was done with biopython package version 1.72 
(​https://biopython.org/​) 

- Two n-gram representations with n=2 and n=3 (with scikit-learn 0.19.2 
http://scikit-learn.org/stable/index.html​). 

- Two n-gram representations with n=2 and n=3 with Term Frequency - Inverse Document Frequency 
(TF-IDF) weighting intended to emphasize the n-grams unique to particular proteins​58 

See Supp. Table 8 for an exhaustive list of all the baseline variants used. 
 
Stability Ranking Task: ​To further benchmark our performance compared to typical protein engineering tools, 
we obtained the published Rosetta total energy estimates with the “beta_nov15” version of the energy 
function​59,60​ and exposed nonpolar surface area of the designed structure for the stability prediction for ​de novo 
designed mini proteins dataset​5​. The Rosetta calculations were not performed in​5​ for the control proteins in this 
dataset, so the scores were available for ​1432 out of 5570 test set proteins and 1416 out of 5571 validation set 
proteins​ in our splits. Because these Rosetta Total Energy estimates do not directly correspond to measured 
stability values (e.g. lower energy is higher stability as defined), we used Spearman Rank Order Correlation 
coefficient, comparing our model predictions and the alternative scores’ ability to reconstitute correct stability 
ranking of the sequences in the dataset. 
 
Regression analysis with Lasso LARS: ​We utilized a simple sparsifying linear model with ​L1​ prior using the 
Least Angle Regression (LARS) algorithm (implementation from the scikit-learn package 0.19.2 
http://scikit-learn.org/stable/index.html). The value of regularization parameter ​alpha for the model for each 
representation on each task was selected through 10-fold random cross-validation on the training data.  
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We obtained an estimate of the standard deviation of the resulting validation/test metrics by resampling 50% of 
the validation/test set 30 times and computing an empirical standard deviation of the obtained metrics, and used 
Welch’s t-test for comparisons. 
 
We were unable to compare to the published state of the art on the 9 DMS function prediction datasets from 
Gray ​et al. ​(2017) ​35​. The exploratory nature of the authors’ analysis of these datasets for in-domain prediction 
led them to use their test set during hyperparameter selection, making their results incomparable with the best 
machine learning practices we followed here. This is in contrast to out-of-domain/transfer performance, which 
was the main objective of the Gray et al’s (2017) analysis. Unlike in-domain prediction, Gray et al (2017) 
followed best practices for leave one protein out (LOPO) transfer analysis (see below).  
 
Supplemental generalization analysis 
 
Leave-one-protein-out transfer: ​We evaluated generalization (transfer) learning performance using the 
standard procedure based on previous foundational work, Glorot ​et al. ​(2011)​61​. This particular analysis was 
done for the quantitative function prediction (including data for 8 different proteins) and for 17 protein DMS 
stability prediction datasets. 
 
Briefly, e(S, T) - the​ transfer error​ - is defined as the test/validation error achieved by a model trained on the 
source domain S and evaluated on the target domain T. e(T, T) is similarly defined and is called the​ in-domain 
error​. 
 
In the case of quantitative function prediction and stability prediction (natural and ​de novo ​), we used 
leave-one-protein out approach, constructing a Source/Target split for each protein in the dataset with that 
protein as the Target and the rest of the proteins as the Source. ​We used the same linear model we used in 
in-distribution regression analysis (L1 prior, LARS algorithm). The value of regularization parameter​ alpha was 
in turn obtained through leave-one-protein-out cross-validation on the training data separately for each split. 
 
To control for the differences in difficulty between various splits, we also evaluated the ​baseline in-domain 
error​ - eb(T, T) - the error achieved by a baseline representation when trained and evaluated on the Target 
domain. We used amino acid frequency and protein length as our baseline representation, and computed eb(T, 
T) for each of the target domains defined above. 
 
Transfer ratio is the ratio of transfer error to baseline in-domain error e(S, T)/eb(T, T). We use the average of 
transfer ratios over all Source/Target splits for a given representation to characterize transfer performance on 
the given dataset. We also look at the in-domain ratio e(T, T)/eb(T, T), which reflects the in-distribution 
performance in comparable terms to the transfer ratio. 
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We obtained an estimate of the standard deviation of the resulting validation/test metrics by computing an 
empirical standard deviation of metrics across all the different hold-one-out splits. 
 
In the case of ​17 DMS stability datasets (Supp. Table 6), we also constructed an additional extrapolation 
Source/Target split - from central to remote proteins (Supp. Fig. 10d) as follows. We computed a string median 
of initial sequences of 17 proteins in these datasets, and selected the 4 proteins with the largest edit distance 
from the median. We then computed a multidimensional scaling (MDS) 2D plot of the Levenshtein distance 
matrix of the 17 initial proteins, and selected 4 most peripheral proteins along each axis of the plot (Supp. Fig. 
10e). Together, the DMS datasets for these 8 proteins constituted the Target dataset (also known as test set 
shown in Red on Supp. Fig. 10e) to evaluate our generalization/transfer performance. The other 9 datasets 
served as the Source dataset to be trained on. Once the Source/Target split was defined, the transfer analysis 
was performed similarly to the above except that we did not average any transfer metrics (because in this case 
there is only a single Source and Target). 
 
Supervised remote homology detection 
 
Datasets - Håndstad fold and superfamily: ​We used two standard benchmarks based on the SCOP database 
from Håndstad et al.​62​: the superfamily-level remote homology detection and the harder fold-level similarity 
detection.  
 
Briefly, the superfamily benchmark sets up a binary classification problem for each of the superfamilies in the 
dataset: a single family in the superfamily presenting a positive test set, the other families in that superfamily 
serving as the positive training set, a negative test set comprising one random family from each of the other 
superfamilies, and the negative training set combining the rest of the families in these superfamilies. 
 
The fold-level benchmark is analogous at the fold level, setting up a classification problem for each of the folds 
in the dataset: one superfamily in the fold is used as positive test set, the others in that fold serving as the 
positive training set, a single random superfamily from every other fold comprising a negative test set, and 
taking the remaining sequences as the negative training set. 
 
This structured training/ test set could not be straightforwardly subsampled, so to protect against overfitting we 
instead held out training and evaluation on the entire fold-level dataset until the model was trained and our 
Bayesian hyperparameter tuning procedure finalized on the superfamily-level benchmark dataset. Because these 
are standard benchmarking datasets and the task was computationally expensive, we choose to evaluate only 
UniRep performance. Many of the more recent published methods for remote homology detection ​63,64​ use 
PSSMs as a source of evolutionary information, which we excluded for equal comparison to UniRep, which 
was trained on strictly dehomologized sequences and had no access to local evolutionary information like a 
PSSM. 
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Binary classification with Random Forests: ​For supervised remote homology benchmarks we used Random 
Forest implementation from the same scikit-learn package with 1000 estimators and a “balanced” class weight. 
For each of the binary classification tasks in each benchmark, we conducted a Bayesian hyperparameter 
optimization as implemented in the skopt package (​https://scikit-optimize.github.io/​), picking the following 
hyperparameters: maximum proportion of features to look at while searching for the best split (between 0.5 and 
1), function to measure the quality of a split (Gini impurity or information gain), the minimum number of 
samples required to be at a leaf node (between 0.1 and 0.3), and the minimum number of samples required to 
split an internal node (between 0.01 and 1) with 75 iterations of optimization, 3-fold cross-validation on the 
training data and ROC score as the scoring metric. 
 
To make our model comparable with the scores of previously developed remote homology detection models in 
the literature, we used two standard metrics - ROC score (normalized area under the receiver operating 
characteristic curve) and ROC50 (ROC score at the point where the first 50 false positives occur). 
 
Two out of one hundred and two superfamilies, identified in the data through the name of the family presenting 
the positive test set - c.2.1.3 and c.3.1.2, and one out of eighty six folds, identified in the data by the name of the 
superfamily representing the positive test set - c.23.12, were excluded from the consideration due to our failure 
to obtain a coherent positive/negative train/test split from the published data source​64​. 
 
Unsupervised clustering of distant but functionally related proteins 
 
Agglomerative clustering of representations and hierarchical clustering confirmation: ​We used basic 
agglomerative clustering (implemented in python with sklearn​65​) with the average linkage metric and Euclidean 
distance for all vector representations, and a precomputed Levenshtein distance matrix using the 
python-Levenshtein package for the sequence-only control. 
 
To confirm our cluster assignments, we picked a small set of 3 Cytochrome Oxidase (1,2,3) families from 
OXBench, 8 proteins total. We used the fastcluster package to produce a linkage matrix with average linkage 
and Euclidean distance (for UniRep) and average linkage and Levenshtein distance, implemented in 
python-Levenshtein, for the sequence-based control. We visualized the resulting dendrograms using the scipy​66 
package. 
 
Goodness of clustering metrics: ​We selected three standard clustering metrics to evaluate the quality of 
inferred cluster identities compared to the true family classification given by the expert-annotated labels. The 
metrics we selected were required to be bounded between 0 and 1, to be invariant to the number of families and 
clusters present in the data, and to be symmetric. We therefore selected Adjusted Mutual Information, Adjusted 
Rand Index, and Fowlkes Mallows Score for these properties. The definition, usage, and properties of these 
metrics are described elsewhere​67​. 
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Fine-tuning to generalize GFP function prediction for protein engineering 
 
Collecting fluorescent protein homologs with EBI JackHMMer: ​We sourced Fluorescent Protein sequences 
from the literature and public databases (Interpro IPR011584, IPR009017; PFAM:PF01353,PF07474 and​68,69​). 
We were left with 1135 sequences total after cleaning sequences longer than 1000 AAs or containing invalid 
letters. We the used the python-Levenshtein package to compute distances from sfGFP. Looking to source 
sequences of varying dissimilarities from sfGFP, we sampled <100 sequence proximity-ordered subsets, first 
selecting the most distant subset with probability proportional to the distance from sfGFP, and then continuing 
iteratively until the most similar set was apportioned (this subset contained less than 100 sequences unlike the 
rest). We then used the EBI JackHMMer web server​70​ to batch search each subset, with no more than 20 
iterations. Search was stopped after more than 100,000 sequences were discovered or the search converged. We 
expected this batched approach to generate unique hits within each subset, but we found that after cleaning to 
remove long (>500 AAs) or invalid seqs, and dropping duplicates with preference to the subset nearest sfGFP, 
almost all the sequences were discovered by the most nearby subset search. We continued with these 32,225 
sequences. 
 
With the goal of establishing a validation set which was measuring something closer to extrapolation, we took 
these sequences and recomputed distance with sfGFP. We selected a distance-biased 10% “out of domain” 
validation set by sampling with probability proportional to the 4th power of the distance (strongly weighting 
distant examples). We also selected a 10% “in-domain” validation set uniformly randomly from the remaining 
sequences. This left 25,781 training sequences. 
 
Model finetuning with extant GFP sequences: ​We loaded the weights learned by UniRep in the exact same 
architecture as before, but replacing the final layer, which previously predicted the next character, with a 
randomly initialized feed-forward layer with a single output and no non-linearity. As a control, we initialized 
the same randomly. We trained both models with exactly the same procedure: low learning rate (.00001), 128 
batch size, and only partially feeding forward along the sequence, stopping prediction after 280 amino acids, 
with full back propagation rather than truncated as during the UniRef50 training process. This was determined 
by the computational constraint to fit the unrolled recurrent computational graph into GPU memory; however, 
we expected this was sufficiently long to capture the context of GFP because the vast majority of 
well-characterized fluorescent proteins are shorter than 280 AA. Both models trained for ~13,000 weight 
updates, corresponding to ~65 epochs, and ~1.5 days wall clock time on 1 Nvidia Volta GPU. Stopping was 
determined by computational constraints, not overfitting as measured by increasing validation set loss, which 
never occurred. 
 
Training LASSO regression on representation featurized sequences from the fitness landscape of avGFP: 
Sequences from Sarkisyan et. al (2016)​37​ were featurized using a given representation (e.g. UniRep). A sparse 
LASSO linear regression model was trained using this representation as input. A range of 20 L1 penalties, 
log-spaced over 6 orders of magnitude, was scanned using 10-fold cross validation. The selected level of 

27 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/589333doi: bioRxiv preprint 

https://paperpile.com/c/zxmNOg/aax3+HgDu
https://paperpile.com/c/zxmNOg/GBZO
https://paperpile.com/c/zxmNOg/jekl
https://doi.org/10.1101/589333
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

regularization was set to be the strongest (most regularizing) penalty that had statistically equal out-of-sample 
error to the penalty with lowest out-of-sample error across the 10 folds. 
 
Baseline selection for retrospective fluorescent protein sequence discovery task: ​Doc2Vec is a standard tool 
for numerically representing text documents in natural language processing. Yang ​et al. ​(2018) use this simple 
approach to represent protein sequences​21​ and achieve​ ​good supervised function prediction performance with 
simple models based on their representation. ​We also found these Doc2Vec representations to be especially 
appropriate baselines as they were originally validated, in part, by reaching state-of-the-art performance on a 
rhodopsin absorption wavelength prediction task, which bears similarity to fluorescent prediction task at hand.  
 
We did not consider Rosetta an appropriate baseline here for three reasons: 1) Rosetta provides measures of 
stability, which does not completely define function, 2) the computational requirements to mutate and relax a 
reference structure for >32,000 sequences, let alone de novo fold, are impractical, and 3) in general, we would 
not expect to have structures for sequences we have yet to discover, meaning we would need to rely on the 
distant avGFP as a template. 
 
We additionally could not apply simple linear regression or Naive Bayes approaches here as those methods 
require fixed length inputs whereas the protein length sequences examined here were variable length. 
 
Processing well-characterized GFP sequences from FPBase: ​A raw collection of 452 fluorescent proteins 
was sourced from FPbase.org ​39​ (Collection “FP database” available at ​https://www.fpbase.org/collection/13/​ as 
of Nov 2, 2018). This was then filtered as follows: 

1) Sequences shorter than 200 amino acids or longer than 280 amino acids were removed. 
2) Remaining sequences were then multiply aligned using ClustalW (gap open penalty=10, gap extension 

penalty=0.1) ​71​. BLOSUM62 was used as the scoring matrix. 
3) Using these aligned sequences, we computed their pairwise minimum edit distance (insertions/deletions 

counting as one edit). Sequences that were more than 50 mutations away from their nearest neighbor 
were removed. These were enriched for circularly permuted FPs and tandem FPs. 

4) Remaining  that had an average edit distance >180 mutations ( length of avGFP = 238) to all other 
sequences were also removed. 

5) Where possible, His tags and likely linker sequences were manually removed, and start Methionine 
amino acids were added to all sequences that did not have one. 

6) At this point, the major phylogenetic clusters of Anthozoan (corals/anemones) and Hydrozoan 
(Jellyfish) FPs remained including engineered variants. Note that hydrozoan and anthozoans are almost 
entirely different, often sharing as little as 30% sequence similarity. The hydrozoan clade was almost 
entirely composed of FPs found in ​Aequorea victoria ​or engineered versions thereof. The set of 
sequences for the retrospective sequence discovery analysis was therefore set to be all natural or 
engineered green (emission wavelength between 492 nm and 577 nm) fluorescent proteins of ​Aequorean 
descent. 
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This set of sequences included well known engineered variants of avGFP including EGFP, mVenus, superfolder 
GFP, mCitrine, and Clover. 
 
Exploratory analysis and data visualization 
 
PCA of amino acid embeddings: ​We extracted embedding vectors for each amino acid from the trained 
UniRep model. We performed PCA as implemented in the sklearn library and used the three first principal 
components for the visualization. 
 
t-SNE of organism proteomes: ​We obtained 53 reference proteomes (Supp. Table 1) of model organisms from 
UniProt Reference Proteomes. We used the UniRep trained model to obtain representations for each of the 
proteins in each proteome. We then averaged all the proteins in each proteome to obtain the representation for 
the “average protein” for each of the organisms. We used t-SNE​24​ - a common technique for visualizing 
high-dimensional datasets (as implemented in the sklearn library, with perplexity=12) to obtain a 2D projection. 
 
PCA of conserved protein organism relationships: ​To allow embedding of new points into the projected 
space, we computed a PCA using a subset of better characterized reference proteomes (as labelled in Supp. Fig. 
S2). We manually sourced 5 conserved sets of proteins from Humans, S. cerevisiae, and D. rerio using the 
OrthoDB ​72​ as well as manual inspection and UniProt characterization data. These proteins were: dihydrofolate 
reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), nucleotide excision repair protein (ERCC2), 
elongation factor (EFTU), Heat-Shock protein 70 (HSP701a). We projected the representations for each of these 
variants into the space given by the first two Principal Components from the model organism PCA and drew the 
vector from S. cerevisiae to Human, which we translated so the base sits on the S. cerevisiae variant for each 
protein. 
 
Correlation of representation with structural features: ​We computed the full sequence of hidden states at 
every position of 3720 single-domain proteins from the SCOP database ​29​ (for which we had secondary 
structure annotation for each of the positions obtained from PDB ​73​). We proceeded to calculate correlations 
between elements of these hidden sequences (neurons) and secondary structure. Neuron 341 was a strong helix 
and​ beta-sheet detector, obtaining 0.33 correlation with alpha-helicity and -0.35 correlation with beta-sheets.  
 
We then cut out all continuous helices and beta-sheets with surrounding context (including [30% * the length of 
the helix/sheet] context amino acids on each side) from the proteins in the database to look at the average 
activation of the neuron at each relative position in the helix/sheet, obtaining ~14000 alpha helices and 20,000 
beta-sheets. 
 
We then similarly computed all hidden states for 1,500 randomly sampled proteins with available structures 
from the Protein Data Bank (PDB). We attempted to compute DSSP ​74​ annotations for each structure, keeping 
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only those sequences and corresponding structures such that the DSSP calculation executed without error and 
DSSP secondary structure amino acid indices lined up with the primary amino acid indices. These calculations 
succeeded for 448/1,500 structures. After exploratory correlational analysis of various structural features, we 
decided to focus on solvent accessibility. Without explicit regularization on the hidden state of the LSTM, we 
felt it was likely that the representation was entangled, with multiple neurons possibly encoding the same 
biophysically relevant features. We therefore also learned, in a supervised manner, simple and sparse linear 
combination of neurons that were predictive of solvent accessibility. To train this model we used a position by 
hidden-sequence dimension matrix as the feature matrix, and solvent accessibility as a response. These were 
both input to LASSO and the strength of L1 regularization was selected using 10 fold cross validation. 
 
 
Single neuron activations or linear combinations thereof were visualized on protein structures using the 
NGLview Python package​75​.  
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Supplemental Figure 6.​ Learned from a collection of PDB secondary structures, a linear combination of 
hidden state neurons identifies solvent accessible regions in the structure of Bovine Rhodopsin GPCR 
(PDB:1F88, left) oriented with the extracellular domain upwards (Methods).  
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Supplementary Materials: 

 
Supplemental Figure 1. ​Growth in sequence databases. 
 
 

Organism Short Name  Domain  Specific Name 

Halobacterium salinarum  Archaea  Archaea 

Haloferax volcanii  Archaea  Archaea 

Methanococcus maripaludis  Archaea  Archaea 

Methanosarcina acetivorans  Archaea  Archaea 

Sulfolobus solfataricus  Archaea  Archaea 

Thermococcus kodakarensis  Archaea  Archaea 

Escherichia coli ​ (K12)  Bacteria  Bacteria 

Aliivibrio fischeri  Bacteria  Bacteria 

32 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/589333doi: bioRxiv preprint 

https://doi.org/10.1101/589333
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Azotobacter vinelandii  Bacteria  Bacteria 

Bacillus subtilis ​ (168)  Bacteria  Bacteria 

Cyanothece​ (PCC7822)  Bacteria  Cyanobacteria 

Mycoplasma genitalium  Bacteria  Bacteria 

Mycobacterium tuberculosis  Bacteria  Bacteria 

Prochlorococcus marinus  Bacteria  Cyanobacteria 

Streptomyces coelicolor ​ (A32)  Bacteria  Bacteria 

Synechocysti ​s (PCC 6803 Kazusa)  Bacteria  Cyanobacteria 

Caenorhabditis elegans  Eukarya  Animalia 

Drosophila melanogaster​ (fruit fly)  Eukarya  Animalia 

Homo sapiens ​ (human)  Eukarya  Mammalia 

Mus musculus ​ (mouse)  Eukarya  Mammalia 

Saccharomyces cerevisiae ​ (yeast)  Eukarya  Fungi 

Anolis carolinensis  Eukarya  Animalia 

Aspergillus nidulans  Eukarya  Fungi 

Arabidopsis thaliana  Eukarya  Plantae 

Cavia porcellus ​(guinea pig)  Eukarya  Mammalia 

Gallus gallus domesticus ​ (chicken)  Eukarya  Animalia 

Coprinopsis cinerea  Eukarya  Fungi 

Bos taurus ​ (cow)  Eukarya  Mammalia 

Chlamydomonas reinhardtii  Eukarya  Eukarya 

Cryptococcus neoformans  Eukarya  Fungi 

Canis familiaris ​(dog)  Eukarya  Mammalia 

Emiliania huxleyi  Eukarya  Eukarya 

Macaca mulatta ​ (macaque)  Eukarya  Mammalia 

Zea mays ​(corn)  Eukarya  Plantae 

Heterocephalus glaber​ (naked mole 
rat)  Eukarya  Mammalia 

Neurospora crassa  Eukarya  Fungi 

Oryzias latipes  Eukarya  Animalia 
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Physcomitrella patens  Eukarya  Plantae 

Columba liva​ (pigeon)  Eukarya  Animalia 

Sus scrofa ​ (pig)  Eukarya  Mammalia 

Pristionchus pacificus  Eukarya  Animalia 

Oryza sativa​ (Rice strain japonica)  Eukarya  Plantae 

Schizosaccharomyces pombe  Eukarya  Fungi 

Tetrahymena thermophila  Eukarya  Eukarya 

Thalassiosira pseudonana  Eukarya  Eukarya 

Ustilago maydis (corn smut)  Eukarya  Fungi 

Xenopus tropicalis  Eukarya  Animalia 

Danio rerio  Eukarya  Animalia 

Phage lambda  Virus  Virus 

SV40  Virus  Virus 

T4 phage  Virus  Virus 

T7 phage  Virus  Virus 

Vaccinia virus (Copenhagen)  Virus  Virus 

 
Supplemental Table 1. ​ Reference proteomes used in the organism analysis in Fig. 2b. Species name and 
common/ subspecies/ strain in parentheses. 
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Supplemental Figure 2.​ Single-protein vector arithmetic in UniRep representation space. We suspected our 
organism vector clustering success may be explained by learning a measure of proteome content (e.g. 
abundance of various protein types). Surprisingly, after sourcing 5 proteins conserved across 3 model 
organisms, we identify a common direction of variance, from Baker’s Yeast to Human in the PCA projection 
space, which corresponds to the vector from Yeast to Human proteome representations, suggesting that 
organisms may have an arithmetic relationship in the representation space similar to that observed in Word 
Vectors ​76​. Note that the direction of the vectors is invariant from the PCA in the upper right to the bottom 
left, but the length of the vector is meaningless in the bottom left. PC1 is the x-axis of both plots, PC2 is the y 
axis of both plots. 
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Supplemental Table 2. ​ Unirep achieves competitive results on homology detection as measured by ROC-AUC 
and ROC50-AUC (sorted by ROC score). UniRep with RandomForest top model with Bayesian 
Hyperparameter optimization (Methods)  achieves competitive performance with published sequence-only 
remote homology detection methods (Håndstad, 2007) on two most frequently used benchmark datasets.  
 

 
Supplemental Figure 3. ​Euclidean distance in UniRep space resolves protein clusters where generalized 
minimum edit distance fails.  A representative clustering of Cytochrome-oxidase family enzymes (COX) 1, 2, 
and 3 from HOMSTRAD (Fig. 3e) further illustrates this result by reconstructing the correct monophyletic 
grouping of the true labels, where a sequence distance-based clustering fails. 
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Supplemental Figure 4.​ OXBench unsupervised homology detection task, all results. 

 
Supplemental Figure 5.​ HOMSTRAD unsupervised homology detection task, all representations results. 
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Supplemental Figure 6.​ Learned from a collection of PDB secondary structures, a linear combination of 
hidden state neurons identifies solvent accessible regions in the structure of Bovine Rhodopsin GPCR 
(PDB:1F88, left) oriented with the extracellular domain upwards (Methods). Can predict solvent accessibility 
with a Pearson correlation of 0.38. 
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Supplemental Figure 7.​ Baseline representations. Representation learning inputs primary amino acid 
sequences and outputs fixed length vector representations. ​a. ​Schematic of representation learning in general. ​b. 
4 baseline methods illustrated: simply counting amino acid occurrences (upper left) and occurrences of k-mers 
(upper right), Doc2Vec embeddings learned by Feed-Forward prediction of a central k-mer given the external 
context k-mers (lower left) ​21​, Recurrent Geometric Network hidden state, learned by recurrent processing of 
input sequences to predict crystal structure (lower right) ​16​. 
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  Representations being concatenated 

UniRep State   

 

RGN 64-unit  256-unit  1900-unit  

Name  Avg. 

Hidden  

Final 

Hidden  

Final 

Cell  

Avg. 

Hidden  

Final 

Cell 

Avg. 

Hidden  

Final 

Hidden  

Final 

Cell  

UniRep 64-unit Fusion  x  x  x             

UniRep 256-unit Fusion        x  x         

UniRep Fusion            x  x  x   

UniRep 64, 256, 

1900-unit Avg. Hiddens 

x      x    x       

64, 256, 1900-unit Final 

Cells 

    x    x      x   

RGN + UniRep 

1900-unit Avg. Hiddens 

          x      x 

RGN + UniRep 

1900-unit Final Cells 

              x  x 

 
Supplemental Table 3. ​ Representation fusions (concatenations) analyzed. 
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Performance of representations on 15 prediction tasks (Mean Squared Error) & stability ranking task (Spearman 
Correlation)- test 

 
Cytochrome 

P450 

Thermostability 

Rhodopsin 

Peak 

Absorption 

Wavelength 

Epoxide 

Hydrolase 

Enantio 

selectivity 

Channel 

rhodopsin 

Membrane 

Localization 

TEM-1 Beta- 

lactamase 

Ubiquitin 

(E1 

Activity) 

Protein G 

(IgG 

domain) 

UniRep Fusion  15.8  499  189  1.25  0.0545***  0.0421***  0.0233*** 

Our Best Baseline  21.7  571  93.2  0.912  0.074  0.052  0.054 

RGN  24.4  >2000  >1000  1.61  0.0904  0.054  0.0977 

Best Doc2Vec  18.1  530  95.7  1  0.0881  0.0625  0.0724 

 

 

HSP90 

Amino 

glycosidase 

(Kka2) 

Pab1 

(RRM 

domain) 

PSD95 

(Pdz3 

domain) 

Ubiquitin 

Yap65 

(WW 

domain) 

Stability: 17 

DMS datasets 

combined 

Stability: ​De 

Novo​ Designed 

mini proteins 

Spearman 

Rank 

Correlation 

Stability: ​De 

Novo​ Design 

Rounds 

UniRep Fusion  0.0258***  0.11**  0.0265***  0.0208***  0.0323***  0.0415***  0.0304***  0.179***  𝞺​=0.59*** 

Our Best Baseline  0.0344  0.115  0.0435  0.041  0.0515  0.0662  0.0398  0.201  - 

RGN  0.0579  0.14  0.0596  0.0438  0.0601  0.0639  0.0338  0.189  - 

Best Doc2Vec  0.0579  0.132  0.0495  0.046  0.064  0.0772  0.0473  0.258  - 

 
             

Rosetta Total 

Energy 
𝞺​=0.42 

 
Supplemental Table 4. ​ Regression results - test set metrics, with lowest MSE model or model class compared 
to the 2nd lowest MSE model or model class *p < 0.05, **p < 0.01, ***p<0.001 (Welch’s t-test for 
significance), standard deviations obtained through 30x 50% validation/test set resampling. Validation set 
metrics can be found in Supp. Table 5. This table includes an extension of our analysis to 4 small datasets 
compiled previously for protein phenotype prediction using Doc2Vec representations (first 4 columns) ​21​. We 
observed widely variable results and statistically insignificant results (caused by underpowered validation and 
test set), with UniRep or one of the baselines we developed outperforming previous state-of-the-art ​21​ (here and 
in Supp. Table S5), which underscored the importance of adequate data size for accurate estimation of 
performance. 
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Performance of representations on 15 prediction tasks (Mean Squared Error) & stability ranking task (Spearman 
Correlation)- validation 

 

Cytochrome 

P450 

Thermostability 

Rhodopsin 

Peak 

Absorption 

Wavelength 

Epoxide 

Hydrolase 

Enantio 

selectivity 

Channel 

rhodopsin 

Membrane 

Localization 
TEM-1 Beta- 

lactamase 

Ubiquitin 

(E1 

Activity) 

Protein G 

(IgG 

domain) 

UniRep Fusion  8.3  130  444  1.47  0.0471***  0.0274***  0.0307** 

Our Best Baseline  8.27  79.4**  219***  1.4  0.0615  0.0365  0.0425 

RGN  10.3  428  496  1.35  0.0724  0.0351  0.0952 

Best Doc2Vec  8.68  97.9  320  1.4  0.08  0.0427  0.0629 

 

  HSP90 

Amino 

glycosidase 

(Kka2) 

Pab1 (RRM 

domain) 

PSD95 

(Pdz3 

domain)  Ubiquitin 

Yap65 

(WW 

domain) 

Stability: 17 

DMS Datasets 

Combined 

Stability: ​De Novo 

Designed Mini 

Proteins 

Ranking 

Stability: 

De Novo 

Design 

Rounds 

UniRep Fusion  0.0218***  0.116**  0.0234***  0.0183***  0.0521  0.0387  0.031***  0.185***  𝞺​=0.62*** 

Our Best 

Baseline  0.0415  0.125  0.0497  0.0342  0.0403***  0.033***  0.0425  0.208  - 

RGN  0.0541  0.129  0.0586  0.0488  0.0632  0.0504  0.0351  0.193  - 

Best Doc2Vec  0.0626  0.145  0.047  0.0465  0.0612  0.0408  0.0511  0.266  - 

               

Rosetta Total 

Energy  𝞺​=0.42 

 
Supplemental Table 5. ​ Regression results - validation set metrics, with lowest MSE model or model class 
compared to the 2nd lowest MSE model or model class *p < 0.05, **p < 0.01, ***p<0.001 (Welch’s t-test for 
significance), standard deviations obtained through 30x 50% validation/test set resampling. Test set metrics and 
explanation of the first 4 column tasks can be found in Supp. Table 4. 
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Supplemental Figure 8.​ Validation scores for main text Figure 3e, 17 DMS protein stability prediction 
datasets. 

 
Supplemental Figure 9. ​Linear model on top of UniRep is simpler (has fewer parameters) than the same model 
using a standard One-Hot-Encoding if the sequence is longer than 95aa.  
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Supplemental Figure 10. ​ Variant Effect and stability generalization tasks; hypothesized mechanism for 
transfer performance. We used a well-established generalization scoring methodology from work in machine 
learning​61​.  It quantifies the error of local, “In-Domain” predictions as well as generalization error, which they 
call “Transfer”, relative to a baseline (Methods); ​lower is better ​. Unless stated otherwise, we use the Leave One 
Protein Out (LOPO) procedure, withholding one protein from the set at a time, training a model on all but that 
one protein, evaluating it on the single withheld protein, and taking an average of these generalization errors 
(Methods) ​35​. ​a. ​Generalization is making accurate predictions on sequences that are distant from the training 
data. Here, the training data (blue), a distant reference sequence (grey) and the the test data (villin) are shown on 
the first Principle Coordinate of an MDS of the Levenshtein sequence distance. In sequence space, villin is far 
from the nearest training point, which makes generalization challenging. In UniRep space, shown here as the 
first Principal Component, the training and test data are rearranged so villin is much closer to the nearest 
training point, thereby enabling generalization. ​b.​ Generalization performance on the LOPO generalized variant 
effect prediction task as measured by In-Domain vs Transfer ratios for test set (left) and validation set (right). 
We used the function prediction dataset from Figure 3 with 8 proteins with 9 distinct functions measured in 
separate experiments ​35,77​. It was previously shown that some of the regions most vulnerable to deleterious 
single mutations are functional and highly conserved or co-conserved in evolution ​78​. Standard approaches 
therefore rely strongly on co-evolutionary data ​15,35,77​ or even structural data ​35​, which implicitly demarcate 
functional residues. Because it has neither of these as inputs and was trained on a corpus with at most 50% 
similarity between sequences, UniRep should find it challenging to identify such residues. Nevertheless, 
UniRep performs best in-Domain, successfully identifying functionally-important positions from some labeled 
mutation data for a given protein. However, as expected, UniRep does not generalize well to proteins for which 
it had no labeled training data, at least in this case. When we tested fusing UniRep to the RGN (RGN-Fusion), 
which was trained on a form of evolutionary data (PSSMs) and predicts protein structure, we see a boost in 
performance suggesting  a good trade-off between In-Domain and Transfer Error. ​c.​ Generalization 
performance on the LOPO generalized DMS stability task, measured by In-Domain and Transfer ratios for test 
set (left) and validation set (right). Unlike variant effect, stability is a property consistent to all proteins. There 
were 3 natural and 14 ​de novo​ designed wildtypes. Using the same LOPO procedure as described above, we 
found that UniRep outperformed all baselines at generalization, and that the RGN no longer offered 
meaningfully complementary information, RGN-Fusion performing approximately as well as UniRep. This 
suggests UniRep does enable generalization of universal protein characteristics. ​d.​ Generalization performance 
on the extrapolation DMS stability task, where the test set is selected from the most peripheral proteins in the 
set (e, red), measured by In-Domain and transfer ratios for test set (left) and validation set (right). We took the 
same DMS dataset as c) but instead of using the LOPO procedure, selected a single test set consisting of the 
most distant proteins in sequence space visualized with an MDS of the Levenshtein distance matrix (see e). This 
most closely represents the setup in a protein engineering task, where the engineer is exploring outwords in 
sequence space from local knowledge. Here we see the strongest performance of UniRep over baselines, 
suggesting that UniRep is well suited to this protein engineering formulation. ​e. ​MDS of the DMS stability 
dataset Levenshtein sequence matrix with the test set  (red) and training set from the stability extrapolation task 
(d) indicated. Villin, shown in 1D earlier, is enlarged and bolded. ​f. ​PCA of the DMS stability datasets UniRep 
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distance matrix on with the test set (red) and training set from the stability extrapolation task (d) indicated. 
Villin, shown in 1D earlier, is enlarged and bolded. Note the example point, villin, and other test set points 
move closer to the training data in representation space compared to sequence space. ​g. ​PCA of the avGFP 
training set (blue) and FPbase test set (red) from Figure 4 with the best performing Doc2Vec model distance 
matrix. ​h. ​PCA of the avGFP training set (blue) and FPbase test set (red) from Figure 4 with the best performing 
UniRep model distance matrix. Note UniRep training data extends over the region of the test set, facilitating 
prediction by reducing extrapolation burden (which can be defined as the distance from each test set member to 
the nearest training observation). 
 
 

 
 
Supplemental Figure 11. ​ Efficiency curves for all baseline representations: recall (a) and maximum brightness 
(b). Note the variable performance of the best 4 variants of Doc2Vec presented in Yang ​et al. ​ (2018) ​21 
 

 
Supplemental Figure 12. ​ Estimated UniRep cost savings in GFP protein engineering tasks. Although real cost 
savings will vary depending on the number of non-functional sequences to sift through, Evotuned UniRep 
achieves 80% recall at ~60 sequences tested, or approximately $3,000 assuming the most competitive full gene 
synthesis price of $0.07/nt​79​. By contrast, to achieve the same level of recall, the best Doc2Vec baseline would 
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require ~$300,000 (100x more). Random sampling still commonly used in this context would require 
$1,848,000 to achieve the same. Similarly, Evotuned UniRep captures the brightest sequence in the 
generalization set within the first $3,000 spent in testing, and the best Doc2Vec baseline would require 
~$540,000 (180x more) to do the same. Assuming on-target assembly rates improve and full economies of 
scale, multiplex gene assembly methods such as DropSynth​47​ could bring the cost of synthesizing a model 
proposed GFP down to ~$2. At these cost rates, Evotuned Unirep would enable high purity functional diversity 
capture and function optimization for just a few hundred dollars. Taken together, these results suggest that 
Evotuning UniRep enables generalization to distant parts of the fitness landscape and thereby facilitates protein 
engineering by drastically minimizing the cost required to capture functional diversity and optimize function. 
 
 

Group  Protein(s) in the 
task 

Size  Characteristic  Ref 

Small-scale 
protein 

characteristics 
prediction 

Cytochrome P450   261  Thermostability  21 

Bacterial 
Rhodopsin 

81  Peak Absorption Wavelength 

Epoxide Hydrolase  152  Enantioselectivity 

Channelrhodopsin  248  Plasma Membrane Localization 

Large-scale 
function 

prediction 

TEM1b-lactamase  5198  Function (diverse, see Fig. 3e) 
 

35 

Ubiquitin - E1 
activity  

1085 

Protein G (IgG 
domain) 

1045 

Pab1 (RRM 
domain) 

1188 

Ubiquitin  1195 

PSD95 (Pdz3 
domain) 

1577 

Yap65 (WW 
domain) 

363 

Aminoglycoside 
kinase 

4234 
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Hsp90  4021 

Large-scale 
stability prediction 

hYAP65  829  Stability (DMS data)  5
 

HHH_0142  775 

EEHEE_rd3_1716  775 

HEEH_rd3_0726  775 

EEHEE_rd3_1498  775 

EEHEE_rd3_1702  775 

HHH_rd2_0134  775 

HHH_rd3_0138  775 

HEEH_rd3_0872  775 

HEEH_rd2_0779  775 

HEEH_rd3_0223  775 

EEHEE_rd3_0037  775 

EHEE_rd3_0015  721 

EHEE_rd2_0005  721 

EHEE_0882  721 

Pin1  703 

villin  631 

De Novo​ Proteins 
from Design 

Rounds 

56083  Stability 

GFP engineering  avGFP  51715  Brightness   ​37  

A number of green 
fluorescent proteins 

27 
 

39 

 

Dataset  Size  Ref  Comment 
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SCOP 1.67 Superfamily Remote Homology 
Detection 

3802  62  Representing 102 superfamilies 

SCOP 1.67 Fold-level Similarity Detection  3736  Representing 86 folds 

 

Dataset  Size  Ref  Comment 

OXBench Database Reference Alignment  811  26   Classified into 180 families 

Protein Family Prediction from HOMSTRAD 
Database 

3450  25  Classified into 1031 families 

 
Supplemental Table 6. ​ Analysis datasets and tasks. 

 
Supplemental Figure 13. ​ UniRep is a generative model of protein sequences.  Homology model of a UniRep 
“babbled” sequence using a 15 amino acid seed (red) from a glucose ABC transporter (sequence from 
PDB:1oxx). Seed reference structure (PDB:1oxx) in grey. Modeled structure of babbled sequence shown in red 
(seed residues), blue (remaining N-terminus), and green (C-terminus which blasts to dipeptide ABC transporter 
with >40% identity). Alignment with the seed reference shows that UniRep has generated a sample which 
reconstructs structural regularities of the protein family. Full sequence blasts to ABC transporter family 
members with >50% similarity. 
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Data Source  Motivation  Applications  Mechanism  Refs 

PDB crystal 
structures 

Improve ab-initio 
structure prediction. 

In-silico 
crystalography, 
structural 
comparisons 

Joint training with 
the RGN, 
predicting next 
amino acid and 
structure to update 
joint weights by 
minimizing a 
hybrid averaged 
loss. 

16,52 

position sensitive 
scoring matrices 
(PSSMs) 

Enrich 
representation of 
evolutionary 
relationships. 

“Deep Homology”, 
semantic sequence 
comparisons, 
sequence search, 
phylogenomics. 

Additional 
representation 
training input 
(predict next 
column of PSSM). 

 

experimentally 
characterized 
synthetic mutants 

Tune for a specific 
engineering task by 
training on 
synthetic sequences 
which have been 
synthesized and 
tested. 

High-throughput 
model guided 
protein engineering. 

Evotuning, but 
replace extant 
sequences with 
synthetic sequences 
which have 
measured bright. 

 

ancestral sequence 
reconstruction 

Tune for an 
engineering task by 
enriching training 
data with ancestral 
sequences near the 
target which have 
been shown to have 
desirable 
biotechnological 
properties. 

Data-constrained 
model-guided 
protein engineering. 

Evotuning, but 
replace extant 
sequences with 
high-confidence 
sequences from 
ancestral protein 
reconstruction 
methods applied to 
the target and 
nearby extant 
relatives. 

80 

Functional 
annotations (eg 
Pfam, GO, etc) 

Incorporate existing 
functional data to 
improve 
representations for 
semantic sequence 

Fast, vector math 
parallelized 
sequence 
annotation and 
homolog 

Auxiliary tasks 
requiring the 
network to predict 
annotations after 
finishing predicting 

18,52 
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search.   identification.   next amino acid up 
to the end of a 
sequence. 

Experimental 
epistasis data 

Train UniRep to 
capture 
higher-order 
features of protein 
fitness landscapes 
to model the 
relationship 
between micro and 
macro scale and the 
accordance with 
theoretical results. 

Study of theoretical 
and experimental 
protein evolution.  

Evotuning to the 
context of a target 
epistasis model then 
subsequent top 
model training on 
evotuned 
representations to 
predict 
experimental fitness 
values (as in Fig. 4) 

41,81 

 
Supplemental Table 7. ​Data augmentation of UniRep.  
 
 

Name Type # Dimensions Ref 

RGN RGN 3200 16 

UniRep 64-unit Avg. Hidden State UniRep 64  

UniRep 64-unit Final Hidden State UniRep 64  

UniRep 64-unit Final Cell State UniRep 64  

UniRep 256-unit Avg. Hidden State UniRep 256  

UniRep 256-unit Final Hidden State UniRep 256  

UniRep 1900-unit Avg. Hidden State UniRep 1900  

UniRep 1900-unit Final Hidden State UniRep 1900  

UniRep 1900-unit Final Cell State UniRep 1900  

Doc2Vec Original k=3 w=7 Doc2Vec 64 21 

Doc2Vec Scrambled k=3 w=5 Doc2Vec 64  

Doc2Vec Random k=3 w=7 Doc2Vec 64 21 

Doc2Vec Uniform k=4 w=1 Doc2Vec 64 21 

UniRep 64-unit Fusion UniRep 192  

UniRep 256-unit Fusion UniRep 512  

UniRep Fusion UniRep 5700  

51 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/589333doi: bioRxiv preprint 

https://paperpile.com/c/zxmNOg/mOC6+GlC4
https://paperpile.com/c/zxmNOg/LLRp
https://paperpile.com/c/zxmNOg/GWmR
https://paperpile.com/c/zxmNOg/GWmR
https://paperpile.com/c/zxmNOg/GWmR
https://doi.org/10.1101/589333
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

UniRep 64-unit + 256-unit + 1900-unit Avg. Hiddens UniRep 2220  

UniRep 64-unit + 256-unit + 1900-unit Final Cells UniRep 2220  

RGN + UniRep 1900-unit Avg. Hiddens RGN+UniRep 5100 16 

RGN + UniRep 1900-unit Final Cells RGN+UniRep 5100 16 

Our Baseline: Amino Acid Freq. and Predicted Biophys. Params. Other baseline 26  

Our Baseline: Amino Acid Freq. and Protein Length Other baseline 21  

Our Baseline: 2-grams Other baseline Dataset- dependent 58 

Our Baseline: 3-grams Other baseline Dataset- dependent 58 

Our Baseline: 2-grams with TF-IDF weighting Other baseline Dataset- dependent 58 

Our Baseline: 3-grams with TF-IDF weighting Other baseline Dataset- dependent  

Our Baseline: Dataset Target Mean Other baseline 1  

 
Supp. Table 8 ​All the models we evaluated, including the baseline suite used for the majority of analyses in the 
manuscript. We additionally used Levenshtein distance (Needleman-Wunsch where all penalties are equal) for 
analysis in Fig. 2d and Rosetta total energy and NPSA measures for Fig. 3a (as described in Methods under 
“Stability Ranking Task”) 
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